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The spin-wave relaxation rate in antiferromagnets is calculated in the case when the antiferromagnetic 
vector is directed perpendicular to a constant magnetic field. Various relaxation mechanisms are in­
vestigated. It is shown that the main contribution to the relaxation is made by four-magnon scattering 
processes. 

ONE of the int.~resting problems in the physics of mag­
netically ordered crystals is the study of spin-wave re­
laxation. In recent years, a large number of theoretical 
papers[l-7] has been devoted to the study of relaxation 
processes in antiferromagnets. At the same time, in­
vestigations of parametric phenomena [8-12] give a con­
siderable quantity of experimental data concerning spin­
wave relaxation. To interpret these results, and also, 
ultimately, to make further progress in the study of 
parametric phenomena, [13] it is necessary to calculate 
the possible relaxation mechanisms rigorously on the 
basis of a method possessing sufficient accuracy. For 
this purpose, at low temperatures, we can make use of 
Dyson's formalism. [14] In this paper, this method is 
applied to investigate the relaxation of spin waves in 
an antiferromagnetic insulator with anisotropy of the 
"easy -plane" type. 

We write the Hamiltonian of an antiferromagnet with 
"easy-plane" anisotropy in a two-sublattice model with 
exchange interaction between nearest neighbors in the 
following form :[15] 

:J{ = - ~ J (4) 3R,SR,+A + 2 ~ D (4) (S~,Sl'..,+A - Sl'...S~,H) 
Rl~ R,A 

+ ~ p (Sit)' + ~ ~ Q (R - r) SitS," - !lBgH ~Sk, 
R R r-FR R 

where zy is the basal plane of the crystal, J(t.) < 0, and 

p- ~Q(R-r»Q. 

Going over to the idealized-spin operators S and then 
to spin-deviation Bose operators using the formulas[16] 

we obtain for the operators of the idealized-spin com­
ponents in the laboratory coordinate frame 

. , ( aR+aRaa) SR'= sin1jJ(S-aR+aR)=Ficos1jJ(S/2) I, aR+-aR+~ , 

. , ( aR +aRaR ) SR" = ± cos 1jJ (S - aR +aR) + i sin 1jJ (SI2) I, aR + - aR + -----zs- ' 
( aR+aRaR ) 

SRx = (S/2) 'I. aR+ + aR - -;;:s- , 
where sin I/J R< H + HD/2HE for H« HE; HE 
= zl JI S/JlBg, HI) = 2zlDI S/JlBg, and the upper Sign 
corresponds to the sub lattice in the direction of the 
positive z and y semi-axes. Expanding aR in a Fourier 
series in k and diagonalizing the part of the Hamiltonian 
that is quadratic in the Fourier components of the spin-
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FIG. I. Spherical system of 
coordinates in momentum space 
for the case of mutual scattering 
of two magnons. 

deviation operators by means of the relations[17,18l 

2 

a,. = ~ (u,,cj, + V"Cj":.) 1 

j=1 

where for H « HE, kt. « 1, 

we find the spin-wave spectrum in the form [19,20] 

ej' _(ej02+e,2(k~)2)''', j=1, 2; Elc - !lBgHE; 

e" = J.lBg[H(H + HD)]'b, f20 = flBg[2HA H E + HD(H + H D) ]V,. 

The purpose of the paper is to calculate the rate of 
relaxation of the spin waves of the low-frequency (LF­
index 1) and high-frequency (HF-index 2) branches. 

1. THE LOW-FREQUENCY BRANCH 

In studying the relaxation of magnons of the LF 
branch, we shall discuss first of all the four-magnon 
scattering of magnons of the LF branch (11 - 11) 
(Fig. 1). To calculate the contribution of this process 
to the relaxation rate we make use of the lowest Born 
approximation 1) 

PO' 

x (n, -1) -(np - 1)n,n,jll(e. + 
+ ep - e. - e,) . 

(1 ) 

We shall find the amplitude of the process being studied. 

