
SOVIET PHYSICS JETP VOLUME 36, NUMBER 4 APRIL, 1973 

SOME RELATIONS FROM THE THEORY OF GAL VANOMAGNETIC PHENOMENA 

G. T. AVANESYAN and M. I. KAGANOV 

Institute of Physics Problems, USSR Academy of Sciences 

Submitted May 5, 1972 

Zh. Eksp. Teor. Fiz. 63, 1472-1476 (October, 1972) 

By using natural assumptions regarding the collision integral (Hermitian character and positiveness), 
a number of inequalities are proven which relate the galvanomagnetic coefficients. It is shown in 
particular that in metals with equal amounts of electrons and holes (dpldH 2 )H=0 2: (dpldH 2 )H_00, 
where p is the resistance and H the magnetic field strength. 

T HE possibility of using galvanomagnetic phenomena 
for an analysis of the electronic energy spectrum 
(seeP], Appendix III) is based on the independence of 
many of the theoretical results of the electron-scatter
ing mechanism. Indeed, the dependence of different com
ponents of the resistivity tensor Pike H) on a strong 
magnetic field ll , as is well known, ([1], Secs. 26-28), 
is determined only by the geometry of the Fermi sur
face of the metal. In the case of closed Fermi sur
faces, when the number of electrons n1 is not equal to 
the number of holes n2, the resistance transverse to 
the magnetic field tends to saturate as H - 00 (p 1 (H 
- 00) = p1'), and increases quadratically when n1 = n2 
(p 1 (H - 00) "" a ooH2). The longitudinal reSistance 
tends in all cases to a constant value (p II (H - 00) 
= p'll). In weak fields, the resistance increases quad
ratically (p = po + aoH2 ). 

The quantities po, P'1, P'll, a 00, and ao depend, of 
course, on the scattering mechanisms and cannot be 
calculated without special model assumptions. It was 
shown earlier[2], however, that natural very general 
properties of the collision operator lead to very sim
ple inequalities satisfied by the quantities 

PJ.~,PII~~PO, (1) 

and in the present communication we shall show that 

(2) 

and that dp III dH 2: 0 for an arbitrary value of the mag
netic field. 

Relation (2) was observed by E. S. Borovik in BiP]. 
He has advanced the hypothesis that this relation is 
universal. A calculation based on a very simple model 
of a compensated metal (two isotropic bands, T-ap
proximation) leads to a quality of the coefficients 
(a 00 = ao), and calculation based on a three-band 
model[4j confirms the existence of the inequality (2). 

Since the proof of the inequalities (1) is contained in 
a collection that is not easily accessible[2 j, we present 
here their deri vation. 

The components of the conductivity tensor can be 
represented in the form of scalar products of two func
tions: The components of the velocity v = at::/ap of an 
electron with quasimomentum p and energy f;;, and the 

l)We have in mind magnetic fields such that I ~ rH' where I is the 
mean free path and rH is the radius of the Larmor orbit. We do not con
sider quantum phenomena (such as the Shubnikov-de Haas effect, see 
[1], Sec. 31). 

components of the vector l/J: 
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0", = (Vi, '$.). (3) 

We need not determine the scalar product, which 
includes integration over p-space. The vector l/J is a 
solution of the linearized Boltzmann kinetic equation 
(see[ll, Sec. 27): 

(4) 

Wp is a linearized collision operator, and the variable 
t has the meaning of motion over the trajectory in the 
magnetic field. 

The asymptotic form of l/Ja (a = x, y; the magnetic 
field is parallel to the Z axis) in strong fields is given 
by (we have in mind from now on only closed surfaces): 

c - - c - - (5) 
'$. ~ - eH (p, - Wp -. Wpp,) , '$, ~ -;R(P' - Wp -. Wpp.). 

The bar denotes averaging over the trajectory of 
the electron motion in the magnetic field. 

The operator Wp is Hermitian and positive[5,61, 

Le., 

(qJ, Wpx) = (x, WpqJ), (qJ, WpqJ) ~ O. 

