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An approximate analytic solution is obtained for the problem of deformation of the Holtsmark contour of a 
hydrogen spectral line by an external magnetic field B. This solution makes it possible to obtain the 
difference contour, determined by subtracting two contours corresponding to polarization parallel and 
perpendicular to the magnetic field. A method of determining the magnitude and direction of B with the aid 
of this difference contour, expressed in terms of three universal functions connected with the Holtsmark 
function, is considered. Numerical results are given for the components of the lines La and L/J. The 
possibility of finding the exact analytic solution for the complete line contour is discussed. 

1. INTRODUCTION 

THE determination of the magnetic field in a plasma 
with the aid of SpE1ctroscopic measurements is of great 
practical interestE 1J. Such measurements are prefer
able because they do not call for external objects to be 
introduced into the plasma. There is a well known 
method of determining the magnetic fields from the 
Zeeman structure of atomic lines (cf., e.g.,E 1 ' 2J). At 
the same time, in a large number of experiments the 
Zeeman structure of the level is not clearly pronounced. 
This pertains in particular to the case of sufficiently 
high densities in a hydrogen plasma (for example, in
stallations of the plasma-focus or magnetic-piston type), 
when the Zeeman structure turns out to be almost com
pletely smeared out because of the linear stark effect 
in the ion fields. In this case it is practically impossi
ble to determine the magnetic fields by measuring the 
Zeeman effect. 

Under the described conditions, the line profile is the 
result of the joint interaction of the atom with the mag
netic field B and with the plasma microfield F. This 
complicates greatly the calculation of the line contour. 
Whereas in the absence of B the problem reduces to 
well-known analytic results[3J, corresponding line
contour calculations for B J, 0 have been published only 
very recently[ 4 J and reduce essentially to the develop
ment of certain computer- solution algorithms. Yet it is 
of undisputed interest to obtain sufficiently simple 
analytic solutions of this problem, since they would 
greatly simplify the interpretation of spectroscopic 
data, thereby increasing their reliability. We derive 
below such analytic solutions for definite regions of the 
line contour, and propose on their basis a method for 
determining the magnitudes and directions of the mag
netic fields. 

2. POLARIZATION CHARACTERISTIC 
We consider the influence of a homogeneous constant 

magnetic field Bon the static-Holtsmark profile of 
hydrogen spectral lines (see[ 3J) 1 >. We recall that the 
problem of determining the magnetic field is vital for 

1>Here, just as inl4l, it is assumed that the influence of the magnetic 
field on the character of the plasma-particle collisions can be 
neglected, i.e., that the condition rL>r0 is satisfied, where rL and r0 

are the Larmor and Debye radii of the ions. The action of the plasma 
electrons can be easily taken into account by functional convolution of 
the obtained contour with the electron impact contour, cf. l4l. 

the case when the Zeeman structure is "smeared out." 
A simple estimate of the ratio of the Zeeman splitting 
~Ez = (n- 1)1J.oB (n is the principal quantum number 
and IJ.o = e.li/2mc is the Bohr magneton) to the Stark 
splitting ~E8 = %n(n- 1)ea0Fo (ao is the Bohr radius, 
F0 = 2.6eN213 is the "normal" Holtsmark field, and N is 
the ion concentration in the plasma) yields 

/';.E, 1 e' B 
--= --- ~ 195·10'n-'BN-'1• 
fi.E, 3n lie F, · ' 

(1) 

where B is in gauss and N in em -3 • For example, for 
fields B ~ 106 G and concentrations N ~ 1018 cm-3 this 
ratio is of the order of unity for n = 2. 

