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A unified analysis of phonon dissipation mechanisms is carried out which permits one to single out 
those processes which limit dynamic dragging of dislocations. By linear response theory the problem 
is reduced to calculation of the retarded two-particle Green's function. The short wave asymptotic of 
the function is found in the T approximation. The Green's function expansion in the long-wave limit 
contains singular ladder diagrams whose summation is equivalent to solution of the phonon kinetic 
equation. It is shown that most of energy dissipation occurs near the dislocation within a range corre­
sponding to the phonon mean free path ("phonon wind"). Only at high temperatures the "phonon wind" 
region contracts to such an extent that relaxation processes become predominant; however, these 
processes cannot be reduced to ordinary "phonon viscosity." 

1. INTRODUCTION 

o NE of the urgent problems in physics of real crys­
tals is the identification of the principal mechanisms of 
dynamic dislocation dragging[l,2J • It has been reliably 
established by now that in real crystals there exist 
dynamic-mobility regions, in which the dislocation 
velocity is limited not by lattice defects but by outflow 
of energy to different branches of elementary excitations 
of the crystal. The dynamic energy losses also turned 
out to be Significant for internal- friction processes con­
nected with motion of dislocation between barriers, and 
for the overcoming of the barriers in the region of the 
thermal-fluctuation mobility of the dislocations, where 
the average dislocation velocity is limited by the waiting 
time in front of the barrier. 

A decisive role in the dynamic dragging of disloca­
tions is usually played by dissipative processes in the 
crystal phonon substances. l ) It is usually assumed that 
the most important are two types of mechanisms, which 
are connected with the introduction of the concept of 
"phonon viscosity" and "phonon wind." We shall show 
that these concepts are restricted by the spatial disper­
sion of the dissipative processes in the phonon gas 
around the dislocations, so that it is necessary to re­
view the theoretical estimates of the phonon dragging. 

The deformation field of a straight-line dislocation 
that moves uniformly with velocity v « c (c is the speed 
of sound) can be represented by means of the Fourier­
integral expansion as a superposition of plane waves: 

J dq 
8;j(r,t)=eij(r-vt)= (2n)3 ei;'exp[i(qr-Q.t»), (1) 

where E~ is the Fourier transform of the static field of 
the diSI~~ation, nq = q. v and the integration is cut off 
on the upper limit at qm ~ r~l ~ kD (ro is the radius of 
the dislocation nucleus and kD is the Debye boundary in 
the phonon spectrum). Expressed in these terms, the 
dissipation of the moving-dislocation energy reduces to 
a damping of plane elastic waves from the packet (1). 

1)In metals at low temperatures, when the phonon gas is frozen out, 
it is necessary to take into account the interaction between the moving 
dislocations and the conduction electrons [3,4]. 

In his well-known series of papers[5,8J , Mason pro­
posed to calculate this damping in analogy with the 
theory developed by Akhiezer[ 7J for ultrasound absorp­
tion, using the concept of phonon- gas viscosity. How­
ever, Mason's estimate is incorrect, since the notion of 
a "phonon viscosity" that has no spatial dispersion is 
meaningful when applied to the damping of the disloca­
tion packet (1) only for the long-wave part of the partial 
waves that have the adiabaticity property[8J2) nq » x"l 
(X ~ cl is the temperature conductivity coefficient, 
1 = CT is the phonon mean free path, and T is the phonon­
gas relaxation time), i.e., for waves with wave vector 
q «vllc. It is easy to verify, however, that the contri­
bution to the energy dissipation of the adiabatic part of 
the packet (1) is negligibly small, and can be estimated 
by multiplying Mason's formula ,by the small param­
eter3) ( vro/cl)2. 

A fundamentally different approach to the problem is 
used in the calculation of the so-called "phonon 
wind" [l1-13J, or elastic scattering of phonons by a mov­
ing dislocation, to which the transfer of dragging mo­
mentum to the dislocation is attributed. In this calcula­
tion, however, the phonon-phonon interaction was 
neglected, and this is valid, strictly speaking, only for 
the short-wave part of the packet (1), for which nqT 
»1, i.e., q »cllv. To be sure, the situation in this 
case is not as hopeless as in the calculation of the 
"phonon viscosity," since the result is determined by 
large values of q, and one can count on such an estimate 
of the phonon dragging of the dislocation to be correct 
at sufficiently high velocities and low temperatures, 
when v »c/kDl. 

