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The continual integral formalism for describing quantum vortices is illustrated by ap­
plying it to a two-dimensional Bose system. It is shown that a two-dimensional system 
of phonons and vortices is equivalent to relativistic electrodynamics. The phase transi­
tion from the superfluid to the normal state is connected with the dissociation of coupled 
pairs of vortices of opposite sign. A similar approach to three-dimensional Bose sys­
tems leads to the conclusion that here the phase transition to the normal state is ac­
companied by the appearance of long vortex filaments. 

1. In the present paper we propose a method for de­
scribing quantum vortices in Bose systems and discuss 
their effect on the phase transition to the superfluid 
state. The method is described in Secs. 2 and 3 with the 
two-dimensional model for a Bose gas as an example. 
The possibility of superfluidity in this model has been 
validated by different methods in a number of papers [1-4]. 
Qualitative conclusions for the three-dimensional sys­
tems are drawn in Sec. 4, and general conclusions in 
Sec. 5. 

The proposed method is based on the continual inte­
gral. It allows us to study both the static and dynamical 
properties of the system and is convenient, in particu- -
lar, for the computation of the excitation energy spec­
trum. An important distinctive feature of the developed 
procedure is integration first over the fast variables and 
then over the slowly varying fields (the functions l/! and 
~), using a different perturbation-theory scheme at each 
of the two stages. In the integration over the slowly 
varying fields we go over to an integral over the density 
p = Il/! 12 and phase cp, which is a function of l/!, as we 11 
as over the coordinates of the zeroes of the functions 1/! 
and ~ corresponding in the two dimensional case to the 
cores of the quantum vortices. The variables p and cp 
are convenient for describing the phonon excitations. 

Neglecting the dispersion in the phonon spectrum and 
neglecting the phonon-phonon interaction, the two-di­
mentional phonon-vortex system turns out to be equiva­
lent to two-dimensional relativistic electrodynamics. 
Phonons play the role of photons and vortices the role 
of charged particles. 

Vortices in a two dimensional Bose system exist at 
low temperatures in the form of pairs of opposite sign 
coupled by a long-range logarithmic potential. As the 
temperature increases the number of pairs increases, 
while the mean distance between them decreases. The 
phase transition from the superfluid to the normal state 
reduces to a dissociation of the coupled pairs. Above 
the transition we deal with a plasma-type system. The 
characteristic (for a plasma) Debye screening leads to 
the disappearance of the long-range correlations. 

The low-frequency second sound (light in the elec­
tromagnetic analog) cannot propagate in the plasma 
state. The corresponding branch of the energy spectrum 
goes over into the plasma-oscillation branch. The de­
scription of the system in terms of phonons and vortices 
above the transition temperature is suitable as long as 
the radius of the vortex core is not comparable with the 
mean intervortex distance. 
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In the three-dimensional Bose system the analog of 
the coupled pairs is the vortex rings and the analog of 
the isolated vortices are long vortex filaments that 
originate from and terminate on the walls of the vessel. 
The phase transition from the superfluid to the normal 
state is connected with the appearance of long vortex 
filaments. 

2. The method expounded below for describing quan­
tum vortices in the continual-integral formalism is in 
the framework of the scheme worked out previously[5,6J 
for the construction of the low-frequency asymptotic 
form of the Green function and the kinetic equations in 
the microscopic procedure. 

Continual integrals for Bose systems are evaluated 
over the space of the complex functions l/!(x, r) and 
~(x, r) defined in the volume V and periodic in the 
"time" r with the period J3=(kBTr1.1) The Green 
functions are defined as the products of the fields l/! 
and ~ averaged over the indicated space with the weight 
eS, where 

, .~ 

s= Sd,; S dx;p(x,,;) iI,1jl (x,'t)- J H'(,;)d,; (2.1) 
00 

is the action and H '( r) is the Hamiltonian 

H' (-r) = S dx (:m V;p(x,,;) V1jl(x,,;) - A;Hx, ,;)1jl(x, i) ) 
(2.2) 

1 ' 
+ 2' S dxdyU(x - y)iji(x, ';);P(y, 't)¢ (y, ,;).p(x, 't). 

Thus, the Green functions to be determined coincide 
(possibly apart from the sign) with the usual tempera­
ture Green functions[7J. 

