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The distribution of the order parameter (the density of the superfluid component) near the HeI-Hen 
phase interface in external fields is investigated on the basis of two modified variants of the phenom­
enological Ginzburg- Pitaevskil theory of superfluidity. The results of a numerical solution of the 
respective equations for three types of external fields: the gravitational field, the field of the van der 
Waals forces near a rigid wall, and the field of a point electric charge (ions in helium), are presented. 

I N the experimental study of critical phenomena we 
are obliged, as a rule, to deal with "samples" along 
which the temperature or any other thermodynamic 
parameter (density, impurity concentration, etc.) varies 
slightly. A phase transition in the ordered state is then 
accomplished not simultaneously along the entire sam­
ple'. In this connection, special interest attaches to the 
distribution of the order parameter near the interface 
between the ordered and disordered phases, where 
correlation effects are strong. 

We investigate in the present paper the nature of the 
distribution of the order parameter near the interface, 
using as an example the A-transition in helium located 
in an external field of the form pU(r) acting on a unit 
mass of the liquid. To this type of fields pertain the 
gravitational field (U = gx), the field of the van der Waals 
forces near a rigid wall, the field of the electrostric­
tional forces near a charged body, etc. For the case of 
the gravitational field the corresponding problem has 
already been considered by a number of authors [1,2J 
on the basis of two improved versions[2,3J of the rhe­
nomenological Ginzburg- Pitaevskil (GP) theory[4 . In 
the present paper we discuss in greater detail the form 
of the equation describing the equilibrium distribution 
of the order parameter in nonuniform external fields, 
and present the results of a numerical solution of this 
equation for the three types of fields listed above. 

1. THE EQUILIBRIUM EQUATION FOR THE ORDER 
PARAMETER 

In the phenomenological theory of superconductivity 
we introduce for the description of the state of the 
superfluid component the parameter w(r) whose equili­
brium value in the spatially inhomogeneous case is de­
termined (see C4J ) from the condition for the minimum 
of the functional l ): 

£r(p,T;'V)= J [Fo(p,T, '1')+ :: (v'V)']av. (1.1) 

l)There is a definite ambiguity in the problem of choosing a macro­
scopic complex order parameter W(r) in helium [5]. We retain the orig­
inal meaning for W: Ps = mlWI 2 [4]. Furthermore, we shall, for simplic­
ity, henceforth assume the liquid to be stationary. Under these condi­
tions w(r) can be assumed to be a real positive quantity. 
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The use of the density p (or the pressure P, as has been 
done before (see, for example,[1,2J)) as an independent 
variable is, however, not quite correct, since in the 
state of thermodynamic equilibrium the fixed thermo­
dynamiC variable is the chemical potential fJ., and the 
density and pressure should, generally speaking, vary 
with the order parameter. In accordance with the fore­
gOing, we should, in the presence of spatial variations 
of the order parameter, minimize the functional 

[ fI' 
O(j.t,T; P, 'V)=f Fo(p,T, '1')+ 2m(v'V)'- j.tp], (1.2) 

Simultaneously with respect to w(r) and per). 
When an external field is present we must add the 

term pU(r) to the integrand in (1.2) and, furthermore, 
if the density p changes appreciably over distances of 
the order of the interatomic distances, also the term 
% I} (Vp)2 which takes the density correlation into ac­
count. To determine the equilibrium values of w(r) and 
per), we derive the following system of equations: 

~ V''V = (!!!..) 
m ii'V ,.r' 

( iiFo) 6(Vp)' = - - j.t + U(r). 
Of' 'V,T 

(1.3) 

(1.4) 

If the total-density gradients appearing in the system 
are small, and this will henceforth be assumed, then it 
is convenient in the above expreSSions to go over from 
the free energy density, Fo(p, T, w) to the thermo­
dynamic-potential density, no = Fo- fJ.oP, in the varia­
bles (fJ. 0, T, w), where 

( OFo) 
j.to'" - =j.t-U(r). 

op T,'" 
(1.5) 

The equations for w(r) and per) are then separable and 
take the form: 

~v''V= (oQO) , 
m 0'1' ""T (1.6) 

(1.7) 

To proceed we need to know the explicit form of the 
w-dependent, Singular part of the thermodynamic po­
tentials. In[2,3J , where the thermodynamic potential 
4>o(P, T, w) is conSidered, they use for this purpose the 
expansion 
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rDo., •• (P, T, '1') = <pot'ln It I +Atltl''''I''+'/,Bltl'I,'I''+'/,C'l''. 
(1.8) 

Here, t stands for the distance to the A-curve: 
dT. 

t = T - T.(P) = T - T. -TP(P-P.). 