Nevertheless, there have been no investigations of 
the contribution made to the dissipation by the main 
part of the packet (1), for which v/lc ~ q::; cllv, let 
alone of the case of velocities that are not too high, 
v ~ c IkDl, when n T ~ 1 for all the waves in the 
superposition (1) an'! allowance for phonon relaxation 

2) For details see Sec. 3 below. 

3)The same considerations pertain also to another relaxation mech­
anism of dislocation dragging, the so-called "thermoelastic losses" 
[9,10]. 
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is essential. It is therefore relevant to consider from a 
unified point of view the damping of the entire packet of 
plane waves (1) with allowance for the phonon-phonon 
interaction. The present paper is devoted to the solu­
tion of this problem. 

2. FORMULATION OF PROBLEM 

We consider a straight-line dislocation with Burgers 
vector b, moving uniformly in a crystal with velocity v. 
We assume that velocity v is high enough to assume 
above-the-barrier dislocation motion, but still lower 
than the velocity of sound, so that "relativistic" effects 
can be neglected. 

The behavior of the phonon subsystem of the crystal 
in the field of the moving dislocation can be described 
by the Hamiltonian 

H=Ho+HA+V(t) ... ~+V(t), (2) 
where Ho and H A are respectively the harmonic and 
anharmonic terms of the phonon Hamiltonian dfJ, and V(t) 
is the Hamiltonian of the interaction of the phonons with 
the dislocation. In the continual approximation, V(t) 
takes the form 

V(t)= S (::)3I:r'~'£aS~eXP(iQ,t). 
a~ 

(3) 

The Greek indices a and (3 (as well as the Greek letters 
y, 0, p, which will be used later on) denote phonon 
states specified by the aggregate of the wave vector k 
and the polarization A: a = (kl, Al), (3 = (k2, A2), ~a = aa 
+ a~_, (i = (-kl) Al), a~ and aa are the phonon creation 
and annihilation operators; 

r.,' = Airei;', A'~ ~ '/.A(oo.oo,)V, / Il, (4) 

A is a certain mean value of the third-order moduli, 
IJ. is the shear modulus, and wa is the phonon frequency. 
Repeated Latin indices imply summation. To simplify 
the intermediate steps, we shall assume the crystal vol­
ume to be equal to unity and use a system of units in 
which Planck's constant is n = 1. 

If we denote by 6p(t) the deviation of the density ma­
trix of the system from the equilibrium value 

po = Z-I e- ",IT 

(Z = Sp e-~/T, T is the temperature in energy units), 
then the average energy dissipation per unit time can be 
easily shown to be 

{ 8V(t) } 
D=~Sp ~p(t)at . 

We Substitute in (5) the matrix <:.p(t) calculated in the 
approximation linear in the perturbation[ 14J: 

(5) 

1 t 

Ap (t) = T ~ e"f(t'-tJ. IV (t'), Pol e-i:lf(t'-t)dt', (6) 

where the square brackets denote, as usual, the commu­
tator of the operators contained in them. This leads to 
the following expreSSion for the dissipation: 

D=-i S (::)3 Q,GR(q,Q,). (7) 

Here GR(q, wq) is the Fourier transform of the retar­
ded two-particle Green's function 

"" 
GR (q,oo) = ~ dxeiwX {_ W(x) ~ ra~qrysq 

-00 a.{3"r& 
(8) 

X sp (Po [ei:lfXSaS~e-l:lfx, Sy+ss+])}. 

