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It is shown that a periodic superheat instability arises in semiconductors located in 
crossed electric and magnetic fields. Various types of finite amplitude stationary waves 
are found and their stability is investigated. 

1. INTRODUCTION 

In a plasma situated in a strong electric field Eo, an 
instability is created by heating of the electron gas (the 
so called superheat in stability UJ ). In the case of a semi­
conductor plasma, this instability was investigated 
in [2-6J. Without a constant magnetic field, the superheat 
instability is as a rule aperiodic. We shall show that in 
an external magnetic field Ho 1. Eo there is produced a 
drift-wave instability. The physical me chanism of the 
phenomenon consists in the following. In the stationary 
state, the momentum and energy lost by the electrons in 
the collisions is compensated for by the action of the 
constant electric field. As a result, drift motion and a 
definite electron temperature (average energy) ®o(Eo) 
are produced in the sample. Owing to the quasielastic 
character of the scattering, this temperature exceeds the 
equilibrium lattice temperature T. The momentum and 
energy relaxation times Tr and Te depend on the electric 
field. The conductivity a in an isotropic plasma is then 
proportional to T p' and inversely proportional to Tr in a 
magnetoactive plasma. Thus, the character of the depen­
dence of the Joule heat on the electric field is altered in 
a magnetic field. For this reason, the superheat insta­
bility in a magnetic field can be used to develop oscilla­
tors of the Gunn type. 

We consider here different types of stationary waves 
of finite amplitude, ascertain the conditions for their 
onset, and determine the stability criteria. It turns out 
that standard solutions such as solitons and periodic 
waves are unstable in the given-current regime to spatial 
perturbations. By chOOSing the proper external load, 
however, the soliton instability can be stabilized. 

2. FUNDAMENTAL EQUATIONS. LINEAR 
APPROXIMATION 

To describe the superheat instability of quasipotential 
oscillations (curl E R: 0) it is necessary to use the fol­
lowing equations: the possion equation 

eo div E = 4ne(N - No), (2.1) 

the continuity equation 

eoN / at + div j = 0 (2.2) 

and the energy transport equation 
3 a 1 
--NS+divQ-jE=--NS. 
2 at T. 

(2.3) 

Here Eo is the dielectric constant of the lattice, E is the 
electric field, N is the electron density (No is its equili­
brium value, j and Q are the electric current and elec­
tron energy flux, and ® is the electron temperature. 

We choose a coordinate system such that the y axis is 
directed along the constant electric field and the z axis 
parallel to the external magnetic field. In the stationary 
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state, the current has components jOx and jOy' The Hall 
current jOx leads to the onset of a magnetic self-field 

self 411: J' 411: -H =-c- lDrdY""-c-loxL, 

where L is the characteristic dimension of the sample 
along the y axis. When the condition L « cHo/411"j0x is 
satisfied, the magnetic self-field of the current can be 
neglected in comparison with the external field. 

We consider the one-dimensional problem, in which 
all the variables depend only on the coordinate y and the 
time t. The connection between the current and the energy 
flux, on the one hand, with the electric field and electron 
density and temperature, on the other, is then 

(1 [ S aN as] i.=- eE.---+(q -1)- , 
e N ay fJy (2.4) 

(18(5 )[ S aN as] Q.=- --q eE.---+,(q-2)-, 
e' 2 N ay ay (2.5) 

where a '" e 2N/mwHTp' WH '" eHo/mc is the cyclotron 
frequency, 

rei,) ( 8 ) q 

Tr=Tro r('I,-q) T 

is the momentum relaxation time, and Te '" Te O(®/G)I-r 
(see (2.3)) is the energy relaxation time; q and rare 
numbers characterizing the scattering mechanisms [7J • 

These relations were derived in an approximation in 
which the effective electron temperature ® »T. In 
addition, it is assumed that WHTr »1, and the charac­
teristic times in which the variable quantities change 
are long in comparison with the momentum relaxation 
time. 

Linearizing the system (2.1-2.5) and changing over 
to the Fourier representation (all the variable quantities 
are proportional to expi (ky - wt)), we obtain the depen­
dence of the frequency w on the wave vector k. The dis­
persion equation takes the form 

00' + to>Q, - 9,' = 0, (2.6) 
where 

411:(1 2 (1E0'2 , (. (1k'80 ) 
Q,=~+-(r+q)-. -+-(5-3q+q) ,kvo+-- , (2.7) 

eo 3 NoSo 3 e'No 

411:(1 [ 2 (1Eo' 2 ( 5 ) (1k'So ] Q,'=~- -(r-q)--+ikvo+- --q --
eo 3 No8, 3 2 e'N, 

2 [ (1Eo' (1k'S,] 2 ( 7 ) --ikv, (r+q)--+(5-2q)-- +-k'vo' --2q-r 
3 N,S, e'N, 3 2 

_2. (~_ ) (1'k'So' 
3 2 q e'No' , 

Vo = j,y I eN,. 