The expansion (1.8) is similar to the original classical 
expansion in the GP the oryC 4] , but differs from it in the 
coefficients, whose dependence on temperature has 
been modified to reflect a more accurate behavior of 
the heat capacity Cp and superfluid-component density 
near the A- transition. These two sets of experimental 
data are, however, insufficient for a unique determina­
tion of all the three phenomenological coefficients A, 
B, and C. In this connection one of these coefficients is 
usually assumed to be small. In Mamaladze's paper[3] 
he, by analogy with the original classical version of the 
GP theory and also using data on the critical thickness 
of films and capillaries, assumes the coefficient C to 
be small, whereas Slyusarev and Strzhemechnyl'[2] as­
sume the coefficient B to be small. 

In the scaling theories one assumes for 
~osing(P, T, +) the more general expression 

rDo ., •• (t, '1') = <Pot' In I t I + t'f(t / '1"), (1. 9) 

which reduces to (1.8) only when +/ltI 1/3 « +~, where 
+0 and +ii are certain constants that are, in order of 
magnitude, close but generally speaking not equal to the 
coefficient + oe defined by the temperature dependence 
of the equilibrium value + e of the order parameter in 
the low-temperature phase: +e = +oe(-t)113. In the 
opposite case when +/IW J3 ~ +~ (exactly such a situa­
tion obtains near the interface between the ordered and 
disordered phases, where t - 0, and, on account of 
correlation effects, + is a finite quantity), the expan­
sion of the function f should rather be directly in powers 
of t!+3. Then (see alsO[6]), 

$0 .i •• (t, '1') = 3q>ot'ln 'I' + A'I" + 11t'l" + Ct'. (1.10) 

We could try to obtain for ~osing a good interpola­
tion expreSSion that is suitable for any value of the 
ratio +/ltI 1/3 by smoothly matching the expansions (1.8) 
and (1.10) at +/ltI 1/3 = +~. Note that such a procedure 
yields very good results in the case of magnetic phase 
transitions[7]. As applied to the A-transition in helium, 
however, it is difficult to carry it out consistently, in 
view of the absence at present of a sufficient amount of 
experimental data. For this reason, we shall use the 
Slyusarev-Strzhemechnyr[2] and Mamaladze[3] forms 
of the expansion (1.8) right up to the interface t = 0 it­
self, in the hope that in practice the vicinity of the in­
terface (w/ltI 1/'3 ~ +~ - woe) where (1.8) becomes in­
applicable is small and the order parameter +(r) does 
not change by any appreciable amount there. The nature 
of the curves shown in the following sections justifies, 
to a certain extent, such a viewpoint. 

We have thus far been talking about the thermo­
dynamic potential ~o(P, T, +). On changing to the varia­
bles (p, T, w) and (/J. 0, T, +) the form of the Singular 
part of thermodynamic potential, generally speaking, 
changes. However, as shown in the Appendix, owing to 
the small anomaly of the compressibility in helium, 
this change is negligible. In final analysis, the differ­
ence lies only in the fact that for each selected pair of 

variables (X, T) we should take t in the formula (1.8) to 
mean the distance to the A-curve in the same variables. 
In particular, for the case of the thermodynamic poten­
tial Oo(/J. 0, T, +) of interest to us 

dT. dT. 
t = T - T, ---(ft- ft. - U(r»= to +--U(r). 

dft dft 
(1.11) 

Here to is the initial distance to the A-curve in the ab­
sence of an external field. 

With all the above observations taken into account, 
the equation for the order parameter can finally be 
written in the form 

:: V ''I' = AtIW''I'+Bltl'I,'l''+C'l'', (1.12) 

where, we recall, t depends on the coordinates in the 
presence of an external field and is given by the formula 
(1.11)2) . 

