
SOVIET PHYSICS JETP VOLUME 36, NUMBER 4 APRIL, 1973 

LINEAR NONUNIFORM SPIN CHAIN IN A TRANSVERSE MAGNETIC FIELD 

R. O. ZAITSEV 

Submitted May 11, 1972 

Zh. Eksp. Teor. Fiz. 63, 1487-1494 (October, 1972) 

The magnetic susceptibility of a one-dimensional chain of spin 1/2 atoms located in a transverse mag­
netic field is calculated. The exchange interaction is anisotropic and depends on the cell number in a 
random fashion. Impurity atoms possess an extremely low mobility and hence the results can be ex­
pressed in terms of the distribution function of the square of Lite exchange interaction. It is shown that 
the special features of the magnetic susceptibility of an ideal chain become less pronounced, but under 
certain conditions new features arise which are related to the specifics of the spectra of one-dimen­
sional disordered systems. No singularities in the specific heat are observed in this case. 

INTRODUCTION 

THE problem of the behavior of an ideal (impurity-free) 
chain of atoms with spin 1/2 was solved by Pikin and 
Tsukernik[ lJ for two limiting cases: 1) the interaction 
between the spin components that are transverse to the 
direction of the magnetic field differs from zero, and 
the interaction between the longitudinal component is 
equal to zero (x-y model in a transverse field), and 
2) the magnetic field is transverse to the chain, and the 
spin projections along the chain interact (the one­
dimensional Ising model in a transverse field). We as­
sume that the exchange interaction is a random function 
of the number of the atom in the chain. This corresponds 
physically to a situation in which different spinless im­
purity atoms are placed randomly between the atoms and 
alter the value of the exchange integral. We assume that 
the relaxation times of the impurity atoms are so large 
that their distribution is thermodynamically not ir, 
equilibrium, but is determined by a certain specified 
distribution function. If the impurity atoms are differ­
ent, then the distribution function of the square of the 
exchange interaction G( It) (A = J2) can be specified in 
place of the distribution function of these atoms. 

In the limiting cases considered in [IJ, a connection 
can be established between the magnetic susceptibility 
and the function G. For special distribution laws G(It) it 
is possible to find an explicit expression for the mag­
netic susceptibility. Of greatest interest are fields of 
the order of J/fJ. (J2 is the mean squared exchange inter­
action and fJ. is the Bohr magneton), when the suscepti­
bility of the ideal lattice becomes infinite. In such 
fields, the susceptibility of a weakly non- ideal chain 
has a maximum that vanishes in the opposite limit of a 
strongly disordered system. The strongly disordered 
x-y model has a new Singularity in weak fields and at 
low temperatures. This Singularity is connected with 
the anomalously high density of states of the one-dimen­
sional chain in the region of low frequencies [3J. 

1. x-y MODEL IN TRANSVERSE FIELDS 

USing the notation of[ lJ , we write down the Hamil­
tonian 

(1) 
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According to[I,2 J , the spin operators are expressed in 
terms of the fermion field operators ak and ak: 

s." + is,' = II (1- 2am +am)a" s." - is,' = a,+ II (1- 2am +am ), 

m<k m<' 

As a result, (1) is transformed into the Hamiltonian of 
an ideal Fermi gas with random parameters 

J'& = - '/, .L.1,(a.+a,+, + a,: ,a,) - ~H ~ ('/, - a,+a,). (2) 
• 

We define in the usual manner the Green's function 

Gn. ,(," ,,) = -(T(an(,,)ii,(,,» >. 
a.(1:) = e'.ifa,e-,:;e, ii,(,) = e':JCa,+e-':JC. 

(3a) 

It is easily seen that the average magnetic moment at a 
given temperature is expressed in terms of the Green's 
function 

M = ~ ~ < f-a,+a,) = 2~ ~ (a,a,+ -a.+a,> . , 
=- :N ~[G"'('+O")+G.,'(1:,dO)l. (3b) 

, 
We write down the equations of motion for the operators 
a and a: 

-d.(,) = '/,l,iih+t(') + 'f,J.-di.-, (1:) - ~Hii,(1:). 