We shall use the procedure developed previously in 
[5,6J for computing the Green ±Unctions at low energie~ 
and momenta. The main idea consists in first integrat­
ing over the fast variables and then over the slowly­
varying fields, using different perturbation-theory 
schemes at each of the two stages. The slowly varying 
part 1/!o(x, r) of the field l/!(x, r) is, by our definition, 
the sum of the terms in the Fourier-series expansion 
of l/! 2) 

.p (x,,;) = (P V) -". 1: e-<ch-")a(k, (0) 
k,o 

with momenta k smaller than some ko; the rapidly 
varying part l/!1 is defined as 1/!-1/!o' 

(2.3) 

The integral of eS over the rapidly varying fields 

(2.4) 

Copyright © 1974 American Institute of Physics 341 



can be evaluated as a statistical sum for a system of 
"fast" particles in the slowly varying field 1/10, The 
functional So has the meaning of a "hydrodynamic ac­
tion,,[6]. Knowing it, we can easily find the system's hy­
drodynamic Hamiltonian which determines the low-fre­
quency energy spectrum. 

Mter computing the integral (2.4) we should further 
integrate over the fields 1/10 and qio. Let us go over in 
the integral over 1/10 and qio to the variables P and cp: 

wo = Yp e~, ilio = "Vi> e-~. (2.5) 

These variables are convenient for describing the pho­
non excitations. We shall write down the hydrodynamic 
action So precisely in terms of these variables. For the 
two-dimensional model of a low-density Bose gas the 
expression for So has been computed in [4]. 

In the limit as T- 0 it has the form 

S d't d'x (-.E:..( V'!')' - ~ p" (II,,!,)' + ip,p,nll,,!, 
2m 2 

(2.6) +~ 11.'_ (Vn)' _ n(V'!')' ) 
2 PPoP, Bmpo 2m' 

Here 7T(X, 7) = p(X, 7) - Po, where Po is the density of 
the condensate at T = 0 and PA = P is the total density 
at T = O. The coefficients pn, PApo' and PPoPo are the 
second derivatives (at T = 0) of the pressure p with 
respect to the chemical potential A and the condensate 
density Po (with Ppo = 0). Notice that the coefficient of 
-(Vcp)2/2m in (2.6) has the meaning of a super fluid­
component density Ps [5,6]. In the limit as T-O, Ps 
coincides with the total density p = PA' Bearing this ob­
servation in mind, we shall henceforth replace PA by 
ps-for example, in (2.8). 

The hydrodynamic action (2.6) leads to a two-fluid 
hydrodynamics, which is characteristic of superfluid 
systems. No condensate exists in a two-dimensional 
system at any arbitrarily small, but nonvanishing tem­
perature. This is clear from the asymptotic form of the 
correlation function 

<1/l(x, 't)iIi(y, 't,» - r-", a = m / 2n~p, (2.7) 

for r= I x-yl-oo (see [4]). We can speak of long-range 
correlations in a two-dimensional Bose system at T '" 0 
only in the sense that the correlation functions, e.g. 
(2.7), decrease not exponentially, but according to a 
power law. 

In deriving the expressions (2.6) in l4], we have es­
sentially restricted ourselves to integration over the 
nonvanishing functions 1/10 and qio. We now wish to take 
into account the contribution to the continual integral of 
the functions 1/10 and qi that vanish over some discrete 
set of points of the x plane (for each specified 7). On 
going around each such point the phase acquires an extra 
addend 27Tn (n is an integer). We consider only the points 
with n = ± 1 and speak of them as the center of quantum 
vortices rotating in the positive or negative direction. 
The pOints with I nl > 1 can be regarded as the points of 
confluence of I nl vortices rotating in the same direction. 
Such formations are unstable and diSintegrate into sepa­
rate vortices with I n I = 1. 

It is clear from the foregoing that allowance for ~he 
vortices leads to integration over the functions cp(x, 7) 
which increase by ±27T on going around the "singulari­
ties"-the zeroes of the functions 1/10 and qio. We should 
integrate over the density P and the phase cp, allowing 
for the indicated conditions for multivaluedness, as well 
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as over the trajectories of the vortex centers in the 
(x, 7)-space. 

