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The magnetic susceptibility X d of a metallic plate of thickness L is studied in a magnetic 
field H. The smooth part of the H dependence of X d is considered. It is shown that the 
difference between X d and the susceptibility of the massive sample X V is maximal in 
the range of fields H ~ Hc (Hc is the field strength for which the magnetic length lH 
= v'lic/eH = L. A formula is derived for the surface magnetic susceptibility of electrons 
with an arbitrary dispersion law, for strong fields H » Hc. In weak fields, H « Hc 'lI:F /L 
('lI:F is the electron Fermi wavelength), quantum size oscillations of the susceptibility 
are studied as a function of L. 

1. INTRODUCTION 

In magnetic fields H, when the Larmor radius of the 
electron trajectory is larger than or of the order of the 
characteristic size of the sample, it is necessary, in 
the calculation of the magnetic susceptibility, to take 
the presence of the boundary surface into account. In 
the present work, the effect of the sample boundary on 
the smooth part of the dependence of the magnetic sus­
ceptibility X on H is investigated. A metal plate of 
thickness L is placed a parallel magnetic field. The 
susceptibility X can be analyzed sufficiently completely 
in the range of "weak" 

(1) 

and "strong" 

(2) 

magnetic fields. Here 1t-F = n J 2m£" is the Fermi wave­
length of the electron, Hc = nc/eL2 is the field strength 
for which the characteristic magnetic length lH 
= Jnc/eH, which determines the region of localization 
of the wave function of the electron in the magnetic 
field, is equal to the thickness of the plate L, and e is 
the absolute value of the electron charge. 

In weak fields (1), this problem was first considered 
by PapapetrouYl The boundary of the metal was ap­
proximated by an infinitely high potential wall. Accord­
ing to the results of this work, the diamagnetic suscep­
tibility of the plate X d is identical with the Landau 
diamagnetic susceptibility[21 X.., of a massive sample. 
Later on, the calculations of Papapetrou were refined 
by Friedman[3J (for a very detailed discussion of re­
searches on this problem, see[3J), who found that Xd 
differs from X It by a certain numerical coefficient 
which is independent of the plate thickness. The physi­
cal reason for the appearance of the difference between 
X d and X Jt has not been made clear, the more so that 
in the case of the parabolic approximation of the sur­
face potential [3-5J the susceptibility of the plate X d 
= XII! . In the present work, it is shown that the differ­
ence between Xd and X~ is due to the existence of 
quantum size oscillations of the magnetic susceptibility 
with change in L, which take place at temperatures 
T ~ ~EL, where ~ EL is the separation of the quantum 
size energy levels of the electron. The relative magni­
tude of the oscillations is ~1 at T « t.EL. In the range 
of temperatures T » ~EL the diamagnetic susceptibil­
ity of the plate X d is identical with the Landau diamag­
netic susceptibility, accurate to ~ xF /L. 

In the weak field region (1), the energy spectrum of 
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the electrons, which determines the magnetic suscepti­
bility of the plate, has a relatively simple form and can 
be obtained in the form of an expansion in powers of H. 
In very strong fields H;:: Hc , the energy spectrum of 
the electrons in the plate is very complicated. [6] Along 
with the Landau magnetic levels, there are magnetic 
surface levels, which are due to electrons skipping 
along the surface of the metal (see Fig. la). The experi­
mental discovery (see[7J) of magnetic surface levels has 
stimulated the study of the effect of these levels on the 
thermodynamic and kinetic characteristics of the 
metals. As shown in [8J, the contribution of the magnetic 
surface levels to the magnetization of metals turns out 
to be unimportant. The calculations carried out below 
show that the magnetic susceptibility turns out to be in­
sensiti ve to the presence of the magnetic surface levels. 
Those electrons are important here[9J whose trajector­
ies touch the boundary of the metallic surface (see 
Fig. Ib). In the strong field region (2), these electrons 
determine the characteristic dependence of X on the 
magnetic field. The results obtained in[9J for the mag­
netic susceptibility are generalized in the present work 
to the case of electrons with an arbitrary dispersion 
law. The calculations are carried out in the approxima­
tion of specular reflection of the electrons from the 
surface of the sample. The specularity condition is suf­
ficiently effective, since the principal contribution to the 
considered effect is made by electrons which have a 
sufficiently long wavelength in the direction of motion 
of the electron along the normal to the surface of the 
metal. 