In the case of short Maxwellian relaxation times 
411:(1 2 uEo' 
-~-(r+q)--

e, 3 N,e, 
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(2.8) 

(2.9) 
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the long-wave (411'0/1:0 »kvo) perturbations of the tem­
perature and of the electric field are unstable if r - q 
<0: 

2 aE.' 2 (5 ) ak'8. w,""kv,--i(r-q)----i --q -,-. 
3 N.S, 3 2 eN, 

(2.10) 

(2.11) 

In the opposite limiting case, the solution of (2.6) is 
2 aE' 

w, "" --i(r+q)-'-. 
3 N.8, 

(2.12) 

4na r-q [ ( q')] w,""kv,-i,--- 1+k'r.' 1+-- . 
8, r+q r-q (2.13) 

where rd - (Eo®0/41Te2No)112 is the electron Debye 
screening radius. Thus, a periodic drift-wave instability 
can develop in crossed fields!). 

Even from the dispersion relations (2.11) and (2.13) 
themselves it is apparently possible to predict, in most 
general outlines, the character of the stationary motions 
that are established as a result of instability develop­
ment. In fact, Owing to nonlinear effect, generation of 
higher harmonics sets in as a result of nonlinear effects, 
and these harmonics cause the wave front to become 
steeper. As a result, the role of the spatial gradients 
increases, and the process of growth of the oscillation 
amplitudes stops. In this case, stationary periodic os­
cillations are apparently produced in the system. 

At the same time, for sufficiently long-wave perturba­
tion, the diffUSion effects (the terms proportional to k2 in 
(2.11) and (2.13)) do not play an important role. The 
amplitude can stop grOwing only when other energy and 
momentum scattering mechanisms are turned on. Obvi­
ously, a stationary solution of the shock-wave type 
can arise in this case. We can thus expect some of the 
indicated types of stationary wave motion to be ultimately 
established as t - "". Assuming that such motions exist, 
we obtain them by solving the initial system of equations. 

3. NONLINEAR STATIONARY WAVES IN THE 
QUASINEUTRALITY APPROXIMATION 

We first investigate the case of short Maxwellian­
relaxation times. The dispersion equation (2.11) can then 
be obtained from the equations div j = 0, curl E s:::: 0, and 
the linearized energy transport equation in which we put 
N = No, i.e., we assume the quasineutrality condition to 
be satisfied. Integrating the continuity equation, we ob­
tain the dependence of the electric field on the tempera­
ture and on the total current jo = O'Ey(Y) + (O'/e)(q - 1) 
x a®/ay. The balance equation after changing over to 
dimenSionless quantities is 

i,' i'(W) 
W + a[ (2 - q) W] (,_1'/('_" (u - u,) WI + --- (1 ---) 

II i'(W,,) i,' 
x[(2-q)W]'/u-,,=o. (3.1) 

Here 

W--- -_ 1 (8 )'-' 
2-q T • 

y - st a,T ( 5 ) 'I. 
S=-l-' 1= ei(W,,) 2- q , 

( 8 )-' a=a'T • 
3 a,NT S'teo 

a= 2 't'e,,,;'(W")' u=-I-' 

u, = v''t'e/ I. i(W) = [(2 - q) JfT,-,l!'('-q'(a,NT l't'eo)'I,. 

Relation (3.1) is expressed in a coordinate system mov­
ing together with the wave, the phase velOcity of which is 
s. The current j(W) determines the amount of heat 
j2(W)/0' transferred by the electrons to the lattice as a 
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FIG. I. 

result of the collisions. It can be shown [7] that when the 
various energy and momentum scattering mechanisms 
are taken into account, the j(W) plot has the shape of the 
letter N (Fig. 1)21. At a fixed external current, the values 
of WOI, Woo, and Was for a stationary and homogeneous 
distribution of the electron temperature are determined 
from the condition j(W) = jo. The possible forms of the 
stationary temperature waves can be established by in­
vestigating Eq. (3.1) in the phase space W~, W[B]. We 
note that (3.1) is Similar to the equation for the electric 
field in the theory of the Gunn effect. 

