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An expression is derived in the pair collision approximation for the entropy density S of a non
equilibrium imperfect gas. As expression for the Boltzmann H -function is found in the same ap
proximation on basis of the Boltzmann kinetic equation for an imperfect gasrl]. In the equilibrium 
state the expression for S is given by the first two terms of the virial expansion of entropy with 
respect to density. 

1. INTRODUCTION 

I T was shown I~arlier P] that complete allowance for 
the interaction of the particles in a gas, within the 
framework of the pair-collision approximation, leads 
to additional terms in Boltzmann's classical kinetic 
equation. The corresponding additional terms appear 
also in Boltzmann's quantum kinetic equation. The 
first attempt to determine these terms was made ap
parently by Green [2]. This problem was considered 
with great succ,ess in [3-51. 

In the case of a spatially homogeneous distribution 
of the gas partides, Boltzmann's classical kinetic 
equation takes the form 

af, (Ph t) = I, + I,. 
at 

(1.1) 

Here J 1 is Boltzmann's collision integral. We write it 
in the form proposed by Bogolyubov [6] 

I, = n Sa<D(1'~~f'(P,(_ oo),t)f,(P,(- oo),t)dr,dp" (1.2) 
or, ap, 

P 1 and P 2 are the initial moment of the two particles 
colliding at the instant of time t, while n = N/V is the 
average particle concentration. The additional collision 
integral J 2 is defined by 

a SW a<D 0 d 
I, = --n- S'------f,(P,(-,),t) 

at 0 or, ap, d, 
(1.3) 

x f,(P,(-,),t)dx,d" x=(r,p) 

Owing to the presence of the additional integral J 2, the 
integral 

I(t)= n S ql(PI) (I, +I,)dp, 

vanishes only at cp = 1, Pl. At cp = pU2m we have 

p' n' a 
n S-' (I, + I,)dp, = ---S <D(1, 2)f,(P, (- 00), t) 

2m 2 at 

x i,(P,(- oo),t)dx,dp,. 

In the pair-colli.sion approximation, consequently, the 
expression for the density of the internal energy of the 
gas takes the form P ] 

p 2. n2 
C = n S-' f,dp, +- S <D(1,2)f,(P,(- oo),t)f,(P,(- oo),t)dx,dp,. 

2m 2 (1.4) 

We see that the sum of the average kinetic and poten
tial energies is conserved. 
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Any thermodynamic function of the gas can be 
represented by a series in powers of the density. This 
pertains also to the distribution functions fl and f2' 
which are averaged statistical characteristics. Within 
the framework of the pair-collision approximation, we 
can obtain only the first two terms of the expansions 
with respect to the density. In this approximation we 
can therefore represent the distribution function fl in 
the form 

f, = f,o + nf,'. 

Here f\ 0) is the distribution function of an ideal gas and 
n is the contribution to f 1 as a result of the non-ideality 
of the gas. Since allowance for the non-ideality means 
allowance for the correlation of the particle positions, 
the function f~ is determined by the correlation func
tion 

g, = f, - f,f,. (1.5) 

The general connection between the functions fl and g2 
is the same for both the classical and the quantum 
cases. When only pair collisions are taken into account, 
it takes the form 

( S 
dr,dX') (16) f, (p" t) = C f,o + (N - 1) g, (x" x" t)---vz- . . 

This expression can be obtained in the pair-collision 
approximation, e.g., with the aid of the equations of [1] 

for the functions f1 and f2. We do not present the de
ri vation, since the meaning of (1.6) is clear: the first 
term describes the distribution function of an ideal 
gas, and the second takes into account the influence of 
the pair correlation of the particle under consideration 
with the N - 1 surrounding particles. 

When writing (1.6), we used the following normali
zation of the distribution functions: 

S dx. S dx,dx, (1. 7) i,v= 1, t.,---y;-= 1. 

The quantity C in (1.6) is determined from the normali
zation condition. From (1.7) we get 

S dx, S dx, g,-= g,-=O 
V v· 

(1.8) 

Owing to the presence of the factor (N - 1), the second 
term in (1.6), in spite of Eq. (1.8), makes a finite con
tribution in the limit as N - 00, V - 00, with N/V 
= const. 

Using the expression for the normalization constant 
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C, we can represent (1.6) in the first approximation in 
the density as follows: 

/. (P., t) = I.' + n f {S g,dp, - f g,dpt dp,ft' (p" t) } dr~dr2 . (1.9) 

In the equilibrium state, the distributions with respect 
to coordinates and momenta are independent for a 
classical gas, and it follows from (1.9) that in this 
case fl = f~, i.e., fl is the Maxwell distribution. When 
the quantum corrections are taken into account, we 
have fl ~ f~ even in the equilibrium state (7). Thus, 
e.g., in the expression for the energy density (1.4), the 
influence of the correlation function becomes manifest 
in the general case both in the expression for the 
kinetic energy and in the expression for the potential 
energy. In the first expression, the correlations enter 
via the first distribution function fl' and in the second 
(in the potential energy) they enter via the second dis
tribution function f2. To take complete account of the 
non-ideality, it is necessary to consider both contribu
tions. A similar situation arises also in the calcula
tion of the entropy for a non-ideal gas. 