It is convenient to make the canonical transformation 

For the operators b we have the following equations: 

6,(1:) = -'/,il,bk+'(') + '/,il._,b._, (1:) , 

"6.(1:) = -'/,il;6,+,(,) + '/,il._,o._, (1:). 

(4) 

(5) 

We introduce the notation Jk = 4E2, A k = Ji/4E2 (the 
bar denote averaging with a specified distribution func­
tion). Then the solution of (5) takes the form 

(6) 

C v and c~ are the annihilation and creation operators in 
the state v; lJiv(k) and wv are the eigenfunctions and 
eigenvalues of the system of equations 
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A,'I. = sign I, l' A" X. = 1. (7) 

The system (7) coincides with the system of equations 
for the one-dimensional chain of elastically coupled 
atoms, which was investigated in detail by Dyson[3J . 
Assume for simplicity that the number of cells N is odd. 
Then the system (7) has one zero root, and the remain­
ing roots enter in pairs [3J , viz., to each positive eigen­
value there corresponds a negative eigenvalue with 
complex conjugate eigenfunctions (altogether (N - 1)/2 
pairs of roots). The function N(!;) is the fraction of the 
roots wI' for which w~ < 1;. The quantity N'( 1;) • 2,;t 
give the density of states. 

We express the magnetic moment in terms of N(!;). 
We substitute in the definition (3b) the operators a ex­
pressed in terms of the <Ji- functions, and then go over 
in the usual manner[4J to the Fourier representation in 
terms of the discrete frequencies wn = rrT(2n + 1). As a 
result we obtain 

M=-~~[Gw (k,k)+G_w (k,k)]=_!lT Re \"1. ~ E . 
2N ......" " N "'-' !Wn -!l - 00, 

CIIn,R. (,In'V 

We make use of the fact that the roots enter in the 
summation in pairs, and the zeroth root has a negligible 
statistical weight at N » 1. Then 

M = _ 2flT ~ Re iWn - flH 
N.'-l (iwn - flH)' - (Ew,)' 

~Jn,"'(~,,>O 

We assume that N » 1, after which we can change from 
summation to integration, using the characteristic func­
tion N( 1;). After summing over the frequencies wn we 
obtain 

M = fl S [no (wE - flH) - no (wE + flH) looN' (00') dw, 
o 

(8) 
no (cu) = 11 (eW!T + 1). 

Formula (8) becomes much simpler if it is assumed 
that the temperature is equal to zero (T« {J.LH, E}): 

(9) 

Dyson[3J , and also Bellman[5J , obtained an integral 
equation connecting the function N (!;) with the distribu­
tion function of the quantities A. A solution of this 
equation was obtained by Dyson for the following distri­
bution function: 

G(A) 
(n-I)! ' 

X=f; 

where n are integers. For large n we obtain a Gaussian 
distribution with unity mean value and variance l/m. 

The general form of the function N( 1;) is given in 
Dyson's paper[3J (formulas (63)-(78)). We write down 
directly the value of the magnetic moment at fixed n in 
the limiting cases of weak and strong fields. 

T « J.L H « E/m-weak fields: 

M 
I2[ (Innz + Sn-. + v)' + n'] , x 

T « E/m « J.LH- strong fields: 

fl (n' - 6t._.) 

3HIInnzl' ' 

n 

tn = ~ k-' (10) 
11.=1 

M = ...!:.{I- 2(nz)"-' (In nz - s._, + y)e-'''} 
2 [(n-I)!]" 

x= 2fl(nZ),ne-n, In nz/ H[(n-I)!]'. 
(11) 

The magnetic susceptibility of the disordered chain 
diverges because such a chain "has a much larger frac­
tion of low-lying frequencies than an ideal chain" [3J . 
With increasing field, the susceptibility decreases. In 
strong fields it is exponentially small, and the magnetic 
moment differs exponentially little from its maximum 
value. At (J.L H)2 ~ -;r, there is no singularity in the sus­
ceptibility. 