The pOints WOI, Woo, and Was on the phase plane are 
singular points of Eq. (3.1)31. The behavior of the sys­
tem near the Singular pOints is determined by the roots 
of the characteristic equation (2.11). If we make the 
change of variables s = w/k and k = -iA/l, and change 
over to dimensionless quantities, then (2.11) takes the 
form 

2 o' 
A'+a[(2-q)W,](q_Il!('-q,(u-u,»).--:- o~ I [(2-q)W.]q/('-q) =0. 

, I. w, (3.2) 

where Wo is one of the Singular points. Solving this 
equation, we obtain 

, 
A" = --=-a\'u - u,) [(2 - q) W,](q-t)f(2-q, 

, 2 

1 2 o· I "}'/' ±{- a'(u-u,)'f(2-q) W,l,(q~I)/(,-q, + --:-_2- [(2-q) W,l"('-Cq, 
", I, oW w, 

(3.3) 
We see therefore that the points WOl and Was at which 

aj/aWlwo > 0 are saddle pOints. If llj/aWIWoo < 0, then 

the type of the Singular point depends on the Sign of the 
discriminant A: 

center 
stable focus 
unstable focus 
stable node 
un.stable node 

If aj/aWlw = 0, corresponding in Fig. 1 to the external 
o 

currents jc1 and jc2' then only two singular points exist, 
one of which is a saddle pOint and the other a saddle­
node boundary curve which is stable at u > Uo and un­
stable at u < uo. 

The expreSSion (3.1) is analogous to the equation of 
motion of a particle in a field with a potential 

" W "(W') 
V=-.,_I'-(2- q),f(2-q, x SdW'W,q/(,-q,( 1 __ 1 -, ,-). (3.4) 

1 (W,,) I, 

At u = Uo there is no friction, periodic oscillations or 
domains set in, and the total energy of the system is 
conserved 

1 dW' 
J'6"=V+2"(df) =const. (3.5) 

The possible trajectories on the phase plane are shown 
in Fig. 2. The reciprocal period of the oscillation is 
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W, dW 
s= S . 

w, l'2(JI$, - V) (3.6) 

If jo > jOc (j Oc is the critical value of the field. at 
which V <:No) = V <:N 03)), a "hot" domain appears (the 
separatrix r in Fig. 2a), and a "cold" domain at jo < jOc 
(Fig.2b); r 1 are the phase trajectories of the periOdic 
waves. For energy levels lying near the bottom of the 
potential well V, the oscillations are almost harmonic, 
and the connection between the period of the oscillations 
and the amplitude can be obtained analytically by the 
Bogolyubov method r10]. 

If u I- uo, the separatrix (see Figs. 3 and 4) joining the 
saddle with the node (focus) corresponds to a shock wave 
(shock wave with oscillations). We note that shock waves 
can be produced also at u = Uo if jo = jOc' and correspond 
to separatrices that join saddles [5,9] • 

1; b 

FIG. 2 

FIG. 3 

_ ~ t:-----wn ~WgI 
; --------~-----f 

U<'U, 

FIG. 4 

4. TEST FOR STASI LITY 

In this section we investigate the stationary solutions 
obtained above for stability to space-time perturbations. 
We use a quasiclassical methodI11]. We consider the 
case of a fixed external current. Let 

W=w,(~)+W,(s,"t"), (4.1) 

where W o( ~) is the stationary solution and W 1 (~, T) is a 
small perturbation (T = t/TeO)' The equation for W1(~, T) 
is 
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(:~, + D, m :6 + D,m ) W,(s, T) = P(s) ow~; T) , 

P(s) =u[(2-q)W'(S)]Cq-ll/C'-OI, D,m = (u-u,)P(~), 

D,(s) = u (q - 1)(u - uo) [(2 - q) w, (6) I u,-'W-.lW'1 (4.2) 

+q[1- j'(~:~m ] [(2-q)W,(s) l,co-il/c'-.l 

-2 j(W~~6» oj I [(2-q)W,(6) 1,/(,-,1. 
I. oW W,(l) . 