Before proceeding to the solution of some concrete 
problems on the basis of Eq. (1.12), let us simplify 
somewhat the notation. For this purpose let us impose 
on the coefficients A, B, and C two restrictions by re­
quiring, as usual, that they yield the correct experi­
mental values of the "jump" in the heat capacity tl.C/J. 
and the coefficient Pso connected with the temperature 
dependence of the equilibrium value of the superfluid­
component density, Pse = pso(-t)213, and let us change 
to the new variables 

where woe = (ps/m)1/2 = (1.43PA/m)lh and ~oM 
= TAn2~e/2mtl.Cj.L = 2.73 Ax (deg.)2/3 is the coefficient 
associated with the temperature dependence of the co­
herence length in the version of the phenomenological 
theory[3] with C = O. In terms of the indicated variables 
Eq. (1.12) takes the form 

V''i' = _3_ {tltl'n'i' +(1- M) ItI'l,'iJ' + M'iJ'}, 
3+M 

(1.13) 

where M is a dimensionless parameter whose value is 
equal to 0 and 1 in the versions of the phenomenological 
theory expounded respectively inC3] and[2]. 

2. SOLUTION OF CERTAIN PROBLEMS 

A. The Hel-Hell Phase Boundary in a Gravitational 
Field 

In the case of the graVitational field 

U(x) = gx. (2.1) 

It is convenient to choose as the origin of the x coordin­
ate the location of the classical interface determined 
from the condition 

dT. 
t(x) = to + a;-g:L = 0, (2.2) 

2)In the equations used in [') and [2) the derivative p~dT~/dP stands 
in place of the derivative dT~/dj.l. The implicitidentification of these 
two derivatives also occurred in Ahlers' experimental work [8). Note 
that although the difference between dT~/dj.l and p~dT~/dP is quite 
small (~2%), the allowance for it brings the value obtained in [8) for 
the slope of the ~-curve, dP~/dT = -113.9 atmtK, closer to the best 
experimental value dP~/dT = -111.05 atmtK [9) (the corrected value 
for dP~/dT following from [8) is equal to -111.6 atmtK). . 
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and to go over to the new dimensionless variables[lJ: 

u=xlZ., t')='I'(p •• /m)-'h, (2.3) 

where the characteristic scales 19 and Psg do not de­
pend on temperature and are equru (at the saturated­
vapor pressure) to 

1.= ~o~· (ldT,ldf!lg)-'f, = 6,8 .1O-a cm, P,g= 1,43p,SOM/l.=5.85 ·10-' p,. 

(2.4) 
In terms of the indicated variables the equation for the 
order parameter assumes the form 

d"t') = _3_ (Mt')' +(1-M) I lMl'f, t')' - ulul'l. t')} (2.5) 
du' 3+M . 

The solutions of Eq. (2.5) corresponding to M = 0 and 
M = 1 are shown in Fig. 1. The dashed curve is the plot 
of the distribution 1](u) which one would get in the ab­
sence of correlation effects: 1] = U1/3 (u > 0) and 1] = 0 
(u < 0). In the region u < 0 the solutions of the equation 
have the asymptotic form 

t')(u) ~ (-u)-'/'exp{-O.6(3/(3+M»Y'(-u)·f,}. 

As the interface approaches the free surface of the 
liquid the distribution 1] (u) changes, acquiring the shape 
of a "bell" (or one half of a bell in the case of the 
boundary condition 1]' Is = 0 at the free surface) de­
formed by the field. As the free surface is approached, 
the height of this bell decreases gradually and the solu­
tion vanishes at a certain u = uc' The corresponding 
values of Uc and Xc = ucl g for two values of the param­
eter M and the two types of boundary conditions 1] Is = 0 
and 1]' Is = 0, found by a numerical solution of the linear 
equation 

d't') ,3 
du' =-ulul / 3+Mt'), 

are presented in Table 1. The fact that the curves with 
M = 0 and M = 1, shown in Fig. 1, are very close, in 
spite of the essentially different form in these cases of 
the nonlinear term in Eq. (2.5), is noteworthy. The dif­
ference in the nonlinearity is most important in the 
region where 1] > lul 1\ i.e., where the expansion (1.8) 
ceases to be applicable and the expansion (1.10) ought 
to be used (the corresponding region is marked out in 
Fig. 1 by a circle). The proximity of the curves with 
M = 0 and M = 1 points, however, to the fact that the ex­
act form of the equilibrium equation in this region is not 
of great importance, and Eq. (1.12) is, in all probabil-