2. WEAK FIELDS 

In sufficiently weak magnetic fields (1), in the calcu­
lation of the energy spectrum En(Px, Pz, H) of the con­
duction electrons in a plate, the magnetic field can be' 
considered as a small perturbation in comparison with 
t.EL' The corresponding analysis of the energy spec­
trum has been carried out in[lJ and in more detail in (3 ) 

As a result, we have for En in the case of a quadratic 
isotropic dispersion law 

px'+P.' n'n'lI' p. LeH 1 (LeH)'[ 1 1 
En(p.,p"H)=~+z;;;jj'- 2m -c-+ 2m -c- 3- 2n'n' 

+(LP.)'(_1 __ 5 )]+O(H'), n=1,2,3,4... (3) 
2nll 3n' n'n' 

(the magnetic fie ld H is directed along the z axis, the 
normal to the plate is along the y axis). The presence 
of electron spin leads to a splitting of the energy levels 
which, in the case of a weak spin-orbit interaction, can 
easily be taken into account: 
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heH 
E .. (p., p" H) = En (p" p" H) + (-1)"--, 

2m.c 
(1= 1,2, 

where ms is a certain spin mass which in the general 
case is different from the effective mass m. 

FIG. 1 

According to the well known formulas of statistical 
physics, the thermodynamic potential 0 is determined 
from the following expression: 

(4) 

Q=-~~ ~SSd d In[l+ x b-Ena(P.,P"H)J (5) 
L(211h)' ~ ~ p, p, e p T ' 

a_I n_1 

where Y is the volume of the plate. By calculating n, 
we can find the corresponding values for the other 
thermodynamic quantities. For the magnetic suscepti­
bility X, we have 

x = - V-IO~ 10H'. 

At sufficiently low temperatures 

TLI ~ll, <: 1 

we get the following relation for the thermodynamic 
potential from (5): 

(6) 

(7) 

Q(H)=Q(O)+ Ve'H' ,1 b {<1>.( LY2~b )-3(!!!:"')' <1>.( L~2~mb)} 
1211'hc' V 2m 11" m. "" 

where 
<1>p(x) = [xl lx, 

9 (,) 1 
<1>. (x) = -=-{ [xl (211' + -) + (1I'X' + 6) ~ --

8 ~ ~~ 
n~t 

[:II:} 1 2 

-lSx' ~ --""::"'[xl (1 +[x)) (1 + 2[x))}, 4...J n' 2X2 
n_1 

[x] is the largest integer in x. 

For x » 1, it follows from (10) that 

9 oS< (1) <1>. (x) = 1---<1>. (x)+O ,. , 
16x x 

where 

osc n'() {} 1) <1>. (x)=T {x '- x +6 

is the oscillating part of the function <I>d (x), {x} 
fractional part of the number x. 

(8) 

(9 ) 

(10) 

(11) 

(12 ) 

is a 

The second component in (8) describes the Landau 
diamagnetism of electrons in the plate, while the third 
term gives the Pauli paramagnetism. Formulas (8)­
(10) are effective in the case L/xF ~ 1, when the condi­
tion (7) is satisfied comparatively easily, for example, 
for semi-metallic films. Under the condition 

L I ll, > 1, T I b <: 1 

we obtain the following expression for the thermody­
namic potential n: 

(13 ) 

Q(H) = Q(O) +Q.(H) +Qp(H), (14) 

where (15) 

Q(H)- Ve'H',1 b [1_9n~_~~~cos(2kL),¥(1IkTL)] 
• - 12n'lic' V 2m 16 L 2,t,.... k' A. bllF' 

11.=1 
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Ve'lf' ( m )',/-b [ n ll •. 
Qp(H)=--~ -- V- 1---

411'lic' m. 2m 2 L 

ll. L~ 1 . (2kL ) ( 1IkT L ) ] +- -Sill -- '¥ --
L k ll. bllF' 

k=1 

(16) 

'¥(x) =xlshx. 

The magnetic susceptibility is then easily found: 
X = _y-1a 2 0/aH 2 = Xd + Xp. In the range of small tem­
peratures (7), we have 

Here 

Xd = X,,<1>d (L/nllF), 

Xp = J(.?o<1>p (LlnllF)' 

is the Landau diamagnetic susceptibility, 

e' (m)". IT 
)(80= 2n'lic'. m, V. 2m 

(17) 
(17' ) 

(18) 

(18') 

is the Pauli para~<lagnetic susceptibility in the case of 
a massive sample; <I>d and <I>F are determined by the 
formulas (9) and (10). 

The function <I>d(x) is positive, has minimal values 
of the order of 0.01-0.1 at the points x = n (n = 1, 2, 
3, ... ), and its derivative <I>d undergoes at these points 
a finite jump: 

t.<1>.'(n) =n' - 6 In'. (19) . 