1) In studying the scattering of magnons of the LF branch, we shall 
omit the branch index. 
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Transforming in the interaction Hamiltonian2) 

Je(') ~ J (~) [+ + ,1 ( + = - l...J aRlaRtaRt+AaRl+A+ 2 aR1aR1+&aR1+.&aRl+A 

R,~ + aR,+~a:i,aR,aR,)l 

to the spin-wave operators Cjk and C{k' after simple 
calculations we obtain the expression 

,,' I'BgH" 
'1'.,. ~ - 8SN( ) '/ [(e. + e.) (e. + e.) - (e.e. + e.e.) 

8t8,8,8. 2 

- (e,Ll)'(k + p) (q + s) + (e,Ll)'(kp + qs) - 39,(e. + e. - e. - e.)] 

XLl(k+p-q-s), 

which coincides in form (when the energy conservation 
law is taken into account) with the result of the calcu­
lation by the Holstein-Primakoff method (for S » 1). 

When the energy and quasi-momentum conservation 
laws are taken into account, the expression for the am­
plitude is brought to the simpler form 

$''+'-' (I'Bg)'H" 
'P.,. "" 8MV( I + 1)'"[3eo' + (e.B.-aka.cos{i.) (2) 

o ekE,s. Sic 8p - 8q 

- (e.e. - a.a. cos ~ •• ) - (e.e. - a.a. cos ~ .. )], 

where G'k ;: eck6.. 
In the limit of infinite volume, going over to an inte­

gration in formula (1) and taking the quasi-momentum 
conservation law into account, we obtain 

Ll - (1 - '~/T) 81'1 V' (',' d d 1 mq, k+p-q 12 - (1 - (1 -OOik - - e (2I'1Ll)'/i J.; p q Y k, P np + nq) + nk+p-q) 

x6(ek + ep - eq - ek+p-q), (3) 

with 
s' = k' + p' + q' + 2pk cos -ti, - 2q (k' + p' + 2pk cos -ti,) 'I,cos ~., '+', 

dp = p' sin -ti,dpdii,cUp" dq = q' sin -ti.dqdii.d:p.. (4) 

We shall express the angle i3q p+k in terms of the inte-
gration variable Jq: ' 

cos ~"l. p+k = cos -6., p+k cos qJq, 

cos {i.,.H = k cos {i. + p cos (~. - -ti.). 
\po + k' + 2pk cos 11.)'f, 

Below we shall consider several limiting cases. 
A. G'k » T » Eo. 

(5) 

Anticipating the result of integrating over Jq, Jp , cpp, 
CPq, q and p, we note that the most important p are those 
such that G'p ~ T. Then, since G'k »T, for cos i3q,p+k, 
we find cos i3q, p+k ~ cos i3q, p+k ~ cos Jq cos CPq. 

We shall make use of the energy conservation law, 
namely, the presence of the a-function in formula (3) 
for 6.w lk, in the integration over J q : 

, 

. 
LlOO'k = S FI) (e. + e. - e • .,-08.+>,'-.) sin 0(}" d{i. 

• 

= IF IBk + B,- 8. + eO+k-.I6l (8,,+ e. - e-.)' - ep+k~.]dcos~.; 
-, 

where F incorporates all the other integrals and factors. 
If formulas (4) and (5) are taken into account, 6.wlk is 
brought to the form 

• _ S' FIB. + e. - e. + 8.H-. '" { Uoo,k - I) cos {i. -
_, 2R •• a, cos <P. 

[ (ek + B. - e.)' - (eo' + a.' + a.' + a.' + 2a.a. cos it.) ]} 
- --'----'-------'-'----'----'---::-::,...c--~=___==:..:.:~ d cos-ti. 

2R.k a. cos <P. 

2)The part of the interaction Hamiltonian due to the anisotropy has 
been omitted, as it gives a negligibly small contribution to the relaxation, 

_ F I B. + e. - e. I 
- , R •• a. cos <P. 

{ I e. (B. - e.) - e.e. + e.' - aka. cos it, 'I'} 
Xe 1 '- ' , 

R.,a. cos <p, 

(6) 

where we must neglect Eo and G'p compared with G'k; Fo 
is the value of F for Ep+k-q = Ep + Ek - Eq; Rkp 
= (G'~ + G'p + 2G'pG'kcOS Jp )1/2. 