I,O~--~---~---~--~~~--r----r--1 

p'S~--r---r---~~----r-----r-----r--1 

J a 

FIG. I. Order-parameter distribution '/j(u) near the HeI-HeII phase 
interface in the gravitational field; I-according to the version in [3] of 
the phenomenological theory of superfluidity; 2-according to the ver­
sion in [2] ; the dashed curve is the plot obtained without allowance 
for correlation effects. 

Table I 

I 
M=O M=t 

.~O 'fl':={) .=0 .'=0 

u. 2.290249 1.058224 2,496685 1. 15357 
XC' em I 1.55·10-2 0.72.\0-2 1,70.10-2 0.784.10-2 

ity, a satisfactory approximation for the description of 
the behavior of ps(x) in the transition layer. 

B. BOUNDARY CONDITION FOR THE ORDER 
PARAMETER NEAR A RIGID WALL 

Near a rigid wall, on liquid helium acts an attractive 
potential which owes its origin to the van der Waals 
dispersion forces [10J. At small distances to the wall 
(x « Xc) this potential has the form 

U(x) = -8/ x', (2.6) 

while at large distances (x » Xc) the exponent ap­
proaches four. The constant ®, which characterizes the 
range of the potential, and the characteristic distance 
xo, over which the change in the power law occurs, de­
pend on the material of the wall. A typical value of 
e = 16 - 100o K[llJ (x is in this case measured in atomic 
layers; one layer a = 3.6 A), and Xc R< 50 - 200 A. 

From the classical point of view the action of the po­
tential U(x) ought to lead to the formation near the solid 
surface of a film of normal He I[12J 3), whose thickness, 
do = (ldTi\/dIJ.le/lto/)-n, ought to increase as the i\-point 
is approached first as Itol-1/3 and, then as Itoe/4 • On the 
face of it, it seems that the corresponding functions 
should be added as corrections to the formulas for the 
shift of the i\-point in narrow gaps and capillaries dc 
~ (- tor2 /3, the super fluid- mass defect near a rigid sur­
face -

.1 = S [p.~ - p,(x) ldx = const 

etc., figuring in the GP theory which assumes the 
vanishing of l{I directly on a rigid surface. In reality, 
however, as the computations carried out below show, 
the distribution ps(x) for (Ti\ - T)/Ti\ « 1 is only 
slightly sensitive to the form of the external potential, 
and formulas of the type dc = do + 1T~ (T), where do is of 
the order of a few interatomic distances, remain valid 
right up to the i\- point. 

The equilibrium equation for the order parameter 
near a rigid wall has in the corresponding dimension­
less variables (1] = l/!/(-tO)Ii3, u = x/(_to)273) the form4) 

d'1] 3 { 1 (U 'I 'f, -=-- M1]'+(1-M) 1- -?.) 1]' 
du' 3+M u 

+ [( :0 )' -1 ] 1 ( :0 )' -1 1 'I, t') }, (2.7) 

a I dT, 1 'I, 'I 
Uo =- -8to = uoo(-to) " 

SOM. d" 

3)When TA - T < 0.4 OK the normal film is not formed, since the 
helium near the wall goes over sooner into the solid state. 

4) Taking into account the slight sensitivity of '/j(u) to the concrete 
form of the potential U(x) at large distances, we taken the exponent in 
the expression for U(x) in the following computations to be equal to 
three. 
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rr"rrr/7r:~~~~~~~4~~~i=-r-l FIG. 2. Order-parameter distribution near a rigid wall for a few t values of the parameter uo: a-uo = 0, b-Y., C-¥2. The upper curves 
correspond to the version of the phenomenological theory with M = 
I (2), the lower curves-to the version with M = 0 (3). The dashed 
curves are the plots of the order-parameter distribution which one 
gets when correlation effects are not taken into account. The curves 
(a) correspond to the usual GP theory in which van der Waals' 

!:""'''''-'''''''''''1....l....L.L.L7-l....L...l.....I....L.L..l....L.~..L..I....L..L.l....L.L.L..L.JJ~ • ..L..I....L...l.....I....L.L...l....Ju. forces are not taken in account. 

