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A theory of intermolecular interactions [1-5J is generalized to the case when the medium separating 
the interacting bodies has spatial disperSion. An expression is obtained for the force of interaction. 
A calculation of this force is made for the special case when the gap between the interacting bodies 
is filled with a solution of a strong electrolyte. The results of this calculation show that when the 
thickness of the film is greater than the Debye length, the component of the intermolecular force due 
to the interaction at zero frequency is strongly screened. Estimates for real systems show that this 
effect may result in a considerable weakening of the intermolecular interactions over distances of the 
order of 10-5_10-4 cm. 

1. A general theory of intermolecular interactions 
(van der Waals forces) between condensed bodies separ­
ated by a narrow gap was developed by Lifshitz, [lJ and 
by Dzyaloshinskil, Lifshitz, and Pitaevskii,'2,3J (see 
also [4-6J). However, these treatments were limited to 
the case when the gap is filled with a dielectric whose 
permittivity does not exhibit spatial dispersion. Never­
the less , in a wide range of problems encountered in the 
physical chemistry of solutions, the physics of colloids, 
and in the problems of stability of thin films it would be 
of interest to calculate the intermolecular interactions 
between bodies separated by a film of an electrolyte 
solution. Consequently, it would be desirable to gener­
alize the theory of intermolecular interactions to the 
case in which the substance in the gap between the two 
interacting bodies exhibits spatial dispersion of the per­
mittivity. 

2. Let us consider the solution of an electrolyte fill­
ing a gap of thickness 1 between two dielectrics of per­
mittivity El(W) and E2(W), The permittivity of the pure 
solvent will be denoted by E3(W). We shall assume the 
usual (and most interesting from the experimental point 
of view) configuration when the electrolyte film is in 
contact with a large volume of the solution (which acts 
as the thermal reservoir) and the chemical potentials 
of the components of the solution in the film jJ. a are 
governed by the corresponding chemical potentials in 
the thermal reservoir. Obviously, in this case it is most 
convenient to use the thermodynamic potential n. 

We shall calculate the intermolecular interaction 
force on the basis of an expression for the variation 
of n, which is obtained in[2,3,5J for the case when the 
permittivity of the film exhibits no spatial disperSion. 
Trivial generalization to our case gives 

T ~ , 
M2=bQo-- '\1 ~SSbe,.(r,r';ilwnl,I)q),.(r,r',wn)drdr'. (1) 

8n "-..J c' 

Here, no is that part of the thermodynamic potential of 
the system which is not associated with the long-wave­
length electromagnetic field; q)ik(r, r', wn) represents 
the temperature Green's functions; wn = 27TTn/ti; 
Eik(r, r', ilwnl) is the permittivity tensor. 

As is known, [5J Eq. (1) is derived on the assumption 
that the momentum transfer in the scattering is small. 
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In our case, the usual condition which postulates that 
the second term in Eq. (1) describes the long-wave­
length part of the field of transverse photons is supple­
mented by the requirement that the Debye parameter 
for the classical plasma in the electrolyte is small and, 
consequently, the whole treatment will be valid only for 
the Debye plasma. 

The force acting on the boundaries of the film at . 
x = 0 and x = 1 (the force is taken per unit area) is given 
by the formula 

(2) 

The electromagnetic properties of the electrolyte solu­
tion are described by its permittivity tensor and we 
shall find it convenient to separate from the tensor Eik 
the term which is associated solely with the spatial 
dis pers ion: 1) 

e,,(r,r'; ilwnl, I) = e;.' (x, I, ilwnl)b(r-r') +e,,"(r,r', qwnl, I). 

We may assume that the tensor Eik(r, r', i IWnl, 1) des­
cribes the medium everywhere and that outside the gap 
Etk(x, 1; ilwnl) "degenerates into a scalar" and becomes 
identical with El(ilwn l) or E2(ilwnl), whereas 
E~k(r, r', ilWnl) is identically equal to zero if just one 
of the coordinates extends into a external region. We 
note that outside the gap Elk is not identical with 
E3(ilwn l). 

3, We shall now calculate the Fourier components 
Eik(r, r', u.', 1) of the tensor operator of the permittivity 
for an electrolyte solution in the gap. 