The subsequent calculations can be divided into two 
stages: from the ii-function, we find the limits of the in­
tegration over Jp ; from the condition 1 cos Jp I < 1, we 
find the limits of the integration over CPq; from the con­
dition I cos CPq I < 1, we find the limits of the integration 
over q. The integration over CPp gives a factor 27T. We 
can integrate over p between the limits 0 and 00, since 
ec »T» Eo· 

The ranges of the integrations over Jp, CPq and q have 
the following form: 

1 - qp-'(1 + Icos <p.I) < cos it, < 1 - qp-'(1-lcOS'f.I)" 
0< I cos <p.1 < 1, 0 < q < p; 

1 - qp-' (1 + I cos<P.I) < cos 11. < 1 - qr'(1 -I cos <p.I), 
O<lcos<P.1<2p/q-1, p<q<2p; 
-1 < cos it, < 1- qp-'(1-lcos<P.I), 
1- 2p/q < Icos<P.1 < 1, 2p < q < k, 

We note immediately that the largest contribution to 
6.wlk is made by q ~ k. In this case, the formulas for 
the cosines of the angles i3pq and i3kq are Simplified: 

with 
cos ~ •• ~ cos ~., .+k, cos B,. ~ cos 6. cos ~., pH, 

and the expression (2) for the amplitude is brought to 
the following form: 

k+,-. (I'Bg) 'HEe,a. cos t}. 
11" Jr.,p ~ - . ' .. --". I 

8M, V (Bke.e.1 e. + e. - e,1) I, 

Performing the integration, we find the relaxation rate 

B. €k « T « ec . 
In this case, cos i3q, p +k is expressed in terms of 

cos J q as follows: 

cos ~., pH ~ cos <Po cos (it. - it.), 

Changing from the integration over cos J q to an inte­
gration over x by means of the relations 

cos 11. ~ X cos' it. - sin 6.( 1 - x' cos' 6,) 'k, 

x = cos ~. p+k / cos it. cos <Po 

(7) 

(8) 

and otherwise performing transformations analogous to 
(6), we bring the formula for 6.wlk to the form 

Lloo" ~ F, (1 + x, sin t}p ) 
(1 - xo' cos' iiy)'f, 

X] (e. + B. - F.) cos 11p Is {1 _] e. (B, - B.) - e,e. + eo' - aka. cos it. I} 
R.,a. cos <P. R.,a. cos ii. cos <P. 

where Fo and Xo are the values of F and x for €k+p-q 
= €k + Ep - Eq. 

Finally, we ob~ain several ranges of integration over 
Jp , J q and q, of which we cite only the most important: 

(e.- 8.)/(a.+ a.lcos<P.1l < cos ft. < (e.-,e.)/(a. - a.lcos<P.I), 

0< Icos<p.1 < 1, e, < 8. < B.; 
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-1 < cos \'tp < (Ilk -e.)/(a. + a.lcos <p.I), 
(e. - e. - (t.)1 a. < IcoS<pql < 1, e. + a. < e. < e •. 

Taking into account that cos i3q,p ~ cos i3q, p+k and 
using the expression for cos i3q, p+k, we rewrite formula 
(2) for the amplitude in the form 

'l'l'!P+'--' ~ (/.lag)' HE (2eo' + a.a.cos ~ •• ) 
'.. ~ - 8M,V(e.e.e,leo+e.:"-e,I)'" . 

The absolute square of the amplitude consists of three 
terms. Hence, the formula for AWJk can be represented 
in the form of a sum of three integrals. In the first, 
containing E~, q .- k are the most important, while in 
the other two, the most important q are q ~ p, and this 
gives cos i3qk ~ cos J p . Performing the integration, we 
obtain for AWJk the following expression: 

(/.lag)' (HE)' [ tleo .. N 6.10-'-.--, - T' a(k)e,'-
h(9,tl) M, 

(9) 

where a(O) ~ 1, a' ~ 7 x 10-2 and a" ~ 1.5 x 10-2. 
The calculation of a(k) involves considerable mathe­

matical difficulties (see the Appendix). Since we have it 
in mind to compare AWJk calculated from the magnitudes 
of the threshold fields of the parametric effects (E lk 
= const) with the experimental data, we cite the follow­
ing fairly crude estimate for a(k): 

a(k) - 1- 0,5klkm~, 

where kmax = Elk /E>cA. The relation obtained is appli­
cable for k '" 0.9kmax. a(k) then increases as kO' 
(0' » 1) up to the value a(k) ~ 2 at k = kmax. The de­
pendence AWJk(k) for fixed EJk and with the above esti­
mates taken into account is shown in Fig. 2. 