We consider below the case when the parameter (1) 
is small (a more rigorous criterion will be derived from 
the final result in Sec. 4). The corresponding calcula
tions are based on a successive application of perturba
tion theory with respect to this parameter. Naturally, 
the line- contour corrections obtained in this manner are 
small compared with the zeroth (Holtsmark) approxima
tion. The calculated correction, however, being connec
ted with the magnetic field, reflects different properties 
of radiation polarized along and across the magnetic 
field. These properties can be revealed with the aid of 
the polarization characteristic usually employed in ex
periments on the polarization of radiation in the excita
tion of atoms [ sJ : 

II = U11 - fo.) I (Ill + I .1_), (2) 

where 111 and I 1 are the profiles of the emission line 
polarized parallel and perpendicular to B when observed 
in a direction perpendicular to B. The difference 111 - I 1 
in (2) does not contain a ''zeroth'' unpolarized radiation 
and is therefore completely determined by corrections 
containing the magnetic field. Thus, the problem re
duces to calculating the corrections for the radiation 
polarized parallel and perpendicular to B, followed by 
calculation of the difference contour 111 -I 1 . 

To a certain degree, this situation is analogous to the 
devices used to calculate the asymmetry of the Stark 
contours for hydrogen[aJ. We note that in this case the 
attained measurement accuracy is of the order of 1 %[ 7J. 
The fruitfulness of using approaches of this type is con
firmed also by recent experiments on the anisotropy of 
ion-acoustic noise in a turbulent plasma [8 J 

The case of Zeeman- Stark broadening entails much 
greater computational difficulties than, say, the case of 
Zeeman-Doppler broadening, where the determination B 

1130 



DETERMINATION OF MAGNETIC FIELDS IN A PLASMA 1131 

is quite simple, cf.C 1J We shall therefore disregard 
henceforth the Doppler effect, as can be done when 
T[eV] < 10-29.\~(%n(n- 1)n/m2N'13 (Tis the tempera
ture of the atoms and .\ 0 is the wavelength in A). We 
note that for the line wing the Stark mechanism remains 
decisive even if this inequality is noticeably violatPd. 

3. DIFFERENCE LINE CONTOUR 

The quasiclassical profile I(w) of the component of 
the atom line is given by 

l"(w) = {I ('I'd del '¥1) I '6(1'1w- M' I li) lav• (3) 

where '~'i f are the wave functions of the initial and final 
states of 'the atom, d is the atom dipole- moment vector, 
e is the radiation-polarization vector, t.E is the change 
of the energy as a result of the perturbation, .c.w = w 
- wo; w and wo are the observed and unperturbed tran
sition ~requencies, and the symbol { ... } av denotes 
averagmg over the Holtsmark distribution of the fields. 

We choose a coordinate system that is stationary in 
space with axis Z II B. We specify the direction of the 
vector F with the aid of the Euler angles (} and if (see 
Fig. 1). Then the Schrodinger equation for the hydrogen 
atom becomes 

( ~ eli ~ ) 
H,- dF ---L,B '¥ = E'¥ 

2mc ' 
(4) 

~here Ho is the unperturbed Hamiltonian of the atom, 
L is the orbital- momentum operator, and E is the 
eigenvalue of the energr 

It is assumed, as in 4 J , that the Paschen- Back effect 
takes place, so that we can disregard in the calculations 
the electron spin (allowance for it would shift the energy 
of each level by± enB/2mc, depending on the sign of the 
projection of S on B. 

To determine the eigenfunctions and the eigenvalues 
of (4), we use perturbation theory. The zeroth-approxi
mation wave functions are chosen to be the Stark wave 
functions '~'n1n2m in the coordinate system with Z' 11 F 
(Fig. 1), in contrast to the usual choice of the spherical 
functions '~tnzm (cf.[ 4J). This makes it unnecessary to 
solve the secular equations and by the same token 
enables us to use the formulas of perturbation theory 
without degeneracy for the interaction V = enLzB/2mc. 
It should be noted, however, that the procedure in ques
tion has a definite peculiarity, namely, the wave func
tions '1tn1n2m are taken in a coordinate system connec
ted with the field F, while the polarization characteris
tic is taken in the coordinate system connected with the 
field B. We introduce the symbol R for the rotation 

? 