Table II 

I 
M-O 

M-l I M-O I M-l 

u, 1['>-"(0)]' "( ) I ["-"(O)J' I [u,-u,(O)J' u c I [U,-Uc(O»). .6(Uo) 
• tL2o tto 'U2o 

Uc 
'Ulo 'U'o 

0 1.414 1 1.32 0.866 
'/. 1,432 1,15 1,333 1,02 
'/. 1,486 1.15 1.380 1.01 
'/2 1,665 1.00 1.547 0.92 
1 2.166 0,752 2.031 0,714 
2 3,35 0.485 3.21 0.472 

where to is the distance to the A-curve at infinity where 
there is no field. 

Examples of the 1) (u) curves obtained by a numerical 
solution of Eq. (2.7) for some values of the parameter 
Uo are shown in Fig. 2. We see that at temperatures not 
too close to the A-point (uo ~ 1), the 1)(u) distributions 
differ essentially from the distributions predicted by the 
usual GP theory, which does not take the van der Waals 
forces into account (the curves (a», as well as from the 
distributions which one obtains when correlation effects 
are not taken into account (the dashed curves). As 
T - TA, however, the corresponding curves increas­
ingly approach the curves (a). In particular, in the 
range of values of u where 1)(u) appreciably differs 
from zero, the solution 1)(u) is even better approxima­
ted by the formula 

,,>(u)=vth U-~{1-(1-v')th'[ U-~]}-'I', 
v12 v12 

(2.8) 

where v2 = (3 + M)/(3 + 3M). The formula (2.8) corre­
sponds to the solution of Eq. (2.7) in the absence of an 
external field, with the boundary condition 1) = 0 obtain­
ing, however, not at the rigid wall itself, but at some 
distance b from it. 

On the basis of numerical computations alone it is 
difficult to follow how the distance b at which 1) effec­
tively vanishes varies with temperature. Let us, there­
fore, use an approximate analytic representation of the 
solutions, a representation which is easily obtained by 
smoothly matching at u = Uo the expression (2.10) with 
the asymptotic form of 1)(u) at small u: 

T)«u)=cuexp{-u.'/I~u}, s'='/.(M+3). (2.9) 

We then obtain for the parameters band c the following 
values: 

b=~ 
5 +u. ' 

Sexp(u.m 
c = ':-";"':;-'-=--

(5 + u,) 12 
(2.10) 

It follows from the formula (2.10) for b that if the 
range of the field is long compared to the coherence 
length (uo » ~), then the variations in 1) (u) follow the 
variations in the external field, and 1) vanishes prac­
tically at the classical interface. If, however, Uo «~, 
then b ~ u~/1; , or, in terms of dimensional variables, 

(2.11) 

3.1416 1 3.6276 0,866 
3.1605 1,21 3,6439 1.043 
3,2167 1.20 3,6932 1,050 
3,4078 1.06 3.8671 0.958 
3.9338 0,792 4.3683 0.741 
5.1250 0.495 5.5437 0.479 

Thus, at temperatures close to the A-point, the 
characteristic distance do over which the influence of 
the van der Waals forces is effectively felt is a finite 
quantity and does not depend on the proximity to the 
A-point. This circumstance is confirmed also by num­
erical computations the results of which are partially 
presented in Table II. In the first and third columns of 
this table are given the values of the superfluid- mass 
defect 

1\= J[1-,,'(u»)du, 
• 

computed in the absence (uo = 0) and presence of a field, 
and in the fifth and seventh columns, the values of the 
critical thickness of the film with the boundary condition 
1) = 0 at the free surface. The values of the critical 
thickness were determined by a numerical solution of 
the linear equation 

:~; = 3: M [ ( :. ) 3 - 1 ] I ( :. ) 3 - 11'" T). (2.12) 

The quantities in the even columns are analogs of the 
parameter do(T) measured in this case in units of 

d.(T,)=- - e . a' (I dT'1 )'1. 
S.M dl-! 

As can be seen from the table and from the approximate 
expression (2.12), do(T) decreases, generally speaking, 
with distance from the A-point. 