Neglecting in (7) terms of order (V/C)4 and higher4 ) in 
comparison with the first non-vanishing term, which is 
of order (V/C)2, we obtain an expression for the viscous 
component of the dissipation 

D=-i S~Q,2 8GR (q,oo) I . 
(2n)3 Boo .~o (9) 

As is well known[l5J, the function GR(q, w) coincides 
with the Fourier transform of the corresponding causal 
Green's function 

liT 

G (q, ioon ) = 4- ~ dx eiwnx {- ~ r~~rqy& (10) 
-liT a!h'S, 

X Sp (PoT xei.1tX~.s"e-i.1fXSy +~3 +)} 

(T x is the ordering operatorC 15J) on the discrete set of 
points w = iWn = 21TinT (n = 1, 2, ... ). Thus, the problem 
reduces to a calculation of the causal Green's function 
(10) and to its analytic continuation with respect to fre­
quency into the upper half-plane: iW n - W + i1/. This 
method is convenient in that it makes it possible to use 
a diagram technique. 

3. CALCULATION OF THE GREEN'S FUNCTION 
oR(q, nq) 

In the analysis of the function cR we confine our­
selves to allowance, in the Hamiltonian HA' of the first 
anharmonic term corresponding to the three-phonon 
processes: 

(11) 
aOY 

The diagram expansion of the Green's function (10) in 
powers of the anharmonicity is then given by 

C(~lilUn)=O+W+C>-<:>+'" (12) 

Each line corresponds here to a complete single-parti­
cle Green's function G(3(iwn), i.e., the graphic summa­
tion has already been carried out and only the irreduci­
ble diagrams are left. The circles at the beginning and 
end of each diagram denote the incomplete vertex 

(12a) 

In diagram language, the "phonon wind" corresponds 
to inclusion of only the first diagram in the expanSion 
(12). This diagram is calculated in the harmonic ap­
proximation, a procedure that is valid, as already men­
tioned, only in the region q ~ cllv. Mason's "phonon 
viscosity," to the contrary, is obtained by summing all 
the diagrams of (12) under the assumption that q « v/lc, 
followed by extrapolation of the results to the region 
q ~ kD· 

We shall calculate the Green's function in two limit­
ing cases, q ~ e and q «rl. The fact that we do not 
know the function cR in the region q ~ r 1 is immaterial, 
since it will be shown that in the region rl < q < kD the 
integral (7) is determined by the upper limit, and in the 
interval 0 < q < rl the value of the integral is limited by 
the behavior of the function cR in the vicinity of the 
point qo ~ vllc' 

4)The expansion of D in the parameter vic contains only even powers, 
since the energy dissipation in this problem cannot depend on the direc· 
tion of the dislocation motion. 
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When q »r\ the diagrams in expansion (11) con­
tain no singularities, so that in this region the Green's 
function can be obtained in the usual relaxation- time ap­
proximation. In the T-approximation, the function aR 
coincides formally with the harmonic function G~, 
provided that we replace in the latter the infinitesimally 
small damping by the finite quantity i/T : 

G"( g) = \"1 If 'I'{ 2(00. - Ol~) (n~ - n.) . 
q, , ~.. (Ola-Ol.)'-(g,+iiT)' (13) 

.~ 

+2(0l.+0l.)(na+n~+1) }. 
(00. + Ol~)' - (g, + iiT)' 

In the region of small q (q ~ r 1), the ladder dia­
grams in the expansion (12) contain divergences[18J , 
and this leads to the need for summing such diagrams 
in all orders of perturbation theory. The result of the 
summation can be represented schematically in the 
form 

(14) 

where 

.=O+(I)+(IJ>+ "';: "'tt(iwn), (14a) 

.. =.0 + c(]) + <])+ ... ;: Ny (£"'::} , 

>= ~r;;:[l,., V=(q,A). . ~ 
Th.e graphic formula (14) corresponds to the analytic 
expression 

G(q, iOln) = Mq(iOln) + ~M,(iOln)a,(iOln)M. (iOln). (15) , 
It is convenient to express Mq and Mv in terms of the 
same unknown function F~J3(W, w') 

Mq (iOl,,) = T ~~ f.~qF.~q (iOln ·, iOln - iOln ·) , (16) 
12[3 n' 

Jll, (iOln) = T ~~ fa[l,F.~q (iOln·, iOOn - iOln')' 

a.[3 n' 

which is determined by the Bethe-Salpeter integral 
equation [16J : 

tUJn,'" tUJn,d, ilMn"r tUJn,'" 

~~(i"'n"i"'n-i"'n'}=.£ = C + tliA/nea; (17) 

liIJn-n'! llMn-n'! IlMn-n"i iUJn_n,! 