At field frequencies lower than the effective frequen­
cies of collisions in the solution the motion of ions can 
be described in a natural manner by the diffusion ap­
proximation. Then, the total current is 

j(r,t)= ~i.,(r,t), 

l)Obviously, this division of the permittivity tensor into two parts 
does not restrict the generality of the approach if the medium being 
considered does not have any exotic properties such as absence of 
spatial dispersion along some particular direction. 
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and the currents of ions of any given species satisfy the 
standard equation 

j,(r, t) = u,E(r, t) - z,eD, grad n,(r, t). (4) 

Here, 0a' Da , zae, and na are, respectively, the elec­
trical conductivity, the diffusion coefficient, the charge, 
and the concentration of particles of type a. The diffu­
sion coefficient satisfies the well-known Einstein rela­
tionship 

(5) 

Here, Ta = E3(W)/41TOa is the partial relaxation time of 
the field and K a is the reciprocal of the partial Debye 
length: 

%,' = 4nz,'e'n, I ",(w)T. 

The corresponding quantities for the electrolyte solu­
tion are given by 

x2 = ..L,Xa2, 

We shall now consider the case when the boundaries of 
the film are not charged. In this case the concentration 
of the electrolyte in the film varies slowly with the co­
ordinate x, 

I gradna(x) -< 1 
Ti. (l/2) , 

and we may assume that the conductivity is constant 
across the gap. On the other hand, since we are inter­
ested in fluctuation fields, it follows that .t.n(t) « n(t) , 
and, therefore, conductivity may be assumed to be inde­
pendent of time. 

If Eq. (4) is Fourier-transformed with respect to t, 
y, and z, we can easily find the conduction current in 
the gap and then determine the permittivity tensor in the 
standard way. If we assume that the polarization of the 
solvent is practically independent of the behavior of the 
Debye plasma because the concentration of ions is low, 
we find that the Fourier components of the permittivity 
tensor are given by 

ex: (x, w,!) =e,(w), e;;'(x, w, I) =0, i*j, 

ey; (x, w, I) = e,(w) (1 + i I WT), e,,' (x, w, I) = e,(w) (1 + i I WT), 

", 2ni~ , 
e~ .(x, x , w, I) = - -;;;- ,t....,. u,q,S(x, x , q" I), 

", 2nk.L'i ~ u, [ o'g'(x x', qa, I) , ] 
e" (x, x , w, I) = - -- -.. , + 2q,1i (x - x) , 

W q." ax ax 
• (6) 

• , ( , ) _ 2nk.L ~ u, as(x, x', qa, I) 
EXII X,X, w,[ - ---,t....,. , 

W a qa ax 

"( .' I) _ 21lk.L L u. aw (x, x' qa, I) 
Ey>"\; x, X , (0, - --- _. , 

W a' q, ax 

e';, (x, x', w, I) = o. 
Here, 

q.= [k.L'-iwT.%a']'\ k.L=kk,+jk" 
S( , 1)= ch[/-(x+x')]q,-ch[I-lx-x'l]q, 

x, x , qa, sh Iq. . 

The y axis is directed along the vector k l' 
4. We can now calculate the intermolecular interac­

tion force. Using Eq. (3), we can rewrite Eq. (2) in the 
form 

F=_~(oQ.) +2:... ~ wn' [··S 'SHae./(X,I,iWn ) fl5·(r r' )d 
S 01 1.1") 8nS,t....,. c' 01" , , Wn r 

a 11-=_"'" S 1-0 

+ S 'S-·s's-·oe"'(r,r',iW.,/) r>'..( , )d d' 
~ 8Z ;;:Vlk f, r ,(i)n r r 

s 0 S 0 

S 'is· r 'SH Oe .... (r, r', iWn, I) , , + . t {J' fl5 .. (r,r,w n)drdr.. 
S 1_6 S 1_0 l 

+? S 's+'s 's--a e,' (r, r', iwn, /) fl5. ( , ) d d ,] 
.... 0 J III. r, r , (Un r r . 

S I-f S tJ ~ 

The above formula takes into account the fact that the 
properties of the functions 

(7) 

change drastically in a boundary layer of thickness 0, 
which is of the order of the atomic distance. ObViously, 
in the boundary layer the properties of aU the functions 
of interest to us are governed by the dependence on the 
argument (1 - X), which is the distance from the boun­
dary. Bearing this point in mind, the differentiation 
with respect to I in the surface layer can be replaced 
with the differentiation with respect to x. Dropping the 
terms containing small quantities of the order of 0/1 
and USing the expressions in Eq. (6), we can rewrite 
formula (7) in the form 

L' _ 1 (oQ.) T I:~ (On' [ S 'SH oe,,' (x, I, iWn) r>'. ( , )d' 
r --- - -- - ::u" r r w I 

S at T,{ .... a) 8nSn=_oo c'l. S 1_0 ax It , , n . 