Let us drop from the integrand in (2.6) the last two 
terms -(V7T)2 and 7T(Vcp)2, which are responsible for the 
deviation of the phonon spectrum from the linear spec­
trum and for the phonon-~honon interaction. If we now 
evaluate the integral of e 0 over 7T, we reduce the action 
So to the form 

- Sd'td'x~ (V,!,)I+~(II,,!,)') 2m c2 , (2.8) 

where c2 is the square of the speed of sound. The re­
placement of PA by Ps has been explained above. It 
also ensures the validity of the formulas in the case 
when Ps becomes substantially different from PA' The 
expression (2.8) is the action of a relativistic system 
written in terms of Euclidean variables, where the 
speed of sound c plays the role of the velocity of light. 
Sticking to the relativistic analog, we shall show that 
when the vortices are taken into account the action 
(2.8) is essentially the action of a two-dimensional 
(2 + 1-dimensional) relativistic electrodynamics in which 
phonons play the role of photons, and quantum vortices 
the role of charged particles. 

In terms of the variables Xl, X2 and X3 = C 7, the ex­
preSSion (2.8) takes the form 

p. S -~ (V,,!,)'d'x, (2.9) 

where V3CP is the three-dimensional gradient of the 
phase cp. The integral over cp can be evaluated with 
the aid of the phase shift 

,!,(x) ->- <p(x) +<po(x) (2.10) 

where the shift function CPo(x), the solution of the three­
dimensional Laplace equation, takes on the ambiguity in 
the phase. To find the function CPo(x) , we note that the 
gradient V3CPo(x) == h(x) is the solution of the three-di­
menSional magnetostatics problem defined by the 
equations3) 

roth = 2nj, div h = O. (2.11) 

Here j is the sum of the unit linear currents flowing 
along the trajectories of the vortex centers. The func­
tion CPo(x) is the nonunique scalar potential of the mag­
netic field h produced by the system of linear currents. 
The square of the gradient, (Vcp)2, under the integral 
sign in (2.9) becomes the sum (Vcp)2+(VCPO)2 when the 
shift (2.10) is introduced. The integral of the first term 
describes a noninteracting field and is of no interest to 
us. The integral of (VCPo)2 = h2 , on the other hand, is pro­
portional to the energy of the magnetic field of the system 
of linear currents. 

It would have been more customary to solve the mag­
netostatics problem (2.11) with the aid of the vector po­
tential a(x) (h=curl a, div a=O). For a system of linear 
currents the vector potential a is the sum of the contri­
butions from the individual currents 

a(x) = ~ 1:: S dl,(y) . 
2, Ix-yl 

(2.12) 

The action obtained from (2.9) by replacing cP by CPo 
can be represented in the form of a double sum of the 
contributions from the various currents: 

-~ ~ SS dl,(x)dl.(y) . 
2mc ~ Ix-yl (2.13) 

'.A 
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The terms with i = k in (2.13) diverge logarithmically 
for x close to y. This divergence is the result of the 
approximation in which the vortices are considered as 
point vortices, and the corresponding currents as linear 
currents. To eliminate the divergence, we must take 
the finite dimensions of the vortices into account. For 
this purpose we distinguish. the vortex centers by circles 
of radius ro greater than the radius of the vortex core, 
but less than the mean intervortex distance. Allowance 
for the finite dimensions of the vortices amounts to the 
replacement 

np. 1: SI dl, (x) dl,(y) Ev(r,) 1: I 
-- -+-- ds i • 

2mc Ix-yl e 
i IJ:-yl<ro , 

(2.14) 

Here ds = I ell I = I(iS2 and Ev(ro) is the part of the vortex 
energy inside the circle of radius roo The expression 
Ev(ro) depends logarithmically on 1'0: 

action (2.17) in the nonrelativistic approximation is of 
the form 

-1: ( flEv(r,) + j dT ( mvt'l v.' + i ~ vA,)) 
'0 c -+s dTd'x(IJ,A,-IJ2A,)2+ !,(IJ,A)') 

1 • 
+ 4n dTd'xd'yj,(x,T)i,(y,T)Inlx-yl. (2.20) 

Here Ai is the vector potential at the point of location 
of the i-th vortex which moves with velocity Vi and !las 
charge gi = ±g, where 

g' /4n = np./ m. (2.21) 

The function jo(x, T) =~gi O(X-Xi( T» is the charge 
density. 1 

3. Let us consider certain consequences of the equiv­
(2.15) alence of the "phonon-vortex" system to two-dimensional 

electrodynamics. 
It is natural to call the quantity a in (2.15) the vortex­
core radius. In order of magnitude a-(Am)-1/2, where A 
is the chemical potential and m is the mass of the Bose 
particle. To determine a with great accuracy, we can 
use, for example, the Pitaevski'i solution[Sl to the Ginz­
burg-Landau equations describing the vortex structure. 