Usually for a Boltzmann gas the entropy denSity is 
determined by the expression (cf., e.g.,r S- ll )) 

(1.10 ) 

For non-equilibrium states, this expression takes 
partial account of the contribution of the correlations, 
since, according to (1.9), fl depends on g2. However, 
this account is incomplete. Indeed, for the equilibrium 
state of a classical gas, expression (1.10) coincides 
with the entropy of an ideal gas. At the same time, for 
a non-ideal gas "the entropy can also be represented in 
the form of a series in the density. A contribution of 
the order of n2 to the entropy density, within the 
framework of the pair-collision approximation, is not 
equal to zero even in the equilibrium state. This in
deed demonstrates the incompleteness of expression 
(1.10) for a non-ideal gas. 

The purpose of the present article is to derive for 
the entropy an expression that takes full account of the 
non-ideality of the gas within the framework of the pair 
collisions. In Sec. 2 we determine the additional con
tribution made to formula (1.10) by the correlation of 
the particles. In Sec. 3 we carry out the corresponding 
generalization of Boltzmann's H-theorem. 

2. ENTROPY DENSITY FOR A NON-IDEAL GAS IN 
THE PAIR-COLLISION APPROXIMATION 

We represent the expression for the entropy density 
S in the form 

(2.0 

where .:lS is the additional contribution to S as a result 
of the correlations, which enter via the second distribu
tion function f2. 

To determine .:lS we proceed as follows. We write 
down the expression for SB for two particles in the 
form 

k fax. ax, f dx. dx, 
-2 2 In(f./.)/dt-vz=-k In(t.f,)/,~. 

We have used here the normalization conditions (1.7). 
When the correlation of the particle pair is taken into 

account, this expression takes the form 

- kf / Inl dx. ax, , , V' . 

Since the number of pairs is N(N - 0/2, these two 
expressions lead to an expression for that part of the 
entropy density which is due to the correlation of the 
particles: 

AS = -l:!!. fl I ~ ax, ax. 
2 ' n l,ft i V . (2.2) 

Let us examine this expression for the equilibrium 
case. In this case we can integrate in (2.2) with respect 
to the momenta. As a result we obtain 

kn'f drtdr, (2.3) t::.s = --2- I,(r"r,)ln/,(rt,r,)-v-' 

Here f2 = C exp ( -if> ( 1, 2)/kT). The normalization 
constant is 

(2.4) 

Here rcor is the correlation radius. As V - 00 we 
have C - 1. However, we can put C = 1 in (2.3) only 
as the first factor under the integral sign. Indeed, 

kn' cf drtdr, knN c- kn'f (-"'lkT 1) drtdr, 
-2- ln /"-V-=-2- ln -2 e - -v-, 

I.e., this quantity is of the same order as the remaining 
terms in (2.3). Taking this into account, we can write 
(2.3) in the form 

kn' [(lJ 
t::.S = -- f - e-"'lkT + (e-O>/kT - 1) ] dr = -2 kT ,r r. r,. 

(2.5) 

For the model of spheres with weak attraction we have 

~ (lJ' 
I'lS = - kn'b -llkn'f ~-r'dr. 

, (kT)' 
'0 

Here b = 21Tr~/3 is the Van der Waals constant. 
Expression (2.5) follows also from the Gibbs canoni

cal distribution. The first term is determined by the 
contribution of the internal energy and the second by 
the free energy, since 

~ 

I'lF = - 21lkTn' f (e-O>,·T -1)r' dr. 
• 

The general expression (2.2) can be represented 
also in the nonequilibrium case in the form of a sum 
of two parts, one of which determines the contribution 
of the internal energy on going to the equilibrium 
state, and the other the contribution of the free energy. 
To this end, we represent the functions fl and f2 in 
the form 

dx. ) -, (dx, ax, ) _t 
1t= (f FtT Ft; 1,= f F,---vz- F,; F,-FtFt = G,. (2.6) 

In the equilibrium state we have 

(2.7) 

Expression (2.7) differs from (2.6) in that here C = 1, 
Le., the contribution of the correlation is not included 
in the normalization constant. Taking (2.6) into account, 
recognizing that 

f dXt 
F. y = 1+0(n) 

and neglecting the terms n3 , we reduce (2.2) to the 
form 
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kn's[ F, ] d.x, dx, ",S==-- In--G, --. 
2 F,F, V 

(2.8) 

In the equilibrium state, using (2.7), we arrive again 
at expression (:2.5). We see that the first term in (2.8) 
is the non-equilibrium analog of the contribution of the 
free energy. 