In another limiting case, when E>c » Eo » T » O'k 
is fulfilled, we find for AWlk 

8 (/.lag)' (HE)' (e. ) tleo .. - ·10-' - e.'T exp - - . 
I! (8,!!) , M. T 

(10) 

The formulas (7), (9) and (10) make it possible to 
trace the qualitative dependence of AWlk on Elk/T. As 
Elk increases from values Elk « 10-2T, the minimum 
of AWlk becomes deeper and shifts in the direction of 
the maximum k. For values of Elk ~ T, the curve levels 
out. The temperature dependence of AWlk becomes 
sharper. For Elk» T and O'k « El0, the quantity AWlk 
is exponentially small; for O'k » T » E10, AWlk 
~ (O'kT)5/2 (cf. formula (7». 

We turn to other possible mechanisms of relaxation 
of spin waves of the LF branch. A calculation shows 
that those processes are forbidden (the amplitudes 'II 
are equal to zero) which correspond to the following 
terms in the interaction Hamiltonian: 

Also forbidden is the coalescence of three magnons into 
one. Of the four-·magnon processes, the possible pro­
cesses are those described in the Hamiltonian by the 
terms 

We note that the relation Em ~ T is usually fulfilled 

n 

FIG. 2. Approximate dependence of lIWlk on k for E20 ~ T, Elk = 
const, T ~ 8 c- Curve 1) t = 10 Elk; 2) T = 50 Elk; 3) T = 250 Elk· 

in easy-plane antiferromagnets for T «E>c. Th'en, for 
EJk « T, E~ » TElk holds. Under these conditions, the 
first of the above processes (11- 22) gives an exponen­
tially small contribution to AWlk. The second process 
(12-12) is less important, for Em ~ T, than the scatter­
ing of magnons of the LF branch (11- 11) treated above, 
and, for Em » T, its contribution to AWJl( is exponen­
tially small. 

But in the limiting case of small anisotropy, when 
Em « El0, the contribution of four-magnon processes 
with participation of magnons of the HF branch to the 
relaxation rate exceeds the contribution of the scatter­
ing of magnons of the LF branch (11- 11). Calculating 
the amplitudes of these processes, we find 

+ e,.e •• + e"e,. - (8,!!)'! (k + p) (q + s) + kp + qsl 

- 28, (e .. + e •• - e,. - e,,) 1 tl (k + p - q - s) , (11) 

+ e,oe,. +e"e" - (e,~)'[ (k - p) (q - s) + kp + qsl 

+ 8,(e,o + e,.- B" - B .. ) ltl(k + p - q- s). (12) 

After integrating over p and q for Elk » T, we find 

~Ctl.o - 3,6·10-' 1i~~,~;. (!:)' [b(k)e.o'T' + b'a;l. (e .. + 12(10)7"/,], 

(13) 

where 

{
1. Uk-<B,o. 

b' :::::; 0,02. b (k) _ 0,2, ak > BIO., 

1, a. = B. 

(see the Appendix). 
For the case O'k » T » Ejo (j = 1,2), we obtain an 

expression of the form (7), in which, however, the nu­
merical coefficient is ~6 x lO-3. 

At temperatures which are low compared with one 
or the other activation energy (E10 or Em), the main role 
is played by the processes 11- 11 and 12 - 12. For the 
case Em » E10 » T » O'k, formula (10) holds. In other 
cases, the process 12 - 12 makes the largest contribu­
tion to AWlk: 



SPIN-WAVE RELAXATION IN ANTIFERROMAGNETS 185 

( ) ' H' 2 '/. T'I, T 10-' /lBg (E) { 8.., 8 .. :»:» 820, a.; 
~UlI' - h("" ')' -M 15 '/o 'I' T' -, ofT 

'OcLl 0 • e~!O el0 e 2, eiO > 820 ::> T >- at.. 