Let us now transform the integral over Ix-y I>ro in 
(2.13). Let us introduce a new vector potential A(x) 
whose expansion 

A (x) = ~ eikxa (k) d3k 
k<~ 

(2.16) 

is restricted to momenta smaller than ko - ro 1. The ac­
tion (2.13) can be reduced to the form 

s,=-m.(r,)cL.J ds,-iqJ Ajd3x- 2
1
c I (rot A) 'd'x, (2.17) 

, 

where mv(ro) == Ev(ro)/c2 is the vortex "mass" and the 
coefficient 

q = 2nl'p./ me' (2.18) 

plays the role of a coupling constant. The action (2.17), 
which has been written in terms of Euclidean variables, 
describes a system of charged particles interacting 
with the electromagnetic field A(x) (whose momenta are 
cut off at the upper limit by i'io-rOl). We integrate the 
functional eSo over the field A(x) and along the charged­
particle trajectories. We must proceed precisely along 
these lines in quantizing the system with the action (2.17). 
The integral of eSo over the field A(x) can be evaluated 
exactly with the aid of the shift A-A + Ao, which annihi­
lates the linear form with respect to A in (2.17). We 
then get back to the action (2.13), which proves the cor­
rectness of the expression (2.17). 

To describe the motion of vortices with velocities 
much less than c, it is convenient to go over to the non­
relativistic apprOXimation in the action (2.17). In this 
approximation we have 

Ev(r,) J .1 ( J' 1 J' ( dx )' ) -- ds "" l!\v(r,) dT + -- -- dT 
C I' 0 2c2 0 dT 

(2.19) 

d S' rrlv(r,) 
= fl~v(r,)+ --2-V'(T)dT. , 

The contribution of the scalar potential Ao in (2.17) can 
be transformed into a term of direct interaction between 
the charged particles via a logarithmic potential. The 
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At low temperatures the vortices in the system can ex­
ist only in the form of pairs of opposite sign coupled by a 
long-range logarithmic potential. As the temperature is 
increased, the number of pairs increases and the mean 
distance between them decreases. Finally, at some tem­
perature Tc diSSOCiation of the coupled pairs occurs. 
Besides the coupled pairs, isolated vortices also appear 
in the system above the diSSOCiation temperature, and 
we have a plasma-type state to deal with. It is natural 
to suppose that the phase transition from the superfluid 
to the normal state amounts precisely to the dissociation 
of the coupled pairs. 

The quantity Ps, defined as the coefficient of 
-(Vrp}2/2m in the hydrodynamic action, does not 
vanish at T > T c. This coefficient is analogous to the 
quantity p~ introduced by Berezinski'i for the two­
dimensional rotator system model. [3] For T < T c this 
coeffiCient practically coincides with the macroscopically 
determined super fluid density everywhere except in the 
narrow phase transition region, where an intense forma­
tion of quantum vortices begins. 

Notice also that in a plasma-type state, long-range 
correlations vanish at T >T c as a result of the charac­
teristic Debye screening. In particular, the correlation 
function (I/J(x, T)IJj(y, Tl» decreases exponentially for 
T >Tc' 

The phase tranSition connected with the dissociation 
of the pairs at T = T c is accompanied by the conversion 
of the second-sound branch in the energy spectrum into 
the plasma-oscillation branch. Let us explain this in' 
greater detail. The velOCity c in the action (2.8) is close 
to the velocity of first sound at low temperatures and 
coinCides with it in the limit T- O. At temperatures of 
the order of the phase-transition temperature Tc (but 
not too close to it), however, the velocity c is close to 
the velocity of second sound. This fact, which was pre­
viously noted in [5,9] for the three-dimensional Bose gas, 
is also valid for the two-dimensional system. In the case 
when the velocity c is close to the velocity u of second 
sound, the relation between c and u is the same as 
between the velocities of light in vacuo and in a medium: 

u=c/l'~. (3.1) 

The coefficient € has the meaning of the dielectric con­
stant of a medium. It can easily be computed in the case 
when the mean distance between the vortex pairs is large 

V. N. Popoy 343 



and the pairs can be considered as noninteracting. We 
use the relation 

{e-1)E =D- E =P = Np(d)E. (3.2) 

where E and D are the intensity and induction of the 
electric field, P is the mean dipole moment per unit 
volume Np is the number of pairs in a unit volume, and 
(d)E is the mean dipole moment of a pair in the electric 
field E. The energy of a pair in the field E is equal to 
-E·d. In the limit E ...... 0 we obtain 

(d)E = (d exp j}{Ed» = j}(d(Ed» = '/,j}(d')E = '/,j}g'(r')E. (3.3) 

Here (r2) is the mean-square distance between the vor­
tices of a pair and i = 41T2ps/m is the square of the 
charge. From (3.2) and (3.3) follows the equality 

g'j} 
&= 1 +~(Np(2nr'». 