- S 'S-·S '-So 08"'(r, r', I, iWn) fl5 (.' ) d d ' 
SOb 1:1 fJI ill. I, r ,W n r r 

+2 ssT ssToei"(r~r"I,iWn) fl5 .. (r,r',w n )drdr']. (8) 
S 1_0 8 1I X 

We now have to determine the nature of the behavior 
of the Green's tensor as a function of x in a transition 
layer of thickness 20. This problem reduces to a rigor­
ous allowance for the boundary conditions in the Maxwelll 
equations. Applying the standard procedures we find that 
in the transition region £!Jyy(r, r', ""'n) and g}zz(r, r' , wn) 

are constant whereas !iJxx(r, r' , wn) and .0xy(r, r', wn) 

satisfy the equations 

, e='(1- 1)fl5=(/-Ii, I-Ii + 0, Wn) 
fl5=(x,x, Wn )= '() .( ') , 

E.:rx X En X 

, exx'(l-Ii)fl5xy (l-Ii, /- I) + 0, Wn) 
fl5 XY (x, X , W n ) = . ( ) 

Ex:.; X . 

(9) 

Here, I - 0 < x < x' < 1 + O • 
USing Eqs. (9) and (6) and going over to the Fourier 

component in Eq. (8), we obtain 

1 (aQ.) T ~ W,.' 
F=-S at T.I".)-~n~7· 

xI k.L dk.L [ (e, - e,) (fl5 •• (/- 0, /- 0,0)n, k.L) + fl5" (/- 0, 1- 0, Wn, k~» . 
_ (~_ ) ri7'> (/- 0 /_ 0 k) _ S' S' 08,," (x, X', iWn, k.L) . 

C £3::V;a ! ,COn,.l. az 
, 0 0 , 

X fl5 ij (X, X', Wn , k.L)dx dx' - 2 I [eyx" (1- 0, x', iWn, k.L) fl5 x• (x', 1- 0, Wn, k,J 

+ e.,'·(l- 0, x', iWn, k.L) q)yy (x', 1- 0, Wn, k.L) ldx']. (10) 
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Here, 

( Xa') e, = B,(W,,) 1 + .L, k '+ ' 2' 
a ..L. (On 'taXa 

e, = e,(wn ) ( 1 +_1 ) 
Wn'ta 

are the longitudinal and transverse components of the 
permittivity in the bulk of the solution. Since our ex­
preSSions now contain only smoothly varying functions, 
we have extended integration to the interval (0, l). 

We note that Eq. (10) is derived without any recourse 
to the diffusion approximation. In fact, the only require­
ments used are the diagonality of the tensor Eik within 
the gap and the zero value of the current j x atrl1e boun­
dary. 

For the sake of Simplicity the rest of the treatment 
will be restricted to electrolytes for which either one 
of the diffusion coefficients is much larger than all the 
others or the diffusion coefficients of all the ions are 
approximately equal. Then, USing the formulas in Eq. 
(6) and integrating Eq. (10) by parts, we find that basic­
ally simple procedures lead to 

1 I aQO) T ~, { 
F=-- - --~ ~Sk.LdkJ. (e,-B,) s az r,{I'.' 16:rt' n~ c' 

x q)yY(l- 0, 1- 0) +(8, - e,)q),,(l- 0, 1- 0) 

-~( - )q) (/-0 l-O)-S' S' a8x"·(X,x') 
ez 83 82;(;;1:' 0 0 a l 

(11) 

If the spatial dispersion is absent, the double integral 
vanishes and Eq. (11) reduces to the well-known 
result[3J which is given above in a somewhat modified 
form. 

If we now solve the electrodynamic problem, find the 
Green's tensor, and substitute the results into Eq. (11), 
we obtain a general expression for the interaction force. 
The Green's functions can be determined relatively 
easily both in our problem and in the opposite limiting 
case of a collisionless plasma in the gap but the final 
formulas are quite cumbersome and we shall not give 
them here. 

It follows from physical considerations that at high 
frequencies the effect of the spatial dispersion should 
disappear. The characteristic parameter is obviously 
the product TW. Since the relaxation time T of the 
Debye solutions of electrolytes is of the order of 
10-6 _lO-a sec and at room temperatures WI = 21TT/li 
~ 2.5 x 1014 sec -1, we find that even at the first fre­
quency TWI ~ 106 »1 and the effects associated with 
the spatial disperSion disappear. 