Finally, we estimate the role of the only possible 
(14) 

three-magnon process: the process of coalescence of 
two magnons of the LF branch into one magnon of the 
HF branch (11- 2). S) In this case, the inequality 2E10 
< E20 must be fulfilled. In the limits E10 = E20, the con­
tribution of this process to the relaxation rate is equal 
to zero. We shall consider the case E20 » E1O. With the 
assumptions, used here, that T « e c and kA « 1, and 
with the usual estimate of the activation energy of the 
HF branch in easy-plane antiferromagnets (MnCOs, 
CoCOs, NiCOs, CsMnFs), namely, E20 ~ O.lec , the con­
tribution of this process to the relaxation rate is expo­
nentially small. This process can play an important 
role only for weak anisotropy and a weak field H: Eoo 
-10-2T, E10 -10-sT, or Eoo -10-s T, E10 ~ 10-4 T, etc. 
For these cases, the contribution of the three-magnon 
coalescence to the relaxation rate has the form 

(15) 

whence, e.g., for CsMnFs we find the magnitude of AWIk 
'" 104 sec-1. Apart from the first factor, the expression 
(15) coincides with tbe formula obtained in [21) for k = O. 
In the intermediate case, when 2E1O - (0.3-0.7) E20, the 
process 11 - 2 gives a contribution to AWIk that is also 
no greater than 104 sec-\ provided that E20 ", 10-2T, O'k 
« E10. In the above cases, there is agreement with the 
conclusions of [21) concerning AW10• The three-magnon 
process 11 - 2 is found to be the most important, al­
though we must take into account that the values men­
tioned for E10 usually correspond to fields H in which 
the crystal is not saturated, Le., a domain structure 
exists. 

We also estimate the effect on the spin-wave relaxa­
tion of the coalescence of two magnons of the LF branch 
into one phonon. We calculate first of all the amplitude 
of this process in the simplest case of a body-centered 
cubic lattice. The spin, phonon and spin-phonon Hamil­
tonians have the following forms respectively:[22) 

ifC, = - L J (A) SR,SR,+<\ - /lBgH L SR ' 
Rt~ R 

ifC ph = -} L{"lUii'(R) +},. [u,dR) - } ,S;kUll (R)], + pu,' (R)} , 
R 

ifC'_Ph = - L I1J (A)SR,SR,M uii+"" 

( 11. ) '/~r.'<\ e u(r) = -- ~ (b e'q, + b + e-'q,) 2pV W~ a a . 
qf qf 

Going over to second-quantized operators and diagonal­
izing J'iJs and J'iJph separately, we find that the amplitude 
of the process under study can be estimated by the ex­
pression 

( Ii) '/. 8lkq 
'1' ~ -tj --- --

2pwqfV 2' 

where usually TJ - 1. 

(16) 

Performing the calculations, we find that, in the case 
Elk » T, the process under study gives an exponentially 

3)The other three-magnon processes are forbidden either because the 
amplitudes 'I! are equal to zero or by the requirements of energy and 
quasi-momentum conservation. 

small contribution to AWIk, while for the case Elk « T, 
ec « eD, we obtain 

tj'li T' (17) ~Ul,. ~ 2np (eD~)' e,., 

which, in any case, is much less than 1 sec-1. For e c 
- eD, the contribution of the given process to the re­
laxation rate tends to zero. Other processes with par­
tiCipation of phonons also give a small contribution to 
the relaxation rate, if we exclude the direct interaction 
of the phonon and mag non branches, which is a local 
effect. 

Thus, it can be stated that the relaxation of spin 
waves of the LF branch in antiferromagnets with "easy­
plane" anisotropy, when the constant magnetic field lies 
in the basal plane, is determined by the four-magnon 
scattering of magnons of the LF branch. In the case of 
small anisotropy (E20 « E1O), the relaxation of spin waves 
of the LF branch is determined by four-magnon scatter­
ing processes involving two magnons of the LF branch 
and two magnons of the HF branch. 

2. THE HIGH-FREQUENCY BRANCH 

The technique developed above for calculating the 
relaxation rate of magnons of the LF branch can be ap­
plied in the study of the relaxation of magnons of the 
HF branch. 