An analysiS of (17) can be carried out in analogy with 
the corresponding investigation performed by a number 
of authors[lS,16J. 

Following an analytic continuation of F~J3 with 
respect to frequency and separation of the Singular 
termsS) in (17), the substitution 

F.,'(Ol' + ifj., (J) - 00' + ifj,) 
= 4n6, .• ,+.,6.,.,1,'[6(00' -00,) + 1\(00' + 00,) 1 (18) 

(OA1 A2 is the Kronecker symbol) leads to an inhomo­
geneous kinetic equation for f~: 

5)The function F~(w, w') also has a non-singular component, al­
alowance for which would lead in the final result to small corrections 
of the order of (kDZr2 . 

i(qv, - Ol)n,(n, + 1)/,'(00) = fwqn~(n. + 1) + J(f.'(Ol)). (19) 

Here V{3 = awiak, J3 = (k, A), J3' = (q - k, A), J(1(W)) is 
the collision integral in the usual form: 

J (f~q (00)) = 2n.E {i ray~ 12 n. (ny + 1) (n~ + 1) (20) 
.y 

x (f.q -'- /yq - /~q) t'J (00. - Oly - Ol~) . 
+ '/21 ra:;~ 12 n.ny (n~ + 1) (f.q + /yq - hq) 1\ (00. + roy - Ol~)). 

Following the analytic continuation iWn - W + iT) we can 
express Mq and Mv in terms of the function 1(W): 

4iOl \"1 ' 
M,(00 + ifj)=~T ~n,(n, + 1)/,'(0l)fw, (21) 

~ 

M,(00 + ifj) = 4~Ctl ~n~(n~+ 1)/~q(Ctl)'f[l[l'" 
~ 

The solution of (19) for temperature low enough that 
Umklapp processes can be neglected, according to[8,16J , 
leads to fC}{w) ~ w, which corresponds, with allowance 

for (21) agd (15) and after substitution in (9), to a zero 
contribution to the viscous dissipationS). At not too low 
temperatures, when the Umklapp processes are not 
small, Eq. (19) has the solution[ 8J , 

,E f.!; Ol.na (n. + 1) (22) . 
/.'(Ol)=~-------

T'C -ioo + X'jq,qj 

Here C = T-2E J3 W~ nJ3 (nJ3 + 1) is the specific heat of the 
crystal and Xij is the temperature-conductivity tensor . 
Without going beyond the framework of the accuracy with 
which the expression for aR(q, nq) is written at q »r1 , 

we assume henceforth that Xij = XOij' where X = cl. It is 
easy to verify that the second term m (15) makes a con­
tribution of the order of (v/c)4 to the energy dissipation, 
and this term will therefore henceforth be omitted. 
Thus, in the region q ~ r 1, the singular component of 
the Green's function aR(q, nq) is given by 

1 I
, 

1:f~:'Ol,n~(n, + 1) (23) 

G"( g)_ 4ig, _______ _ 
q, ,- T'C -ig, + Xq' 

We note that the ultrasound absorption problem re­
duces[8J to an analysis of the formula of the type (23). 
The expressions for the thermoelastic damping and for 
the "phonon viscosity" are obtained as the first terms 
of the expansion of this formula in the parameter oX q21wq 
(Wq = cq is the frequency of the ultrasound). It is easy 
to verify here that the condition that the expansion 
parameter be small (the adiabaticity condition) coin­
cides with the criterion for the validity of formula (23) 
itself (ql ~ 1). The situation is different with the 
analysis of the wave damping from the dislocation 
packet (1). In this case, the region in which such an 
expansion is valid is much narrower (ql ~ vic), and 
the concepts of "phonon viscosity" and thermoelastic 
losses become meaningless when q :2: v/lc. 