We seek the time and coordinate dependence in the form 
I 

W,(S,T)- exp [yt+ S x,(s')dS']. (4.3) 

where 
x, m = -'I,D, ± l"I,D,' + r - D" r = yP(s). (4.4) 

Equation (4.2) describes the motion of a particle in a 
potential well, the dependence of which on the coordinate 
~ is determined by the form of the stationary solution. 
The function W1(~' T) should be bounded as ~ - ±oo. If 
such a solution can be constructed at r > 0, then the 
corresponding stationary solution is unstable, and if 
there are no solutions banded in ~ at r < 0, then the 
stationary solution is stable in time. 

Let us assess the possibility of the existence of finite 
solutions for (4.2). By substituting 

'l'= W,(s,T)exp [i-JD,(6')dS'] (4.5) 

we reduce (4.2) to the form 

~'l' = -f'l', (4.6) 

where 

We see therefore that negative eigenvalues of the opera­
tor correspond to positive values of r. The form of the 
potential V(O near the Singular points is determined by 
the Sign and magnitude of the last term in D2 (see (4.2)). 

Stationary shock waves that transform the system 
from the state W02,1 into W01 ,2 or from W02,s into W03 ,2 
are unstable r 11]. Indeed, let the system go over from the 
state W02 to W01 (u < uo); we then have D2 = D2<:N02) > 0 
in the region - 00 < ~ < 0 and Ds = D2 <:N 01) > 0 for 
00 > ~ > O. Thus, when r > 0 there exist wave numbers 
that ensure a finite solution in all of ~ space. 

Let us investigate the stability of the shock waves 
when the phase trajectory is a separatrix passing from 
the saddle W 01 to the saddle W03. The point W02 is a focus. 
A plot of V(O is shown in Fig. 5. In the regions ~ <-~1 
and ~ > ~1 (D2(~1)- %D~(~1) = r)we can construct two 
exponentially-decreasing solutions at ~ = ±oo. Oscillat­
ing solutions exist inSide the region -~ 1 < ~ < ~ 1. The 
number of zeroes of the solution is determined by the 
corresponding eigenvalu! - r. It can be shown that when 
r = 0 the eigenfunction:l6 is proportional to W 0 ~ (~ ) and 
has no zeroes (ground state). Thus, all the eigenvalues 

-r r.,.",...-----r 

FIG. 5 

A. A. Bulgakov et al. 173 



of the operator ilare positive (-r > 0), and conse­
quently this stationary solution is stable. 

In the case of a domain, the function V(~) has two 
minima. The level r = 0 corresponds to an eigenfunction 
having one zero. This means t~t there exists one nega­
tive eigenvalue of the operator~, and the domain is un­
stable. In other words, when the second minimum of 
v( ~) appears, a splitting of the level r = 0 takes place. 

~ For periodic stationary waves (u = uo), the function 
V(~) is periodic and the number of negative levels is 
infinite. A solution of this type is therefore unstable. 

5. STABILIZATION OF INSTABILITY BY AN 
EXTERNAL LOAD 

Let us determine the effect of an external load of re­
sistance R. The total current now depends on the time 

/!J ILl' 
io{-t)= RS - RS S E(s,'()ds, (5.1) 

o 

where /!J is the source emf and S the cross section area 
of the sample. Hence 

ILl' 
(jj,(-r)=- RSS E.(s,'()ds. 

o 
(5.2) 

At the same time, using (2.4) with N = No we can express 
El(~, T) in terms of 8(~, T) and Ojo(r). Then Ojo(T) in 
(5.2) takes the form 

RS LII dS' -. LI' - 1 08 0 1 {jjo('()={-+S-} Sdr{-q -' -ioo-(-)W.} 
. I 0 a(Wo) 0 e oS' oWo a(Wo) , 

(5.3) 
where a(Wo) and joo are the values of the conductivity 
and of the current in the stationary state. We use the 
cyclicity condition to determine 91 on the boundary of 
the sample: ®l(O) = 91(L). Then 

. . RS L~ dS' -, L" , 0 1 , 
(jlo('()=-/oo{-l + J a.(W.)} fds ow.L(w.»)W'(s,'(), (5.4) 

We write down an equation for the determination of 
Wl(~, T): 

0' d (df+D'(S)aT+D,W) W,-fW, 

= (jjo{~P(s) w.1 -';"[(2 - q) Wo]q/(,-q>}. 
elN 100 

(5.5) 

If the system is in a homogeneous state W = W02 and the 
perturbation is also homogeneous, then 

. . [RS ] -. 0 1 
(jlo(T)=-/oo 1+-L a(Wo) a(Wo)-(--) W,(T). (5.6) 

oWo a(Wo) 

From (5.5) we obtain 

= _ P(W.,) {r- + 2q } 
'I' a' q t+RSaIL' (5.7) 

It is easily seen that the instability of homogeneous per­
turbations can be stabilized if the follOwing inequality is 
satisfied: 

L r+q 
R<_--. 