To simplify the notation, we introduce Tk by means 
of the relation 

Along with an indication of the ranges of applicability 
of the formulas, we indicate the processes determining 
the magnon relaxation in these ranges. The expressions 
for Tk have the following forms: 
A) a.:ll> T:ll> 8IC, 8,,; 21 ~ 21 + 22-+ 11,"y. ~ 6(akT)'I,; 
B) T:ll> ak :ll> 810,820; 22 -+ 11 + 21-+ 21, 

y. ~ 15 (a. 'T' + O.4a'j'T'f,) ; 

C) T:ll> 810 :ll> 8" :ll> ak; 
+ 20(8"T)'1'1; 

21-+ 21, y. ~ O,16[8 .. 'T' + 11 (8108,,)'I'T' 

D) T:ll> 820 :ll> 8" > ak; 22 -+ 11, y. ~ 3,6 e20'T'; 
E) 810 > T > 82.; 22 -+ 22, 

[ 
'f, '/0 8,. + 3a. '" e,. + 12a. ] 

y.~O,6 a(k)8"'T'-a'e,,a. , T'+a"a. ,T'/' ; 
BZk 8Zk 

F) 8" > T:ll> 8,,; 21-+ 21, Yk ~ O,2820'I'T'I,; (18) 
G) 810 > 8" > T > a.; 22 -+ 22, y. ~ O.8s,,'T exp (-820/T); 
H) e,,>s .. >T>a.; 21-+21,y. ~ 0.15(8"SIO)'I'T'exp(-elO/T). 

In the case of weak anisotropy, small magnetic fields 
H (with E20 > 2E1O) and small k, it may turn out to be im­
portant to take account of the decay of a magnon of the 
HF branch into two magnons of the LF branch. For the 
cases (B) and (D) respectively, we find 

~ 2 (/lBgH) , HE Tl 2a. 
W,.::::; nli(8,~)3 Mo n--;;-, (19) 

~W2k ::::; 2 (/lBgH) , HE T. 
l"tli(e,~)' Mo 

3. DISCUSSION OF THE RESULTS 

It is not difficult to see that the results obtained are 
applicable in the investigation of spin-wave relaxation 
in antiferromagnets in all cases when the antiferromag­
netic vector L = M1 - M2 is oriented perpendicular to 
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/,0 

FIG. 3. Approximate dependence 
of AWlk on ElO for E20 ~ T, Elk = 
const, T ~ Bc. Curve I) T = 10 Elk; 
2)T=50Elk;3)T=250Elk. The 
dashed curves are the right-hand 
side of the inequality (20): a and b) 
HD = 0, h(b) > h(a); c) HD *" O. 

the field H, H «: HE. The shape of the spectrum re­
mains unchanged, namely, Ejk R< (Ero + O!k)1/2 (j = 1,2). 
The form of Ejo is given for various cases in [23]. In 
particular, the above remark can be extended to anti­
ferromagnets with "easy-axis" anisotropy in fields 
greater than the field that inverts the sublattices, Le., 
(2HAHE)1/2 < H .~ HE, if H is parallel to the "easy 
axis." The latter inequality presupposes that the mag­
netic anisotropy in the crystal is not too strong. 

Returning to tl1e possibility of obtaining information 
on the relaxation of spin waves in the study of paramet­
ric phenomena, we note certain features of the behavior 
of the imaginary part of the susceptibility of a spin sys­
tem beyond the instability threshold, based on the results 
of the calculation performed above. Intense energy ab­
sorption from an alternating magnetic field begins when 
the amplitude h of the field exceeds a certain threshold 
value hth. In the general case of a superposition of "ex­
tra absorption" and "parallel pumping,,[13] for E20 » nw, 
where w is the frequency of the alternating field, taking 
into account an expression for hth [24,lS] we can write the 
above condition in the following form: 

(20) 

where, using the fact that Elk = const, we represent 
AWlk as a function of E10. In Fig. 3, we give the depen­
dence AWlk(E10) for various Elk/T, with Elk «T. The 
dashed curves correspond to the function in the right­
hand side of the inequality, for different hand HD. We 
may conclude from Fig. 3 that the absorption first arises 
only in a certain well-defined range of fields H. For suf­
ficiently large HD, the parametric excitation is extended 
down to H = o. 