The spatial dispersion can also have a specific effect 
associated with the influence of the boundaries and this 
effect may be manifested if a particle in the bulk of the 
gap "feels" the interaction at the boundaries. An analy­
sis of this effect shows that it is important only if the 
condition Te2/liDz « 1 is satisfied, which is not true of 
electrolyte solutions. Therefore, all the terms, be­
ginning from the first frequency, should be of the same 
form as in the absence of spatial dispersion. 

However, the zero-frequency term differs consider­
ably from the corresponding expression obtained without 
allowance for spatial dispersion. If we substitute the 
zero-frequency Green's function into Eq. (11) (obviously, 

this yields the result of the electrostatic problem, as 
shown in[7J), the double integral vanishes, which is 
quite expected because when W = 0 the force is governed 
only by the electrostatic component of the stress tensor, 
which is included in the single integral. This integral 
also simplifies considerably in the static case so that 
finally Eq. (11) becomes 

F _ P l' S· z [ (8" + BIOR) (B" + 820R) ] -, - 00--- x eX -1 dx 
16:rtI' ,., (B" - BIOR) (B30 - 820R) 

+ : 1: S k.L dkJ.W , ( ~ + ,~), 
(12) 

_ [ (2XI )']'(' R- 1- - , 
x 

n=t 

Here, EI0, Ezo, and E30 are the static values of the per­
mittivity whereas A and b. are given by the form-
ulas [Z ,3,5J 

L'. = 1- e,wi.(W, + W,) (W,+ W,) , 
(W, - W,) (W, - W,) 

(13) 

li=1-e'w" (B,W,+E,W,)(B,W,+e,W,) (14) 
(E,TV, - e"W,) (f,W, - B,W.,) 

where Wi = [Eiw~ + kZ)1/z. 

It is known [IJ that in the absence of spatial disper­
sion the zero-frequency term is of the form 

(15) 

We can see that the main difference from our case lies 
in the change in the lower limit of integration. In fact, 
the integral in Eq. (15) can be described approximately 
as an exponentially decreaSing function of the lower 
limit. 

It is worth noting that the restrictions which we have 
imposed on the diffusion coefficients of the electrolyte 
ions in the course of derivation of Eq. (11) are actually 
of no significance and Eq. (12) is valid in general. This 
can be seen if only from the fact that the diffusion co­
efficients do not enter the final expression. It is inter­
esting to note that Eq. (12) is obtained also if the use is 
made of the collisionless plasma approximation with 
specular reflection from the walls. 

The correction due to the spatial dispersion is par­
ticularly simple in the two limiting case EI0 ~ Ezo - 00 

and E30 » EI0 ~ Ezo. The first case describes the be­
havior of a solution film between two metals, whereas 
the second represents the behavior of a free film of an 
aqueous solution (E30 ~ 0). In this case, we obtain 

L'.F.~o= __ T_~S x'dx . 
16:tP 2)(1 ;fx - 1 (16) 

5. Let us now estimate the film thickness at which 
the correction due to the spatial disperSion of the per­
mittivity becomes important. As pointed out earlier, the 
influence of the spatial dispersion is manifested, firstly, 
by the considerable change in AFw=O and, secondly, by 
the appearance of a specific influence of the boundary on 
the spatial dispersion. The latter is important only for 
very thin films (l ~ 10.7 cm) of special solutions such 
as those of metals in ammonia for which the diffusion 
coefficients are D ~ 10-25 cmz /sec. [aJ 

The zero-frequency correction is important if the 
condition 2Kl »1 is satisfied. In practice, the integral 
is negligible even for Kl ~ 3- 5. Typical values of K 
for aqueous solutions of electrolytes are 104 cm-1 < K 
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< 107 cm-l and the value of K = 104 cm-l is due to the 
dissociation of the water molecules at room tempera­
ture. Thus, even in electrolyte solutions of moderate 
concentrations we can expect the term LlF w = 0 to be 
completely negligible. Therefore, it is obvious that the 
change in the intermolecular interaction force in elec­
trolyte solutions is significant only over distances for 
which Ll F w = 0 would have played a significant role in 
the absence of spatial dispersion. 