At the points x = n + ?'2 we have <I>d ~ 1 (see Fig. 2). At 
thicknesses L = 1Tn~F the diamagnetic susceptibility of 
the plate is 1 Xd I « 1 XII! I. With changing L, the suscep­
tibility Xp oscillates with a period 

(20) 

At L/lt"F» 1, the oscillating part of Xd is easily 
separated from the smooth part (see (11, 12 )), and the 
relative value of the oscillations is ~1. 

The paramagnetic susceptibility Xp also oscillates 
with change of L l with period (20)]. The amplitude of 
the oscillations ~lt"F/L. At L = 1Tnlt"F the value of Xp 
experiences a jump 

(21) 

With increase in the temperature, the condition (7) 
ceases to be satisfied and the dependence of the ampli­
tude of the oscillations of X on the temperature becomes 
important. In the general case, the corresponding 
formulas for X follow directly from (6), (14)-(16). For 
not too low temperatures, 

nTLI bll. > 1, (22) 

we then have 

( 9n llF nT L (nT L ). 2L ) 
X1=X", 1-16£- \;llF exp - bAF COS X; , (23 ) 

and, similarly, for the paramagnetic susceptibility, 

Xp = )(80 (1- ~ i + 2~T exp (- ~;~) sin ;~ ) • (24) 

Thus, in the limit of weak magnetic fields (1), the 
diamagnetic susceptibility Xd, for not too thin plates 
(It"F/L « 1) and for temperatures (22), coincide with 
the Landau diamagnetic susceptibility X'" of the mas­
si ve sample with accuracy to within a quantity ~ ~F /L. 
In the region of lower temperatures, an oscillatory de­
pendence of the susceptibility Xd on the thickness L 
develops. In contrast with the comparatively small 
oscillations of the paramagnetic susceptibility Xp, the 
oscillations of Xd are appreciable. 
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FIG. 2 

The considered size oscillations of the magnetic 
susceptibility X are a manifestation of the quantum 
size effect, due to the quantization of the energy of the 
electron in a sufficiently thin plate. For a number of 
metals, the existence of quantum size energy levels of 
the electrons has been demonstrated experimentally. In 
the case of semimetals, this has been done in [10,11]. 

(The possibility of observation of quantum size effects 
was shown in [12] and more detailed information on this 
problem can be found in the review[13].) 

We apply the foregoing analysis of the magnetic 
susceptibility to conduction electrons with a quadratiC 
dispersion law, a procedure valid near the edge of the 
band, for small electron groups, and so on. The essen­
tial characteristics of the considered effects are 
generalized directly to the case of an arbitrary disper­
sion law ~(p). 

In weak magnetic fields (1) most interest attaches to 
the quantum size oscillations of the magnetic susceptL .. 
bility, the observation of which is possible in suffic­
iently thin plates. In correspondence with the general 
theory of oscillatory phenomena, [12] using the formulas 
of size quantization given in[14] in the case of an arbi­
trary dispersion law, we obtain for the period c.. L of 
the oscillations of the susceptibility X: 

/).L = 2nn I d" (25) 

where de is the length of the extremal chord of the 
Fermi surface in the direction of the normal to the film. 
The amplitude of the oscillations for not too low tem­
peratures (22) is proportional to exp (-21T"/c.. EL), 
where c.. EL is the separation of the quantum size energy 
levels. Here, 

(26) 

Vyi is the projection of the velocity of the electron 
v = ag / ap on the normal to the film at the points of 
intersection of the Fermi surface with the extremal 
chord. As in the case of other quantum size effects, [15] 
we can determine, from the measurement of the mag­
netic susceptibility of the films in the weak field limit 
(1), the extremal chord de and the velocity of the elec­
tron at points of intersection of the chord with the 
Fermi surface. 

For bismuth films of thickness L ~ 10-5 cm, the 
condition (1) is equivalent to H « 1030e. At sufficiently 
low temperatures T « c..EL and thickness L'" 21Thn/de , 
where n = 1, 2, 3, ... , the diamagnetic susceptibility of 
the film can be different from the susceptibility of the 
massive sample by a factor of 10-100. 