With regard to the published papers on the theoretical 
study of spin-wave relaxation in antiferromagnets, we 
note that the results obtained by HarriS, Kumar, Hal­
perin and Hohenberg[7] for the case of single-ion anis­
tropy, H = 0 and k = 0 refer only to easy-axis antiferro­
magnets. But it makes no sense to study the isotropic 
case in the absence of a magnetic field, since, in this 
case, the ground state of the spin system is not defined. 
For a correct calculation in the isotropiC case, we must 
take a magnetic field into account, and this leads to an 
arrangement of the magnetic moments perpendicular to 
the field direction. In this case, the transformation to 
spin-deviation operators and the diagonalization of the 
Hamiltonian are performed by means other than those 
used in the paper. [7] 

In the paper by Woolsey and White, [6] it is noted that 
the four-magnon processes give a contribution to the 

relaxation rate that is too small to explain the experi­
mental values of AWlk. We now turn to experiment. 

The value AU10 ~ 105 sec-1 was obtained by Prozorova 
and Borovik-Romanov for T ~ 1.5°K and Elk ~ 2 x 10-16 
erg for CsMnF/ll ] and by Kotyuzhanskil and Prozorova 
for MnC03. [12] The dependence of AWlk on k is de­
scribed qualitatively by the formula (9), if we allow for 
the fact that, in the experiment, Elk «: T was insuffi­
ciently rigorously fulfilled. A numerical comparison is 
made difficult by the requirement of an exact determi­
nation of the quantity 0cA, which occurs to the sixth 
power in the formulas. By making use of the data of 
Seavey for CsMnF3[B] and of Kotyuzhanskil and Prozo­
rova for MnC03, [12] we find, respectively, (0c A)x ~ 1.63 
x 10-22 erg·cm and (0c A)x ~ 1.56 x 10-22 erg·cm, which, 
for T ~ 2°K and E10 ~ 3 x 10-17 erg (E10 «: T) give Aw10 

~ 102 sec-1. 
Comparison with the experiments of Seavey on 

CsMnF3 [B] is made difficult by the strong magneto­
elastic interaction observed in them. 

The dependence AWlk(k) obtained by Hinderks and 
Richards from experiments on RbMnF3 (weak aniso­
tropy)[10] using the calculations of Richards[25] are qual­
itatively explained by formula (13). For the quantity 
Aw lO with T ~ 4°K and ElO ~ 7 X 10-17 erg, assuming that 
the value of 0 cA for RbMnF 3 is the same as for CsMnF 3, 

we find Aw10 ~ 106 sec-t, which, in order of magnitude, 
coincides with the experimental value. 

In conclusion, the author expresses his deep grati­
tude to A. S. Borovik-Romanov, M. I. Kaganovand 
M. A. Savchenko for fruitful discussions. 

APPENDIX 

The function a(k) appearing in the expression (9) for 
AWlk is determined as follows: 

ark) "'" f/i(k, T) -1- I,(k, T) l/ 12(0, T), 

2ltT'I' (i1 + e,' - ix' + e,') '1'(2 - x')x' 
1,(k,T)=-- dx 

e"elO 0 (i1 + e.' + ix' + e,')'I,(x' + e,') 'I, 

1,(k,T) "'" 2 I I I dxdYdZ[ 1- ( )'~ -:x~t=t=e! n 
x ________ ~Y ____________ ~_e_' __ __ 

x[ (1 - x') (y' + e,') 1 'I, (e' - 1) (e""+'" - 1) 

X(exp{z + g(i1 + e,' - )'y' + e,')}-1)-t, 

with, for the limits of integration of the second integral, 

[l'y' + e,' - (1 + 11 + e,') 1/ y < x < 1, 
[2(1 + 1'1 + e,') 1 ,{, < y < [(z / y)' - e.'J '\ 

e,g < z < 00, 

where g = O!k/T and e1 = e2 = ElO/O!k. Approximate nu­
merical calculations give the estimate cited in the text. 
To calculate b(k), one uses the same formulas, but with 
e 1 = ElO/O!k and e2 = o. 
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