Turning to the real situation, we note that the value 
of do at the A-point is the maximum value. At the SamE! 
time for certain substances do(TA) turns out to be 
3-13 A. In this connection it is clear that the results 
obtained concerning the temperature dependence do(T) , 
even if we put aside the question of validity at such 
distances of the macroscopic treatment, can, generally, 
only be of qualitative importance. We recall that we 
derived Eq. (1.13) only for the case of weak fields when 
terms containing denSity derivatives may not be taken 
into account. Allowance for the denSity gradients ought 
to have led to a smoother growth of t(x) in the region of 
small x than follows from formula (2.6) and, conse­
quently, to smaller values of do. On the other hand, the 
slope of the A-curve IdT/dJ-L I (or IdTA/dPI) increases 
with the density. This effect acts in the opposite direc-
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tion. Finally, the magnitude of the parameter b could 
also be essentially influenced (especially at low tem­
peratures) by the postulated formation near a rigid sur­
face of a film of solid He\ which also ought to have led 
to the growth of do.5) 

C. The Superfluid Component Density Distribution Near 
Charged Bodies 

In the presence of an electric field the extra chem­
ical potential of the liquid is equal to 

U(r)~-(~) E'(r) (2.13) 
iJp T Sn ' 

where E is the strength of the electric field and E is the 
permittivity. 

Using the relation 

£ - 1 - 'map / G < 1, 

which is fulfilled with a high degree of accuracy in 
liquid helium, we can rewrite (2.13) in the form 

U(r)=- 2~ E'(r),· (2.14) 

where Ci = 0.1233 cm3/mole is the molar polarizability 
and G = 4.002 is the molecular weight of helium. 

The threshold value of the intensity for the electrical 
breakdown in helium Ethr ~ 2 MY. To this value corre­
sponds the shift of the A-point, .:l TA ~ 10-3 

0 K. Thus, in 
the case of charged bodies of macroscopic dimensions, 
the observation of the proximity effects connected with 
the coexistence of the superfluid and normal phases of 
helium is possible only in a narrow neighborhood of the 
A-point: TA - T ~ 10-3 0 K. 

Let us continue the discussion, using as an example 
bodies of the simplest geometric shape: a cylinder and 
a sphere. In this case the A-transition temperature 
varies with distance to the center of the cylinder 
(sphere) according to the law 

t(r) =t.+ (roolr)n=to[1- (r,(T) Ir)n], (2.15) 

where n is equal to 2 or 4 respectively for the cylinder 
or sphere. 

If the radius 

'r,(T)= (I d;; laQ'/2Ge'l to l )'I"=roo(_to),/n, 

(Q is the charge of the body) is sufficiently large, then 
t(r) can be expanded near the location of the classical 
interface r = ro(T). We then obtain for an interface 
thickness l(T) 

~ . 
I (T) = ~'M' (rool I tol n)'I. = s .. (T).[r, (T)ln6M(T) l't" (2.16) 

while the condition for the applicability of this formula 
is 

or 
(2.17a) 

The condition (2.17) is fulfilled practically for any 
macroscopic body. The superfluid component density 
distribution near the boundary will then be the same as 
in the case of the gravitational field (see section A). The 
only additional factor here is that the location and, 
hence (according to (2.16)), the thickness of the inter- . 
face can be varied by varying the charge of the body. 

Let us now consider another limiting case when the 
charged body is of microscopic dimensions. Such ob­
jects in helium are positive and negative ions. In the 
case of an ion of charge Ze the distance ro(T) at which 
classically (in the absence of correlation effects) a 
transition to the normal phase should occur is equal to 

ro(T)- (I ~:'laZ'e'I2G8'ltol ) "'=roo(-t,)'''. (2.18) 

where at the saturated-vapor pressure roo = 4.52Z1 /2 
x 10-8 cm x (deg)1/4. 

As in the case of the van der Waals forces, the ratio 
ro(T)/~ (T) = 1.65(- to)5/12 quite rapidly tends to zero as 
T - TA. For this reason, we can expect that in reality 
the influence of the electric polarization forces on the 
order-parameter distribution near an ion when T - T 
will be felt not over a distance ro(T) from the center ~f 
the ion, but over a certain distance Rg which practically 
does not depend on temperature and does not exceed a 
few interatomic distances. A concrete estimate yields 
for Ro the value6 ) 

R, (T -+ T.) = 0.5 (1,5)'I'r" (roo1'3 1 (3 + M) /S'M) 'I. = 4.4Z'I. ·10-' cm. 