3. MAGNETIC SURFACE LEVELS 

The contribution of the magnetic surface levels to the 
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thermodynamic quantities has been studied in a number 
of works. As was shown in[4], in the calculation of 
thermodynamiC quantities, it is necessary to take into 
account the deviations of the exact values of the mag­
netic surface levels En from their classical values (a 
more detailed discussion of the literature on this prob­
lem can be found in[8]). As a consequence of the non­
analytic dependence of En on H (see the formulas for 
En cited below), one could in principle have expected a 
similar dependence of the thermodynamic potential n 
on H: 

9o(H) =90(0) +a,H'I'+aJf·I'+ .... , (27) 

which would have led to a strong surface magnetization 
of the metals. It was shown in [8] that al = O. The next 
term in the expansion (27) is calculated in the present 
work; this could turn out to be Significant. For this 
purpose, we must first analyze the energy spectrum of 
the electrons in the plate with the formulas for En ob­
tained in[6,161• 

In the case of a quadratic electron dispersion 
g = p2/2m, the energy spectrum En (Px, Py, H) of the 
conduction electrons in a plate in a parallel magnetic 
field H is determined by the solution of the equation 

(neH / c)',p"("l) + (P'-"l')'I'("l) =0 

with the boundary condition 

'I'(-P.) ='I'(LeHc-'-p.) =0, 

where P = v'2mE - p~. 

(28) 

(29) 

In the quasiclassical approximation, we seek a solu­
tion of the equation in the form 

Here 

where 

1jl(1])=exp{Ii~H J a (1]) d1] }. 

neB ( neH )' 0'(1])= a, +-c- a, + -c- a, + ... , 

t d 
a,=--lnIO',I. 

2 d1] 

Matching the quasiclassical wave functions in the well­
known way, [17f and using the boundary condition (29), we 
get as a result the quantum condition 

S(E,p.,p"H) = 2nlieHc-'(n +'1'), n=0,i,2,3,4, ... , (30) 

where the function S and the parameter yare deter­
mined by the following equations. In the interval 
p < Px < LeHc -1 - P, the electron trajectory is inside 
the plate, S = 1Tp2 and Y = 1'2, so that from (30) we ob~ 
tain 

En= neH(n+...!..)+E 
me 2 2m 

which are the magnetic Landau levels. In the range 
-P < Px < P, Px < LeHc-1 - P, and also for Px > P, 
LeHc -1 - P < Px < LeHc -1 + P, the electron is reflected 
from one of the boundary surfaces of the plate, y = % 
and we have for S, respectively, 

S =P'['/2n - f(-p./ P) 1 (31 ) 

and 

(31' ) 

where __ __ 
. -, i (neH)'[ 5x i 1'i-X'] f(x)=arcsmx+x1'i-x+- -- +-=---- . 

i2 cPO ,(i-X')'I, x1'i-x" x 

(32) 
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In the interval LeHc -1 - P < Px < P, the electron is re­
flected from both boundary surfaces of the plate: 

2 [ (LeH px ) (Px )] S=P / -;P-p -/ -p , v = 1. (33) 

Equations (30)-(33) describe in implicit form the 
energy spectrum En( Px, Pz, H) in the quasiclassical 
approximation n » 1, excluding the values of Px for 
which f - co. From (30) and (31) it is easy to find the 
values of the magnetic surface levels En for n » 1 for 
electrons skipping along the surface of the metal. The 
corresponding values of En, when n ~ 1, are deter­
mined as a result of the approximation of the solution 
of Eq. (28) with boundary conditions (29), if we take the 
linear approximation of the potential as the zeroth ap­
proximation. Taking into account the deviation of the 
parabolic potential in (28) from its linear approxima­
tion, we get for En (from perturbation theory) 

p; + P.' P:" (heH) '1, ,2'1, p;'I, (heH) 'I, 
E" (p" p" H) = ~ + Sn t"m -c- + Sn 15 ----;;:- -c- , (34) 

where -sn are the zeroes of the Airy function 

Ai(-Sn) =0. (35) 

In comparison with the formulas of [IS] , we have 
taken into account higher order terms in the expansion 
in H in (34). For n» 1, 

Sn~[3; (n++)]'" + :8[3; (n+ :)] -'I,. (36) 

In the calculation of the contribution of the magnetic 
surface levels to the thermodynamic quantities, it is 
convenient to write down the thermodynamic potential 
n in the following form: 

Q=-~SSdp dp {F\ (1+ ~-En(p",p"H») 
L(2nli)' 'x ~ n exp T 

n=no 

where En( Px, Pz, H) is determined by Eq. (34) and 
E~uas is found from the quasiclassical quantization 
condition (30) for Y = %. Using perturbation theory for 
the calculation of the first sum in (37) and the Poisson 
summation formula for calculation of the second sum, 
we get the result that the coefficient a2 in the expansion 
(27) is proportional to 

[ ~( [3n I 3 )]'1, 5 [3n I 3 )]-'1') 
a,OO ~ sn'- 2 n+T -24 2" n+"4 

n=O 

+2(~)'1' (~ ~) J('/3) ~_1 cos ( 3nk _~)] 
24 3n S 3' 4 B'I'n £..J k'l, 2 6 ' (38) 

R=1 

where 1:( s, c) is the generalized Riemann zeta function. 
The coefficient of proportionality in (38) is bounded. 
The first sum in (38) is calculated by the method put 
forward in[8]. Substituting the result for this sum in 
(38), we get 

a, =0. (39) 

Thus the contribution of the magnetic surface levels 
to the thermodynamic potential n and, correspondingly, 
to the magnetization and the susceptibility of metals, 
turns out to be insignificant. 