It is of interest to calculate the susceptibility for fin­
ite temperatures but in weak fields: J.LH« {E, T}. To 
this end, we expand (8) in powers of J.LH: 

2 ' ~ 
x = 2:.. S fto (Ew)[ 1 - no (Ew) lN' (00') 00 dw. 

r 0 
(12) 

When J.LH « E « T we obtain the Curie law: X = J.L 2/4T . 
At J.LH « T « E the integration is cut off at W ~ T/E, 
so that we have X ~ J.L 2T-IN[(T/E)2]. At (J.LH)2 « T2 
« E2/n we have 

x - -6:-C:T::7{-::-:[l-n:-(n-=T'IE') + Sn-. + y]' + n'} ; 

at T2 « E2 « n~ we get 

X ~ fl' / n(J2)"'. 

(13) 

Thus, the disordered chain reveals a strong paramag­
netism at low temperatures; the susceptibility of an 
ideal chain is constant. 

It can be shown that at low temperatures the specific 
heat of a nonideal chain vanishes like In-3(E2/~), and the 
entropy vanishes like In-2(E2/T2). 

In the limit of large n and not too weak fields, n(J.LH)2 
» J2, we obtain the magnetic moment and the suscepti­
bility of.J!n ideal spin chain having a root singularity at 
(J.LH)2 = J2[lJ. 

2. ONE-DI1VIENSIONALlSING CHAIN IN A TRANSVERSE 
FIELD 

The Hamiltonian of the system is 

J'6 = -2 ~ l,s,"s:+I - flH ~ s,'. (14) . , 
Changing over again to Fermi operators, we obtain 

J'6 = -'I, L1,(a.+aH, +aH,a.)-'/, L/.a.+a.:. . . 
+'/, ,EI.a.aH.-flH ,E('/,-a.+a.). 

• • 
In the Matsubara representation, the equations of motion 
are 

,i.(-t) = '/,I._,a._,(-c) + '/,I.aH' (-c) + '/,1.0.'+1(';) 
- '/,1._,0.._. (-c) - flHa,(,;) , 

-a.(-c) = '/,I._,a._.(-c) + '/,I.aH' (-c) + '/,I.ak+.(';) 
(15) 

- '/,I._,a._,(-c) - flHo..(-c). 

It is c~nvenient to solve (15) by the Gor'kov method[6J. 
We introduce the two-component quantity <Jika: 1f!kl 
= ak(T), <Jikz = -ak(T). The Green's function is defined by 
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The magnetic moment is expressed in terms of the 
Green's function in analogy with (3): 

J.I 1: J.lT1: M=-- Sp['t'G •• ('t+O,'t)l=--N Sp['t'G.l. w 2 n 

We can verify with the aid of (15) that the Green's func­
tions TZG (k, p) is the inverse of the following matrix wn 
of order 2N: 

A u, 0 0 0 0 0 
v, A U2 0 0 0 0 
0 V2 A U. 0 0 0 

0 0 0 0 A UN_2 ° (16) 

° 0 0 0 VN-2 A UN-l 

0 0 0 0 0 VN-l A 

A = -J.lH + iwn't', U. = '/,'.(1 +'t'), v.= '/,'.(1-,;"). 

The matrix (16) is the sum of a unit matrix multiplied 
by - JlH and a matrix B that is independent of the field. 

The logarithmic derivative of the determinant of the 
matrix (16) is expressed in terms of the eigenvalues of 
the matrix B: 

a(lnLl) a 'N 2N 1 
--= - ~ In( -J.lH + b.) = J.I ~ -H--' 

aH aH'-" '-" J.I - b. 
k=1 11=1 

(17) 

bk are the eigenvalues of the matrix B and ~ is the de­
terminant of the matrix (16). Since the right- hand side 
of (17) is proportional to the trace of the matrix inverse 
to (16), we obtain 

M=~ ~ alnLl. 
2N £...j aH (18) 

We denote by Ck the determinant of the matrix (16) 
with the first 2k - 2 rows and columns crossed out. The 
determinant ~ is of order 2(N - k) + 1. Its first row 
has three nonzero elements: dll = iWn and d12 = d13 = J k . 
The first column has the following nonzero elements: 
dll = iWn, d21 = Jk /2, and d31 = -Jk/2. The remaining 
part of the determinant is the matrix (16) with the first 
2k rows and columns crossed out. It is easy to verify 
that Ck and Ck are connected by the following system of 
recurrence relations: 

C.= [(J.lH)' + wn'JCk+'- iWn'.'Dh+h 

D. = iwnCk+' + '.'Dk+,; 

CN + 1 = 1 and DN + 1 = 0 by definition. 