This value is somewhat smaller than the assumed 
radius R+ = 5.35 A of the solid core in the case of posi­
tive ions, and considerably smaller than the radius 
R_ F::< 16 A of the cavity in the case of an electron 
"bubble." Thus, the influence of the electric field can 
be neglected in considering the question of the structure 
of an ion near the A-point. The dominant effect is the 
vanishing of >If in the vicinity of the solid core, or at the 
free surface of the "bubble." 

At lower temperatures the influence of the electric 
field may, however, be of greater importance (espec­
ially in the case of positive ions for which Ro F::< R+). 
As an illustration we show in Fig. 3 a few examples of 
the curves T/ (u) determined by a numerical solution of 
Eq. (1.13) written in spherical coordinates: 

d'1] + 2 d1] _ 3 { [ ( U o ). ] 1 ( Uo ). 1 '/0 
du' -Ud,i- 3+M -;- -1 -U -1 1] 

+ 1(:')-l!'\'(l-M)+M1]'}. 
[leT) /ro(T)ln<t{1 (2.17) Here, as in the case of the van der Waals forces, 

5)We could have tried to take the influence of the formation of the 
solid film into account with the aid of the boundary condition Tl = 0 at 
u = a. The formula (2.10) would have then changed as follows: 

b = uo'[uo + ~ th (uo' I ta - Uo I~) ]-', 

where e = (3 + M)/3. When a 4 0 we obtain the former expression, 
while when a ~ u~n we have do(T) = a, i.e., the effect connected with 
the formation of the solid film is the dominant effect. 

1] =",1 (-to) 'I" u=FI(-to)'''. uo=ro(T)/;~M(T). 

6)With allowance for the boundary condition 'I1(R+) = 0 on the sur-
face of the ion, -

R.(T -+ T.) "" O,5Rm 2 + th {O.4[ (RmIR+)'I, -i]) 
i + 2 th {O.4[ (RmIR+)'I, - 1]) , 

where Rm = roo(1.5roo)v3/(3 + M)/~OM)3/5, and it is assumed that R+ < 
Rm· 
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3. CONCLUSIONS 

We have considered above in detail the question of 
the influence of nonuniform external fields on the super­
fluid component density distribution. As it turned out, 
for a sufficiently slowly varying field--e.g., for the 
gravitational field-the corresponding effects (the pene­
tration of the superfluidity into the normal-phase reg­
ion) can appear at macroscopic distances. 

In the case of thin films and capillaries it is shown 
that allowance for the van der Waals forces leads 
naturally to the boundary condition + = 0 near a rigid 
wall, the point where + vanishes being somewhat dis­
placed from the rigid surface. This displacement does 
not however, exceed (3-13) A and is comparable in 
magnitude with the shift which the postulated formation 
near the solid surface of a film of solid He4 gives rise 
to. 

In the case of charged particles (ions in helium) the 
influence of electric fields at T - TA is completely 
masked by the boundary condition + = 0 at the surface 
of the solid core in the case of positive ions, or at the 
surface of the solid core in the case of positive ions, or 
at the surface of an electron "bubble." This condition 
itself leads, however, to the formation near an ion of a 
normal film the effective thickness of which increases 
as the A-point is approached. This should clearly affect 
the mobility of the ions. 

In conclusion the author would like to express his 
profound gratitude to Y. L. Ginzburg for interest in the 
work and many stimulating discussions. The author is 
also grateful to Yu. G. Mamaladze and L. P. Pitaevskir 
for useful discussions and to L. V. Parirskaya for her 
help in the numerical computations. 

APPENDIX 

TRANSFORMATION OF INCOMPLETE THERMO­
DYNAMIC POTENTIALS NEAR THE X POINT 

Let us choose as the basic thermodynamic potential, 
the potential <p(P, T, +) in the variables (P, T, +). Let 
us suppose that near the A- curve this potential has the 
form 

It>(P, T, '1') = 1t>0(P, T) + Qlot.' Inltpl + t.'/(tp/,¥') , (A.1) 
dT, 

tp=T-T.(P)=T-T.- dP (P-P,), (A.2) 

where <po(P, T) is the regular part of the potential, and 
TA and PA are the coordinates of some fixed point on 
the A-curve. 