y 

Z' 
FIG. I. Position of the co

ordinate system X'Y'Z' con
nected with the field F relative 
to the laboratory system XYZ. 
The Z and Z' are directed along 
the vectors B and F, the angle 
between which is e; the y' axis 
lies in the XOY plane; 1/J is the 
angle between the X axis and the 
node lineN. 

operator that makes these coordinate systems congru
ent. Then the perturbation- theory series for the energy 
and the eigenfunctions take the following form, with ac
curacy up to terms of second order inclusive; 

'E 'E''> (tl (2l a { eB '-' ,::::::'-', +t.E, +t.E, =li-q,F, 1+-· 
e q,F, 

X(kiJH:.Rik) + (..!!}_) 2 ~ I (JN,,R).ml' }, (5) 
q,F, ~ 1- qmfq, 

m,c• 

ur ~ nr(o>+ur''>+ur('l_ur(O) eB n (R+£ji.)mA (0) 
T}L'-'Tk T.lt Tk-Tk+-} \f 

q,F,::; 1- qm/q, m 

(fi+i,ii) .. CR+iiflm• (0) 1 (il+Z,in:. ">} 
- 'I' - '¥ 

(1- qm/q,)' m 2 (1- qmfq,) k ' 

(6) 

where qk = nlk- n2k is the difference between the para
bolic quantum numbers of the given state k, 
a = 3ne2a /21i E = e 2/3nnc 'lt' 0 > = 'It The ac-

0 ' ~ ' k n1kU2kmk" 
tion of the operator R is given by the formulas [ gJ 

it+ A.Ji = (A,. sine- Ax· cos e) sin IJl- cos IJlAy·, 
il+ A.,A =A,. cos e + Ax· sine, (7) 

where Az and Ax are specified in the coordinate system 
connected with the field B, and Ax', Ay', and Az' in the 
system connected with the field F. We use for the 
o -function in (3) the expansion 

( t.E) ( t.E''' + !'J.E''> + t.E''> ) 
{j L'.w- fl :::::: 6 L'.w- fz 

~ ( t:.E''' ) t.E' 0 , ( AE'"' ) 
~ 6 Aw--fz- --fz-6 L'.w--fz- -

t.E' 2) ' ( !'J.E(O) ) 1 ( t:.E' 0 ) 
2 

I ( !'J.E''' ) 
---tz- 6 ~w--fz- +--z -fz-- 6 !'J.w--fz- · (8) 

Assuming for simplicity that the state 'ltf is unper
turbed, substituting (5)- (8) in (3), and combining terms 
of like order of smallness in EB/qkF0 , we obtain an ex
pression for the profile of the component with polariza
tion e. Assuming e 11 Z and e 11 X, we obtain expressions 
for the profiles Iz(w) and lx(w) of the components with 
polarization along the Z and X axes, respectively. 
Setting up furthermore the difference contour Iz- x(w) 
= Iz(w)- Ix(w), averaging over the angles with allow
ance for (7), and going over to the dimensionless con
tour 1(/3), defined by the relation 

I(w)dw= ld.,I'J(~}d~ (~== (w-w,)/ae-'q,F,), 

we get 

1:-x(~):::::; (_!!}_)'{c,:-x J'6(~) +C;,-x_!:_[J'6(~)] 
q,F, (3' d~ ~ 

+ c,;-· :;2 [J'6(~) 1 }. (9) 

where cfk-x are numerical coefficients determined by 
the sums from (5) and (6), and l = 1, 2, 3; the explicit 
form of Czk-x is given in the Appendix; Gm{/3) is the 
Holtsmark function[uJ 

We see thus that the difference contour for any line 
is proportional to the square of the magnetic field and is 
expressed in terms of the three universal functions 
f1 = Gm(/3)/{32 , fz = d(f3-1d6(!3))/d{3, f3 = d2J'6(!3)/d{32 , the 
values of which are given in the table. 