We introduce the quantity xk = iCk/~; we then ob­
tain 

[W.' + (J.lH) 'Jx.+, + wn'.' 

(()nXk+l + 111.2 

(19) 

Relations (19) enable us to establish a connection be­
tween the distribution function G(A) of the random quan­
tities Ak = Jk and the distribution function with respect 
to the variable x. We note that these equations occur in 
the two-dimensional ISing model with random aniso­
tropy[7J 

For this reason, we present the main results without 
proof. The distribution function v(x) satisfies the equa­
tion 

+~ ~ 

,,(x) = S dx'S dA (j [x - w. 
_00 0 

(J.lH)'X']G(A) (') 
wnx'-+ A 'V X • (20) 

The susceptibility has a maximum under the condition 
~ 

In (J.lH,) , = J GP·)ln AdA. (21) 
o 

For example, for a binary solid solution we have 

G(A) = C,{j(A-At) + c,ll(A- A,), C, + c, = 1; 

C1,2 are the concentrations of atoms with exchange in­
tegrals respectively equal to J 1,2 = -lA1,2. Substituting 
this expression in (21), we obtain JlH = J~lJ~2. 

An asymptotic solution of (20) coufd be obtained for 
the following distribution [7J 

- - ni." 
J'= 1.= 1+n; (22) 

AD is the maximum value of the squared exchange inter­
action. 

In the limit n » 1 we have with the aid of (21) JlHc(n) 
= fue-1 /2n. 

The anomalous part of the susceptibility near the 
maximum is given by 

J.I' ~ a' 1 } x =-=-{J [-lnK,(x)---] dx+ln(8n'/e') , 
2nl'Ao 0 ab' 1 +x 

(23) 

o = 4n2 JlA 01/2 [H - Hc(n)J , and Ko (x) is a Bessel function. 
As 0 - 0 we get 

(24) 

The susceptibility has no Singularity in the limit as 
JlH - O. This can be easily shown by expanding rela­
tions (18)-(20) in powers of (JlH)2 and noting that at 
H = 0 we have v(x) = o(x- w n). 

CONCLUSION 

The properties of a one-dimensional chain with im­
purities differ strongly from the properties of an ideal 
chain. The susceptibility Singularities of the ideal chain 
become smeared out and turn into maxima whose widths 
increase with increasing fluctuations of the exchange in­
teraction. For example, from (24) we have at n » 1 

J.I' [1' ] 
Xmo,- n(r)," In ill' , LlH-- -1 [ill' ]' 

J.I l' 
~H is the "broadening" of the X (H) curve. 

A one- dimensional x- y chain has certain additional 
interesting properties. At low temperatures, the re­
ciprocal susceptibility behaves like T ln2 (J/T), at zero 
temperature the susceptibility increases with decreasing 
field like H-1 In-3 (JIJlH). This phenomenon is connected 
with the anomalously large (~ w- 1 Iln-3 W I) density of 
states of the one-dimensional disordered chain[3J . 

It must be noted that no one has yet succeeded in 
calculating the susceptibility of a chain with interaction 
of the type 

L. g. (s,' s.~, + s,:, s,·). 
, 

An ideal chain has in this case a logarithmic singularity 
in weak fields and at low temperatures, precisely where 
the non-ideal x-y chain has a Singularity. It can be 
shown that in this case, too, there exist recurrence re­
lations for the calculation of the determinant ~ (see 
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formula (18)). The distribution function v(x), however, 
obeys a more complicated equation. 

The author is grateful to Professor B. T. Gellikman 
and M. A. Mikulinskil for interest in the work and for 
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Yaks and B. Ya. Balagurov who called my attention 
to[1,7] . 
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