Suitable estimates can be made quite easily using 
approximate expressions for the force of interaction 
derived in[l-5J. The results show that for water films 
the term LlF w = 0 predominates over distances 
l ~ 10-4 cm and can make a contribution of the order of 
50% over distances l ~ 10-5 cm. The results of direct 
measurements of the van der Waals forces between 
solids in air[9,lOJ are in agreement with this conclusion. 
In the absence of spatial dispersion the contribution of 
Ll F w = 0 is unimportant over shorter dis tances and its 
disappearance in case of solutions of fairly concentra­
ted electrolytes has no influence on the van der Waals 
interaction force. 

6. It is interesting to note that screening of the 
intermolecular interaction forces at zero frequency can 
be deduced also from quite different considerations. If 
we calculate the free energy of a plasma (electrolyte 
ions) in a thin gap with neutral boundaries, we find-in 
addition to the usual volume Debye correction-that 
there is a further correction which gives rise to a dis­
joining pressure on the walls. It follows from the theory 
of solutions that the free energy of an electrolyte is an 
additive term in the total free energy of the system. 

The appearance of a disjoining pressure can be in­
terpreted quite clearly in terms of the theory of elec­
trolytic solutions. It is known that the image forces 
near a neutral boundary of a solution raise the concen­
tration of ions compared with that in the bulk of the so­
lution and this gives rise to an Onsager layer whose 
presence reduces the surface tension of the electrolyte 
solution. The disjoining pressure in films of thickness 
l ~ K is thus the result of overlap of Onsager layers. 

This disjoining pressure has been determined in [7J 
for the two limiting cases ClO ~ C20 » C30 and C30 » ClO 
~ C20' The free energy of an electrolyte was calculated 
using the method of Bogolyubov correlation functions 
which made it possible to develop the most consistent 
approach to the problem. The generalization of the re­
sult to arbitrary values of ClO, C20, and C30 could be made 
using the framework of the same method. However, the 
relations hip between the results obtained and the inter­
molecular forces was not determined in[7J. Neverthe­
less, if we use the formula for the intermolecular for­
ces deduced without allowance for the spatial dis per­
sion[3J and subtract it from the disjoining pressure 
calculated in [7J , we find that the net interaction force 

is identical with that derived in the present paper 
[Eq. (12)] if we ignore small corrections which are due 
to the spatial dispersion at nonzero frequencies. 

Thus, an allowance for the correlation of electrolyte 
ions in a gap due to the static Coulomb interaction, 
made within the framework of the self-consistent field 
method (the first approximation of the Bogolyubov 
correlation function method), yields Simply the correc­
tion to the intermolecular interaction force at zero fre­
quency. 

The results obtained in the present investigation 
should be allowed for in dealing with molecular interac­
tions between forces separated by a plasma film. More­
over, they are of some methodological interest because, 
on the one hand, they reveal a characteristic screening 
of intermolecular interaction forces by a plasma film 
and, on the other, they demonstrate the capabilities of 
the method developed in[HJ. 
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completely pure sound; its phase velocity differs from 
st by a quantity of the order of I;). 

The TMAR phenomenon can be used for intense ex­
citation of spin waves in antiferromagnets by means of 
sound waves (for example, by producing elastic defor­
mations in the crystal) or for the intense excitation of 
sound waves in antiferromagnets by means of an ex­
ternal magnetic field. 

The transformation coefficient of a sound wave into 
a spin wave (defined as the ratio of the energy denSity 
of the magnetic field accompanying the spin wave to the 
energy density of the sound wave) is equal, in order of 
magnitude, to 

(5) 

The transformation coefficient of a spin wave into a 
sound wave is equal, in order of magnitude, to 

1 ( W' OJ)' T m-+e "..., - 2 2 A ~, 
11 W - Wf,t L\oo 

(6) 

where Aw is the width of the ordinary antiferromag­
netic resonance. We see that these coefficients increase 
by a factor of C 1 ~ 104_10 6 near the TMAR. 

We emphasize that the resonance transformation of 
waves in the case of TMAR takes place for a width 
range of frequencies, while in the ordinary case of 
resonance transformation, the incident wave must be 
very monochromatic (the condition (w - ws)/ ws ~ If 

must be satisfied). The width of the resonance fre­
quency range is limited only by the magnetic aniso­
tropies of the crystal in the basis plane 131, w 
> gMo(7Ji31)1/2. The temperature of the crystal in this 
case can differ from its resonance value only by the 
amount AT ~ ..{[7J (a1//aTt l (~0.1-1 deg). 

Apparently the TMAR phenomenon takes place only 
in the case of weak damping of the waves 'Y < ..{[ w, 
where 'Y is the damping decrement. 
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