Sa q-r. (5.8) 

This inequality has a simple physical meaning. It means 
that the total conductivity of the circuit L/RS 
+ a(r - q)/(r + q) is positive (the second term is the 
differential conductivity of the sample). 

Let us investigate the effect of the load on the insta­
bility of stationary waves such as solitons or periodic 
oscillations. We note that no other type of stationary 
waves can be realized in a bounded volume, since they 
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do not satisfy the stationarity conditions. 

Equation (5.5) reduces with the aid of the transforma­
tion (4.5) to the form 

LI' 

iGO/+P(~)yO/=«l>(s) J K(no/(6')dS', (5.9) 

where 

LII 

6jo= SK(no/(ndS', 
o 

. [RS LII ds' ] _t 0 [ 1 ] 
K(s) = -/00 -/ + [ a(Wo(6'» oWo a(Wo(s) )' (5.10) 

We expand the functions v( ~) and <1>( ~) in terms of the 
eigenfunctions of the operator ~: 

(5.11) 

We can then determine from (5.9) the coefficients cm in 
terms of bm : 

{jjobm 
em = -. --'-'-.,,---

. ('I'm - y)P(s) 
(5.12) 

where YmP(~) are the eigenvalues of the operator iI. 
Substituting the values of the function +( ~) in the expres­
sions for 6jo (5.10), we obtain an equation for bm : 

1: ~SL/~S' K(n"'m (s') 
'I'm -'I' " P(S') 1. 

(5.13) 

Let YM = O. It can be directly verified that I/iM(~) 
=WO~(~)' For one soliton, WO~ vanishes over the length 
of the sample once, Le., M = 1, and the lowest level Yo 
corresponds to the eigenfunction l/io( ~). We write down 
the sum (5.13): 

!2'J/l d" K(6')",.(6') + . (514) 
y. 0 S P(f) .. • 

The individual terms in the sum are small, since they 
are proportional to (Ymf2. The functions P(O and K(~) 
are monotonic, and we can therefore put apprOximately 

SL'~t' K(S')"" (f) ,., < K(s') ) 'Sll dew . (t')'" O. (5 15) 
o ~ P(~') P(S') 0 " 01 " ". 

Then 
LII K(s')¢o(n 

Yo - '1'''' bo f ds',-,,=pc:,(s:':-'):-'=-'-

and the stability criterion takes the form 

< b LSlld". K(r)",o(S') 
yo 0 0 \0 P(S') . 

(5.16) 

(5.17) 

Stationary waves in the form of two or more domains 
are unstable regardless of the external load. (We note 
that this stationary state sets in for phase trajectories 
that pass near the saddle points.) Indeed, in analogy 
with[S], we can verify that among the perturbations of 
the stationary state there are always some that do not 
change the total voltage on the sample, and therefore are 
not stabilized by the external load. 

In conclusion, let us dwell briefly on the opposite 
limiting case, when the Maxwellian relaxation time is 
large and an inequality opposite to (2.9) is satisfied. 
Taking into account the weak space-time dependence of 
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the variables in the transport equation (2.3), we can 
transform the system (2.1)-(2.3) into 

aE aE a'E· I 
~+V(E)--D(E)-=4ne[G(t) -NoV(E)lBo-. (5.18) 
at ay {}y' 

where 
V(E)=_o_ ~ 

. (1 E ('; (1 E ' ) -,/(,+,) 

eN. NoT 

D(E)= q'-q+r VeE) E('-'-')/('+') 
r+ q e 

G(t) is the integration constant of the continuity equation. 

Expression (5.18) is similar to Eq. (5) of[9J. By in­
vestigating this expression on the phase plane, we can 
obtain all the considered types of stationary waves of the 
electric field and electron density and electron tempera­
ture. 

l)The conditions r + q> 0 and r - q < 0 are realized, for example, in 
momentum scattering by charged particles (q = 3/2) and energy scat­
tering by piezoacoustic phonons (r = 1/2). These scattering mechanisms 
can appear in InSb at helium temperatues 1'1. 

2)We note that in the absence of an external magnetic field the jeW) plot 
has the shape of the letter S. 

3)The singular points correspond to equilibrium states of the dynamic 
system on the phase plane, i.e., to points at which W~ = W~~ = o. 
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