4. SURFACE MAGNETIC SUSCEPTIBILITY 

In the region of strong 1) magnetic fields (2), an ap­
preciable contribution to the magnetic susceptibility is 
made, as shown in [9], by electrons whose trajectories 
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touch the surface of the metal (Fig. Ib). In the case of 
a quadratic isotropic dispersion law, B = p2/2m, we 
have for the magnetic susceptibility of the plate Xd, 
according to[9], 

.,. = X + ~ (-=--)'1' 1/- ~ H-'I. 
Ml !£ L c V 2mn • 

~ = 8~' [2'1': 1 s ( ~ ) + n'I, ( : ) "'r ( ~ ) r ( : ) 

. ~_1_sin(~+~)] =078·10-'. 
~ k'l, 2 12 ' 
.~, 

(40) 

(41) 

In the weak field limit H « Hc , the susceptibility of the 
plate Xd, neglecting quantities ~itF /L, is identical 
with XII (see Sec. 2). With increase in the field, upon 
reaching values of H » Hc , the susceptibility Xd also 
tends to XJI, revealing here the characteristic depend­
ence on H. Thus, one should expect a maximum devia­
tion of the smooth part of the magnetic susceptibility of 
the plate Xd from the Landau diamagnetic susceptibility 
XII! of the massive sample in the range of fields 
H ~ Hc (see Fig. 3). For a plate of thickness L ~ 10-4 

cm, the field is Hc ~ 10 Oe. 

The surface magnetic susceptibility, which is de­
scribed by the formula (40), can be directly generalized 
to the case of conduction electrons with an arbitrary 
dispersion law B( p). In contrast with the case of mag­
netic surface levels, one can use the quasiclassical ap­
proximation for the energy spectrum in this case[6]. 
Summing (5) according to the Poisson formula, we get 
for n: 

v ~ 1 
Q(H)= Q(O)+~ .E T S de SS dp,dpx 

1=1 

. x sin[2n1v-(ic/lieH)S(e,p"px)] 
--~~1~+-e~xp~[~(8--~~)~/=T~]~~ (42) 

where S( E, Pz, px) is the area of the intersection of the 
constant energy surface B(p) = E with the plane Pz 
= const bounded by the straight lines Px and Px + LeH/ c. 

Separating quantities proportional to H3/ 2 from (42) 
and differentiating with respect to H, we obtain the 
following expression for the magnetic susceptibility of 
the plate: 

~ ( e ) 'I, , "I' _'I. 
Xd=XV+- - (1iH)-" r. S K; (E)k; (e,N)de. 

2L " c 
(43) 

; 0 

Here K( E) is the Gaussian curvature of the constant 
energy surface B(p) = E at the j-th limiting point with 
the normal parallel to H (see Fig. 4), kj ( E, N) is the . 
curvature of the normal section perpendicular to N at 
the j -th point (N is perpendicular to the plate), XV is 
the volume part of the susceptibility, which does not 
depend on the magnetic field and the thickness of the 
plate. For a quadratic dispersion law p2/2m = E, we 
have Kj = (2mEfl and kj = (2mEfl/2, so that (43) 
naturally coincides with (40) in our case. 

H 

FIG. 3 
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N 

H 

FIG. 4 

~ 
~ 

The resultant formulas (40) and (43) desc ribe the 
contribution of the metal surface to the Landau diamag­
netism. In contrast with the paramagnetic susceptibility, 
for which the presence of the boundary of the metal 
leads to the appearance of additional components of the 
order It"F/L (see[141), in the case of diamagnetism the 
effect of the boundary turns out to be more important 
and determines the appearance of additional terms of 
the order of 

(44) 

This characteristic dependence of Xd on H allows us 
to separate re !ati ve ly easily the contribution of the 
conduction electrons to the magnetic susceptibility of 
the plate. In the case of massive samples, this is a 
rather complicated problem. 

In conclusion, I express my deep gratitude to 1. M. 
Lifshitz for attention to the work and valued discussions, 
to M. 1. Kaganov and V. G. Peshchanskil for useful dis­
cussions. 

I)The condition /lH/r ~ 1 is assumed to be satisfied, where /l is the Bohr 
magneton. 
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