4. ENERGY DISSIPATION AND DISLOCATION 
DAMPING CONSTANT 

Expressions (13) and (23) for the function CR(q, nq) 
together with formulas (7) and (9) solve in principle our 

6)More accurately, a contribution of order (kDZr2 (see footnote 5). 
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problem of phonon dragging of dislocations 7). It is easy 
to verify that the main contribution to the integrals (7) 
and (9) are made by the regions q »r1 and q «1-1 • To 
calculate the dissipation it is therefore sufficient to 
know the asymptotic expressions obtained above for oR 
at large and small q. Neglecting in (13) the second 
term, which makes a small contribution to the dissipa­
tion, we obtain 

(24) 

I.E r~~'(i),n~(n~ + i) I ' 
+ _4_ S dq Q' __ J _--::,--_..,..-__ 

T'G _, (21t)" -iQ. +Xq' 
0<' 

A more convenient measure of the effective disloca­
tion dragging than the dissipation D is the damping con­
stant B, defined as the coefficient of proportionality 
between the velocity v and the force 'F (per unit disloca­
tion length) needed to maintain this velocity: 

F=Bv. (25) 

The connection between the energy dissipation per unit 
time and the damping constant is obvious: 

D=Bv'L, (26) 

where L is the dislocation length. The value of B can 
be estimated from formulas (26) and (24) in order of 
magnitude, if it is recognized that 

, 
" 

2 2 6(qn) (q ) 
E,j' "" nb L--<p<J - . 

q2 q 

Here n is a unit vector in the dislocation direction and 
<Pij is a dimensionless function of the directions and is 

of the order of unity, with <PZZ = 0 for a screw disloca­
tion. 

Changing over in (24) in the usual manner from sum­
mation to integration, we can easily obtain in the Debye 
approximation the following expression for the damping 
constant: 

where g, Ci, and yare numerical coefficients of the 
order of unity (for a screw dislocation, in the isotropic 
approximation assumed by us, we have y = 0, and for 
an edge dislocation y differs from zero only at not too 
low temperatures, when the Umklapp processes are not 
small), ® is the Debye temperature, 

'<' t'e'dt 
f,(x)=x' f (e'-i)" 

5. DISCUSSION 

f 2 (X)=X:SlZ t"e'dt . 
o (e'-i)' (28) 

In formula (27), the first term coincides with the 
estimate of the "phonon wind," obtained earlier in the 
essential assumption of high dislocation velocities 

7)Expression (23) cannot be substituted in (9), for this leads to a 
divergence at small q. The reason is that the contribution made by small 
q to the dislocation dragging force is not linear but quasilinear in the 
velocity v, the proportionality coefficient being logarithmically depen­
dent on v (see below). 

v »c/knl (see paper[12] by one of the authors, where 
an explicit expression for the coefficient glAIIl12 in 
terms of the Murnaghan moduli can be found). The 
second term in this formula is an estimate of the role 
of the phonon relaxation. We note that the relaxation 
component B is proportional to T-1 and not to T as in 
Mason'S incorrect formula. At not too high tempera­
tures, this component is much less than the first term, 
since kd »1 in most crystals even at a temperature 
on the order of the Debye temperature, and when the 
temperature decreases the mean free path increases 
exponentially (at low temperatures fl and f2 depend on T 
in power-law fashion: fl ~ T5 and f2 ~ T4). With in­
creasing temperature, the mean free path decreases 
and the phonon-phonon interaction becomes manifest 
more and more in dislocation dragging. At sufficiently 
high temperatures the relaxation component may be­
come decisive in the effect. At high temperatures, how­
ever, formula (27) is less reliable, since the entire 
calculation was performed assuming the dislocation 
perturbation of the phonon energy to be small, which is 
true strictly speaking only so long as the average 
thermal wavelength of the phonon is much larger than 
the dimension of the dislocation nucleus. 

Thus, the main contribution to the dynamic dragging 
of dislocations is made by phonon scattering by the 
short-wave part of the packet (1): q1 > 1, i.e., the 
greater part of the energy dissipation occurs in the im­
mediate vicinity of the dislocation, within a radius 
R $ 1. Only at high temperatures does the region of the 
"phonon wind" contract enough to bring to the forefront 
the relaxation processes which, however, do not reduce 
to "phonon viscosity." The notion that phonon relaxa­
tion plays an important: role in dynamic dislocation 
dragging, which is based on erroneous calculations in a 
number of papers[5,8] , is an exaggeration, at least for 
temperatures below and of the order of the Debye tem­
perature. 