In the perturbation-theory approximation in 
gdflf2' we obtain from (2.2) and (2.8) 

/t,.S = -!!!!!... J L d.x, d.x, = _ kn' S ~ d.x. dx. (2.9) 
2 2f,f, V 2 2F,F, V 

Expression (2.8) and (2.9) coincide with those given 
in [12]. 

3. H-FUNCTION FOR A NON-IDEAL GAS 

It is seen from (2.2) and (2.8) that the correlation 
enters in the expression for as via f2 and via In f2. 
To take into aceount the contribution of the correlation 
function under the logarithm sign when determining the 
H function, we proceed the following manner. Using 
the kinetic equation (1.1), we write down an equation 
for the function fl (PI, t) iI(P2, t). We multiply this 
expression by 

( );n .. kn' I, ) dx, dx, 
---In(I,I,)--Vln- --

:2 2 l,f, V' 

and integrate w:lth respect to Xl and X2. Neglecting 
terms of the order of n3 in the right- and left-hand 
sides, we obtain 

S iJ/, dx, kn's iJ /. d.x. d.x, S d.x, -kn -In/,--- -(f,f.)ln---= -kn J,ln/.-at v 2 at Id, V V 

(3.1 ) 

The integral J I coincides with the Boltzmann collision 
integral, and therefore 

(3.1' ) 

We transform the second term of the right-hand 
side of (3.1). Using the expression (1.3) after integrat
ing by parts with respect to PI and symmetrizing, we 
obtain the expression 

kn' ~ (a([l a . a([l a) --- --+-- Inf,f,· 
<: f S ar, ap, ar, lip, 

We perform transformations analogous to those 
made infl] in the derivation of the conservation law 
(29). Under the integral sign 12, we change over to 
new variables, Xl, X2 - Xl(-T), X2(-T) and recognize 
that 

_[(~~+a([l_~)ln(f,f,)] =[~In(f,f,)] , 
art apt ar2 8p2 Xd-t).X2(-t) dl' X,<-'t),X~(-'() 

integrate by parts with respect to T, and then change 
back to the variables Xl and X2. As a result we obtain 
the expression 

kn' S~S a d dx,dx. 
-- In(f,f,)--S_,(1,2)f,f,-v- dT. 

2 " lit dT 

Integrating with respect to T and recognizing that in 
the zeroth approximation in the retardation the second 
correlation function is 

we obtain the expression 

I,(t) = - kn' fln(f,f,)!.£~ 
2 at v . (3.2) 

We use Eq. (1.2) of fl] for the function f2: 

(!.+v,~+v,.!...-~~- a([l ~)f'= a/d., at ar, ar, ar, ap, ar, ap, at 
(3.3 ) 

in order to rewrite (3.2) in a form more convenient for 
our purposes. We multiply (3.3) by In f2 and integrate 
with respect to Xl and X2. As a result we obtain 

f I f ag, dx,d.x, 
n 'a;--v-=o. (3.4) 

It follows from (3.2) and (3.4) that 

I,(t)= _ kn' fin..!:.. ag. dx,d.x, . 
2 /,f, at v 

(3.5) 

Taking (3.1) and (3.5) into account, we obtain 

k S a/, kn' f /. a/. dx,d.x. 
- n In/,--_ In----= l,(t\~O at 2 f,f, at V ., ~ . 

(3.6) 

The operator a/ at in the left-hand side can be taken 
outside the integral signs, by recognizing that 

(3.7) 
f/'~(In~) d.x,d.x, = -f!!!'" d.x,d.x, = o. 

at f,f. v at v 
The last equation follows from (3.3). The result is the 
inequality 

where 
dS / dt == -dH / dt = I, (t) ;;;, 0, 

H S d.x, kn' f I, dx, dx, 
=kn 1,ln/,-+-.- 1,ln---

V 2 /,f, v 
(3.8) 

is the Boltzmann H-function with complete account 
taken of the interaction of the particles within the 
framework of the pair-colliSion approximation. The 
additional term in (3.8) for S coincides with expression 
(2.2). 

If we replace fl' f2, and g2 by the functions F I , F 2, 
and G2 defined by formulas (2.6) and (2.7), then we 
obtain for the H -function instead of (3.8) the following 
expression: 

H = kn f I, In I, dx, + kn' f (F'ln~- G,) d.x,d.x, . 
V 2 F,F, V 

This expression coincides with that given in(12]. 
The results can be generalized for the ternary- and 

quaternary-collision approximations. The solution of 
this problem, however, entails many difficulties, one 
of which is due to the appearance of divergences in the 
corresponding collision integrals. 
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