1132 A. V. DEMURA and V. S. LISITSA 

~ I /.(~) I /,(~) I t.(~) I ~ !.(~)· I /,(~) I fv(~) 
0.0 (}.4240 0.4244 0.8488 2.4 0.0473 -0.1198 -0.0087 
0.2 0.4170 0.4012 0.7561 2.6 0.0352 --0.1004 0.0489 
0.4 0.3940 0.3365 0.5092 2.8 0.0262 -0.0820 0.0805 
0.6 0.3600 0.2428 0.1780 3.0 0.0196 -0.0657 0.0930 
0.8 0.3175 0.1373 -0.1482 3.4 0.0110 -0.0410 o:oss1 
1.0 0.2712 0.0365 -0.3956 4.0 0.0050 -0.0199 0.0542 
1.2 0.2248 -0.0469 -0.5259 4.4 0.0035 -0.0126 0.0369 
1.4 0.1815 -{).1063 -0.5366 . 5.0 0.0016 -0.0063 0.0203 
1.6 0.1431 -0.1408 -0.4655 5.5 0,0010 -0.0041 0.0126 
1,8 0.1106 -0.1539 -0.3441 6.0 0.0006 -0.0026 0.0081 
2.0 0.0842 -0.1509 -0.2125 6.5 0.0005 -0.0017 0.0053 
2.2 0.0534 --0.1379 -0,0965 7.0 0.0003 -0.0012 o.oo3o 

The coefficients Cfk x were calculated for the con
crete lines using the geneJal formulas for the matrix 
elements of the operator Lin parabolic coordinates 
obtained on the basis of the four-dimensional symmetry 
properties of the hydrogen atom tcf., e.g., [ 12] ). The 
matrix elements of the operator d were taken from[ 13J. 

4. DIFFERENCE CONTOUR OF L0 AND Lfj 

The calculation described above gives for the side 
component 100- 000 of the La line the following result: 

(10) 

It can be verified that this result agrees with the corre
sponding expression that can be derived from [ 4 J by 
series e!CJlansion of the intermediate analytic formulas 
(44) of[4J for the particular case of L . 

For the side component 101 - 000 ~f the Le line we 
obtain 

(11) 

The contours (10) and (11) are shown in Fig. 2. 
The condition for the applicability of the results is 

obviously the requirement that the difference contour be 
small in comparison with the Holtsmark contour 

(12) 

Using the well known limiting expressions for J'&({:J) in 
the cases f3 » 1 and f3 « 1, we obtain for Iz- x{{:J): 

I ( :~ )'_ ;:!~ (c .. - ~ c,. + ~5 c,.)' ~ » 1 
[•-•(P.)= 

.p rB 2 3 
( -) -(C,. + C,. + 2C,.), ~ <t: 1 (13) 

F, 4n 

Substituting (13) in (12), we obtain for {3 » 1 the condi
tion 

~?>eB/F, (14) 
and a condition of similar form for {3 « 1. 

Formulas (12) and (14) are rigorous criteria for the 
applicability of the described approach. An analysis of 
these formulas shows that the results obtained above 
cover a rather wide range of experimental conditions. 
In fact, the necessary requirement that the obtained 
correction (12) and (14) be small can be satisfied for a 
given value of B by many different methods, such as 
going over to higher line, increasing the concentration, 
and a transition to the line wing. We note that the con
tours (10) and (11) do not satisfy the requirement of 
normalization at zero, since these results do not hold, 
according to (14), in the immediate vicinity of the line 
center. 

FIG. 2. Universal functions 
~;i'(JS), which determine the dif
ference contours of the line com-1 
ponents: I 00 _,. OOOLa (I~:(JS) = 
(15/ll)IZ-X(JS)/(eB/Fo )2 -curve 
1), 101 _,. OOOLJS(I~:(JS) = JZ-x 
(JS)/(eB/F0 ) 2 -curve 2). 