The developed approach can be easily compared with 
the phenomenological theory of Kosevich and Natsik[17], 
in which dislocation dragging is connected with the dis­
persion of the elastic moduli, if the coefficients of 
S2qE~E in (7) are interpreted as the imaginary parts of 

IJ 
the dynamic elastic moduli cijk1(q, S2q), calculated with 

allowance for the temporal and spatial dispersions. 
Deriving phenomenological formulas for dislocating 
dragging, Kosevich and Natsik investigated them under 
the assumption that there is no spatial dispersion of 
Cijk1. The estimates presented above show, however, 
that it is not sufficient to take into account only the tem­
poral disperSion of the elastic moduli in the analysis of 
the phonon dislocation draggings. It is seen from (23) 
that the spatial dispersion is negligible only in the 
longest-wavelength part of the partial waves of the 
packet (1), where q1 «vic; on the other hand, as shown 
above, the main contribution to the effect is made not 
by the long waves but by the short ones corresponding 
to the asymptotic forms of the elastic moduli at large 
values of q. 

The authors thank I. M. Lifshitz, M. I. Kaganov, and 
v. L. Indenbom for useful diSCUSSions, and S. A. Pikin 
for a number of valuable remarks. 



982 V. I. AL'SHITZ and A. G. MAL'SHUKOV 

IJ. Lothe, J. Appl. Phys. 33, 2116, 1962. 
2 V. L. Indenbom and A. N. Orlov, in: Dinamika 

dislokatsil (Dislocation Dynamics), FTINT AN UkrSSR, 
Khar'kov, 1968, p. 5. 

3 V. Ya. Kravchenko, Fiz. Tverd. Tela 8, 927 (1966) 
[Sov. Phys.-Solid State 8,740 (1966)J. 

4 M. 1. Kaganov and V. D. Natsik, ZhETF Pis. Red. 
11, 550 (1970) [JETP Lett. 11,379 (1970)J. 

5W. P. Mason, J. Acoust. Soc. Amer. 32, 456, 1960. 
6W. P. Mason, J. Appi. Phys. 35, 2779, 1964. 
7 A. Amihezer, J. Phys. (USSR) 1,277 (1939). 
8 B. Ya. Balagurov and V. G. Yaks, Zh. Eksp. Teor. 

Fiz. 57, 1646 (1971) [Sov. Phys.-JETP 30,889 (1972)J. 
9J. D. Eshelby, Proc. Roy. Soc. Lond. A197, 396, 

1957. 
10 J. H. Weiner, J. Appi. Phys. 29, 1305, 1958. 
llV. 1. Al'shitz, Fiz. Tverd. Tela 11,2405 (1969) [Sov. 

Phys.-Solid State 11, 1947 (1970)J. 

12 G. Leibfried, Zs. Phys. 127, 344, 1950. 
13 P. P. Grliner, In "Fundamental Aspects of Disloca­

tion Theory", J. A. Simmons et aI., Edg. (U. S. Nat. 
Bur. Stand., Spec. PubI., 317,1970, p. 363). 

14 D. N. Zubarev, Neravnovesnaya statisticheskaya 
termodinamika (Nonequilibrium Statistical Thermo­
dynamics), Nauka, 1971. 

15 A. A. Abrikosov, L. P. Gor'kov, and 1. E. 
Dzyaloshinskir, Metody kvantovoi teorii polya v statis­
ticheskol fizike (Quantum Field Theoretical Methods in 
Statistical Physics), Fizmatgiz, 1962 [Pergamon, 1965J. 

16 L. J. Sham, Phys.Rev.156, 494, 1967. 
17 A. M. Kosevich and V. D. Natsik, Fiz. Tverd. Tela 

8, 1250 (1966) [Sov. Phys.-Solid State 8, 993 (1966)J. 

Translated by J. G. Adashko 
204 