These properties of the operator Wp allow us to 
introduce a new definition of the scalar product: 

(rr, x) == ('f, lVpX), 

which we shall find convenient in what follows. 
In weak fields 

~-1 W"-1 a W"-1 w-1 a W~-1 a w-1 IPa = W p Va - p at p Va + p at p at p Va - ••• 

(6) 

(7) 

(8 ) 

The series (8), the structure of which is obvious, cor
responds to expansion of l/Ja in powers of the magnetic 
field. The operator a I at is anti - Hermitian: 

(9 ) 

We introduce, furthermore, the operator \1, which has 
the dimension of mobility (secl g): 

_ c - iJ 
u==_Wp - 1_, 

eH iJt 
(10) 

and which can be easily shown to be anti-Hermitian in 
the sense of the new definition of the scalar product (7): 

(qJ, ux) = - (uqJ, x). (11) 

We shall henceforth denote the quantities Pa 

- wplw~a simply by Pa (WplWga is the a-th coordi-
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nate of the center of the orbit in the plane pz = const). 
We shall assume that the tensor 0ik is of the 

form 2) _ (a.~ 0 ) 
(Jik - 0 au' (12) 

The resistivity tensor Pik = oik then takes a simi
lar form, with 

(13) 

The inequality P ~ > po follows directly from the natural 
fact oxx.vv.zz(H) < oxx,yy,zz(O), which was proved in[2): 

We shall prove below a much stronger inequality, 
namely, dai/dH s 0, where ai is the i-th principal 
value of the specific electric conductivity (i = x, y, z), 
from which it follows according to (13) that dpli/dH 
2: O. 

We choose the axes X and Y such as to diagonalize 
the tensor a Ct j3(O) (Ct, j3 = x, y). Using the notation in
troduced above, we can express the components of the 
tensor aCt j3(H) in the following manner: 

a) In weak fields, accurate to terms quadratic in H 

~ ~ ( eH)' ~ ~ 
a=,""(up,,up,)- -;;- (u'P.,u'p,) (x-y)" 

eH , ~ (eH)' ~ ~ 
a.,,,,,,-c-(upx;up,)+ -c- (u'p.,u'p,), (14) 

The symbol (x - y) below denotes an expression ob
tained from the preceding one by interchanging sub
scripts x and y; 

b) In strong fields, accurate to terms ~1/H2 

(15) 

ax> "'" e~ (p" uPJ - ( e~ )' (p., p,). 

The condition that the tensor aCt j3( 0) be diagonal be
comes 

(up., uP.) = 0, (16) 

and when dealing with compensated metals, the condi
tion that the numbers of electrons and holes be equal 
(nl = n2) takes the form 

(p., uP.) = o. 
In addition to inequality (1), it is proved in [2] that 

dp/dH21 H=O 2: O. In our notation (according to (13) 
and (14»: 

(17) 

dpxx I e' 1 {(" u') (u'Py, Up,)'} (18) 
dH' H-<J = C' (uP.uP.)' u Pv' P. - (upx' up,) , (x <-+ v). 

Non-negativity of dpxx/dH21 H=O is ensured by the 
fact that the product of the squares of the norms of the 
two vectors is not less than the square of their scalar 
product (the vectors U2Py and uPx, and accordingly, 
(x - y». 

Since pxx(O) = 1/(upy, ilpy ), (x-y), and Pxx(oe) 
= (Py, Py)/ (Px, Upy)2 (x - y) when nl;aO n2 (see (15) 
and (l3»), the condition Pxx(oe) 2: Pxx(O) (x - y) 
follows from the inequalities 

(p., P.) (upu, up,) ~ (p., tip.)' (x ~ y). (19) 

Let us prove the inequality (2) formulated above (we 

2)It can be verified that this is certainly so in those cases when a 
magnetic field is directed along an axis of twofold or higher symmetry. 

recall that we are dealing with a metal with nl = n2). 
According to (18) 

and from (15) and (13) it follows under the condition 
(17) thatS) 

e' (p., P.) 

a~ = c" (Pu. P.)(P., p,) _ (p., P.)" 