It is of interest to compare the analytic results with 
the numerical data [4 J. These data (which include also · 
electronic impact broadening) are represented in the 
form of extensive tables of the line contours for obser
vation along and across the magnetic field. Using 
formulas (36) and (37) of[4 J we can verify that the dif
ference contour corresponding to the two indicated ob
servation directions coincide with the one introduced 
above (see (9)). When it comes to a direct comparison 
with[ 4 J, several difficulties arise, connected mainly 
with the fact that the comparison must be made for 
difference-contour values that are, on the one hand, 
quite small (when the results of (9) are already valid), 
and on the other hand large enough and exceed the error 
of the numerical calculation(~ 1% in[ 4 J); in addition, 
it is necessary to be far enough away from the line 
center to decrease the influence of the electron impact 
broadening, which is taken into account inC 4] 2 >. When 
the indicated conditions are satisfied, say, for the line 
La at a density N ~ 1016 cm-3, the two difference con
tours agree (within ~ 20%) for fields B = 20, 40, and 
60 kG in the region from {3 ~ 1 (at B = 20 kG) and from 
{3 ~ 2 (for B = 40 and 60 kG). Thus, the influence of the 
magnetic field B is described by the result (9), which 
determines the value of B directly, already at a distance 
of half the line width away from the line center. 

The results enable us to extract information not only 
on the magnitude but also on the direction of the mag
netic field. In fact, the effect calculated above is con
nected with the coordinate system oriented along B. If 
the magnetic field is rotated around the Y axis through 
an angle 11 0 relative to the laboratory system then, by 
using the known formulas for the transformation of vec
tor components upon rotation, we easily obtain for this 
case the connection between the polarization character
istic }z- x with the previously calculated Iz- x: 

(15) 

If the orientation of B relative to the laboratory system 
is arbitrary, the dependence of1z-x on the angles is 

z-x z-x somewhat more complicated: I = I f( lj!, e, cp), 
where f( lj!, e, cp) is a certain function obtained by rota
tion through the Euler angles lj!, e, and cp. 

2>We note in this connection that the use inl•J of a pure electron impact 
contour for convolution with the quasistatic contour leads to an 
incorrect asymptotic behavior of the intensity, see ll•J. 
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5. EXACT SOLUTION 

Our problem, as already noted, can also be solved 
accurately, but this calls for laborious computer calcu
lationsC4J. The solution method given inC•J is based on 
a numerical solution of the secular equations followed 
by numerical integrations of the results with respect to 
the angle and with respect to the modulus of the field, 
with simultaneous convolution with the electron impact 
broadening. Naturally, in view of the high degree of de
generacy of the hydrogen levels, such an approach be
comes extremely complicated with increasing n. 

We wish to show here that even in the general formu
lation one can go much farther in the analytic solution 
of the problem than inC•J, and simplify by the same 
token the numerical calculations. To this end it is 
necessary to use the four-dimensional symmetry prop
erties of the hydrogen atom, which enable us to get along 
without solving the secular equations, by choosing wave 
functions that diagonalize the Hamiltonian (see C 15J). 
These wave functions are of the form (seeC1sJ) 

(16) 

(fi-1)/2 
where 'ilh, h = 'iln1n2m; Dn'i is the Wigner func-

tion [16J; i1 = %(m + n2- n1), i2 = %(m + n1- n2) are the 
quantum numbers of the projections of the vectors 
J1 = (:L- A)/2, J2 = (:L + A)/2 on the direction of F; 
n' and n" are the quantum numbers of the projections of 
J1 and J2 respectiyely on the directions of w1 2 
= ae -1{ EB ± F}; A is the .Runge- Lenz vector_t12 J 

The eigenvalues of the energy take in the first approxi
mation the form 

tiE a [ ( eB n.~ e'B' )'h T""" n'lrod+n"lrozi=--;;-Fo~ n' 1-2Fo7+JiT 

( eB n.~ e'B' ) '''] -i-n" 1+2--+--
F, i>' F,' ' (17) 

where fJ = F/Fo, lfJI = {3, nB = B/IBI. Then, substituting 
(16) and (17) in (3), we can easily verify that by virtue 
of the presence of the a-function the integral with 
respect to the angular variables can be evaluated, and 
the expression for the profile of the line component re
duces to a single integral with respect to the modulus 
of the field. The calculation of this integral, however, 
is still a difficult task, in view of the presence of a 
complicated dependence of the integrand on the sums 
with D-functions and can be performed only numeric
ally. 