Let us expand <po(P, T) near the point (T A' PA) in 
powers of AT = T- TA and AP = P- PA up to quadratic 
terms and express A P in the expression obtained in 
terms of AT and tp with the aid of (A.2). After some 
transformations we obtain: 

FIG. 3. Order'parameter distribution near an electric point 
charge (an ion in helium) for a few values of the parameter Uo: a) 
Uo = Y.., b) liz, c) I, and d) 2. The upper curves correspond to the 
version of the phenomenological theory with M = I [2], the lower 
curves, with M = 0 [3]. The dashed curves show the order-para­
meter distribution which would be obtained in the absence of cor­
relation effects. 

1t>0(P, T)= 1t>0(P" T.)- (S.o - V.' a:; ).1T 

_~ (dS. _ dP. dV.) ,dP. dV. 
2 dT dT dT (.1T) - --;jT dT tp.1T (A.3) 

_ V. dP'tp+~ (avO) (dP')'t' 
dT 2 a P JT,' dT P • 

The transition to the incomplete free energy F(Y, T, +) 
is accompliS hed by adding to <p(P, T, +) the term- PY 
and subsequently minimizing F(Y, T, +; P) with respect 
to tp. As a preliminary, it is convenient by analogy 
with (A.2), to introduce in place of Y another variable: 

tv =T-T.(V)=.1T- dT • .1V. 
dV 

For F(Y, T, +; tp ) we have 

F(V, T, '1'; tp) = It> (T,t p, '1') - PV 

(AA) 

[ dP. ] [dV. ] =tll(tp,T,'¥)- P'+'dT(I1.T-tp ) v.+ dl' (.1T-tv) 

( dV. ) 1 (dS. dP. dV.) 
=Fo(V.,T.)- S'+P'di .1T-2" Tr+--;jT dT (.1T)' 

dV. dP. dV. [ 1 (aVO) ( dP. ) 2 +--tv.1T+P,-tv + - - - . te' 
dT dT dT 2 af> T," dT 

+Qlote'Inltpl +t.'fCt~'.)] - ~~'~~'tvtp. (A.5) 

It can be seen from (A.5) that the nature of the relation 
connecting tp with ty will depend on the relative magni­
tude of one or another term in the last square brackets 
in (A.5). The ratio of the second to the first term is 
equal in order of magnitude to (k~/kT)lnltpl, where k~ 
is the coefficient attached to the logarithmic part of the 
isothermal compressibility and kT- to its regular part. 
In helium, at the saturated-vapour pressure, the ratio 
kT/kT~ 1/160. This means that the temperature range 
in which the logarithmic renormalization of the critical 
exponents becomes important is limited in helium by a 
practically inaccessible, ~ 10-70 °K(!) wide neighbor­
hood of the phase- transition point. Outside this region 
the logarithmic term can be neglected in determining 
the relation between ty and tp. 

When + ~ +e(tp ) the relative magnitude of the third 
term does not exceed AkT/kT' where AkT is the "jump" 
in the compressibility, which is ~ 1/70 at the saturated­
vapor pressure. The relation between ty and tp in this 
case is, to a high degree of accuracy, linear: 

dV./dT (A.6) 
tp= (dP./dT) (avo/ap)T,. tv ""'ytv. 

The parameter y determining the renormalization of 
the coefficients in the expansion of the function f in 
powers of +/ltI 1 /3 is close to unity: at the saturated­
vapor pressure y ~ 1.05-1.25. The expansion coeffi­
cients change just as inSignificantly in the transforma­
tion of the thermodynamic potential from the variables 
(P, T, +) to (iJ., T, +). In this case y differs from unity 
by the amount 
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. / dP. p..s. -"" 2% dT . 

When "<JI »"<JIe(t) the function ef(W) has the asymp­
totic form C"<JI6 • The third term in the square brackets 
does not then depend on t, and does not change when the 
thermodynamic potentials are transformed. 
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