We consider the vector 

The square of its norm is 
_, , _ (u'P., upx)' 

(g, g) - (u P., uP.) C u)' 
up" Px 

(20) 

(21) 

(22) 

(23) 

The vector q is orthogonal to the vector Px. Indeed, 

(24) 

since the first term is equal to zero in accordance with 
the condition (16) and the second vanishes because the 

• operator u is anti-Hermitian. In addition, owing to the 
condition (17), 

(q, p,) = -(up" up,). (25) 

Therefore (20) can be rewritten in the form 
e' (q, q) 

a, = 7z (Pu, q)' ' 
(26) 

and the ratio is 
a, (q,q)[(p"p,) (P.,P.)-(p.,p,)'] 

a~ (P., q)'(p.,p.) 

The inequality (2) follows from the inequality 

( )::;;' (p.,P.)' + (q,P.)' 
P., Pu '" (p., P.) (q, q) , 

(27) 

which is valid, since the square of the norm of the 
vector Py does not exceed the sum of the squares of 
its projections on two unit vectors (the unit vectors 
Px/v'(px, Px) and q/~». 

We now prove that dad dH < O. The "3rator u( 10) 
does not depend on the value of the mag' ,~tic field. 
Therefore, if the kinetic equation (4) is :ewritten by 
introducing the operator u, then the reeultant equation 

eH ~ ~ 
- U'lJi + 'lJi = W P -1 Vi 

C 

contains the magnetic field only explicitly. We put 

It then follows from (3) and (7) that 

a, = (w,Ijl). 

(28) 

(29) 

(30) 

With the aid of (28) we can calculate I/J(H + ~H) in 
the form of an expansion in powers of ~H/H: 

'Ijl(H+tlH)=I/l(H)+ tlH'lJU)(H)+ ... , (31) 
II 

and to determine I/J( 1) we have the equation 
eH ~ eH ~ 

-ul/l(t) + 'lJ(1) = - -u'lJ. (32) 
c c 

According to (30) and (31), 

3)We use the value Pxx, and the expression for Pyy is obtained by 
the substitution y ...... x. 
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/',.H 
(J;(H+t:.H)= (J;(H)+-(w,IjJ(I)+... (33) 

H 

Replacing w by the left-hand side of (28), we get 

eH ' 
(w,IjJ(lI)=_(uljJ,IjJ(!I)+(IjJ,IjJ(t), 

c 

and we transform the second term with the aid of Eq. 
(32): eH ' eH, eH ' 

(w, 1jJ(t» = -(uljJ, 1jJ(t) - _(IjJ, uljJ) - _(IjJ, uljJ(t) 
C C C 

= -2 (-eHlc) (~IjJ, 1jJ(!I). 

We have used the fact that the operator u (11) is anti
Hermitian. In the last expression we replace -eHc-1 uzp 
by the left-hand side of (32), and obtain 

(w, IjJ(O) = -2 (ljJ(t l , 1jJ(!I) ~ o. (34) 

It follows directly from (34) and (33) that 

d(J;/dH ~ O. (35) 

The relations proved here apparently account for 
all the statements that can be made concerning the 
components Pik in metals with closed Fermi surfaces, 
without special assumptions concerning the electron 
scattering mechanism. It must be emphasized that all 
the results are based on the assumption that the energy 
spectrum of the electrons remains unchanged in the 
magnetic field, and in particular that there is no mag
netic breakdown ([1), Sec. 10). In addition, it is as-

sumed that the magnetic field does not influence the 
scattering mechanisms, Le., Wp does not depend on 
the magnetic field (e.g. in ferro- and antiferromagnets, 
in which scattering by spin waves is significant, this 
condition is not satisfied and, e.g., a situation is pos
sible wherein poe < po as a result of the decrease in 
the number of spin waves in a strong magnetic field). 
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