The method described above, based on perturbation 
theory, also makes it possible, as noted, to get along 
without solving the secular equations, and leads, unlike 
the exact solution, to analytic results that are directly 
connected with the value of B. These results, as we 
have verified, turn out to be valid in the regions of prac
tical interest already at half the line width. The method 
developed here is therefore preferable for diagnostic 
purposes. 

The authors are sincerely grateful to G. V. Sholin 
for useful advice and discussions during the work and 
to V. I. Kogan for a discussion of the results. 

APPENDIX 

For convenience in comparison with the results of[4 J, 
we present expressions for the coefficients C\-x (9) 
(l = 1, 2, 3), obtained by substituting (5) and (~) in (3) 
and taking (7) into account, prior to averaging with 
respect to cos e = y: 

a," ,_, ( v'(1- v') { , Be,. = • 2 2L 3Cm (L)m,[ (d,)om(d,).,(L,)mrn 

m*k 

- (d,)kO(d,)om(L,),,J+ ~ Cm'l (L,)m>l'[ (21 (d,)mo I' -I (d,) mo I') 
m=t=k 

- (21 (d,)kO I' -I (d,),, l'l I+ 2L .E Cmn (L,)mn(L,) n,[2(d,),,(d,)om 
m=t=h n::;t<:h 

- (d,)mo (d,)onl} + '/,(1- v'l'{l: Cm 'I (L,)m•l'[(21 (d,)om I' 
m*k 

-I (d,)oml'l-(21 (d,J"I' -I (d,J"I'l I+ 2L .Ecmn(L,)mn(L,)n, 
m=;~=h n=f=.h 

X[2(d,)kO(d,)om -(d,).,(d,)omJ+ I:~ Cmn(L,)mk(L,).n 
m,.:h n4=k 

X[2(d,)on(d,)mo -(d,)on(d,)mol}-'/,(1- v') { .E Cm'l (L,)m•l' 
m*k 

><[I (dy)mo I' -I (d,)., 1'1+ 2L L Cmn(L,)m,(L,) nk(d,).,(d,)om 
tn-=!=-kn-=f=-11. 

+I: I: Cmn(L,)mk(L,),n(dy)mo(dy)on}) ,' (A,1) 
1W'#=k w;i-k 

+ [21 (d,J.,I' -I (d,J'"I'l ( L I (L,)m,I'Cm)} 
m 

+ <1--;v'l' (.L/mi(L,Jm,l')l2l(d,J.,I'-I(d,J.,I'l). 
m (A.2) 

~c;;"= ("'(3v:-il (L,J,.'ll(d,J"I'-I(d,J"I') . 
5 (A.3) 

Cm n := { 1- qm,n) -t Cmn"" CmCn, 
' \ q~~. ' 

a"= a 'e' 2'n'(n -i)'n-• 
o o (n + 1)'n+6 

We note that both the components of the vectors L and d 
and the parabolic wave functions in these expressions 
are taken in the same coordinate system, which is con
nected with the field F. The lower state is marked by 
the subscript 0. 

After averaging with respect to y ( ( ••• >y 
+1 

- % J ... dy) and grouping like terms, the expressions 

(A.1)-(A.3) become much simpler. In the subsequent 
calculations, only one or two terms remain in the sums 
of (A.1)-(A.3) for the concrete cases of the lines La, 
L13 , etc. (cf. (10) and (11)), so that the determination of 
the numerical coefficients in (10) and (11) becomes quite 
simple. 
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