4n 
(3.4) 

The quantity Np(21Tr2), which has the meaning of the 
average relative area occupied by the vortex pairs, is 
equal to the correction 6.a to the exponent m!21T{3ps 
in the asymptotic form of the correlation function (2.7) 
which arises when the vortices are taken into account 
(see [4]). As a result we obtain the formula 

(3.5) 

which gives " as the square root of the ratio a/ ao of 
the exponents computed with and without allowance for 
the vortex pairs. 

As we approach the phase transition, " ...... 00 and u ...... O. 
This implies that second sound (light in the electromag­
netic analogy) ceases to propagate. The corresponding 
branch of the spectrum is converted into the plasma­
oscillation branch. The plasma frequency is determined 
from the equation 

. g' 
1-k'"(k.ro)= 0; (3.6) 

where n(k, w) is the "Coulombically irreducible" part 
of the charged-particle denSity correlation function. If 
in computing n(k, w) we restrict ourselves to the con­
tribution of the simplest Single-loop diagrams, we ob­
tain in the limit as k ...... 0 

ro. = limro(k)= Yg'(ny)lm .. (3.7) k_. 
where (nv) is the mean density of the unpaired vortices. 
Substituting in (3.7) 

(3.8) 

where r is the mean intervortex distance, we obtain 

OJ = ( 4nc'(n) ) 'J, 

In (ria) 
(3.9) 

In the phase-transition region the system under con­
sideration is a system with a "strong coupling." The 
point is that the characteristic (for plasma theory) small­
ness of the charged-particle potential energy as compared 
to the kinetic energy does not exist here. Therefore the 
formulas (3.7) and (3.9) for the plasma frequency can at 
best be correct only with respect to the order of magni­
tude. 

4. The above-developed method of describing quan­
tum vortices can be extended to three-dimensional Bose 
systems as well. As in the two-dimensional case, to 
quantum vortices correspond the zeros of the functions 
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I/J(x, r) and I[j(x, r) over which we integrate. The complex 
functions I/J and I[j vanish on lines (on sets of dimension 
1) in three-dimenSional x-space for fixed r and on plane 
surfaces in four-dimensional (x, r)- space. We should 
integrate over the functions I/! and I{! which vanish on 
plane surfaces and then over the surface configurations. 

We shall not dwell at length on the distinctive fea­
tures of the formalism as applied to three-dimensional 
systems, but limit ourselves to a qualitative considera­
tion of the role of quantum vortices in phase transitions. 
The conclusions arrived at here are analogous to those 
drawn in Byckling's paper[lO]. 

At low temperatures in a nonrotating Bose system ex­
citations in the form of vortex rings can exist to which 
correspond closed lines where the functions I/! and I[j 
vanish. As the temperature increases the number of 
vortex rings per unit volume increases and the mean 
distance between them decreases. When the mean dis­
tance between the rings becomes of the order of the 
mean ring length, there appears a tendency to form long 
vortex rings. It is natural to suppose that the phase 
transition from the superfluid to the normal state is con­
nected with the appearance in the system of vortex fila­
ments of infinite length (in a real system, of filaments 
starting from and terminating on the walls of the vessel). 
A long vortex filament does not form at once but through 
successive union and elongation of vortex rings of finite 
length. Therefore, in the situation when the number of 
vortex rings per unit volume is sufficiently large the 
probability of the existence of infinitely long vortex fila­
ments can by no means become infinitely small. 

Notice that the quantity PS' defined as the coefficient 
of -(Vrp)2/2m in the hydrodynamic action, continues to 
remain different from zero above the transition tempera­
ture. In other words, it is possible to describe the sys­
tem above the transition in terms of normal and super­
fluid components perforated by quantum vortices. 

Thus, the qualitative analysis shows that in a three­
dimenSional system, as in the two-dimensional, the phase 
transition is connected with quantum vortices. The closed 
vortex rings in the three-dimensional system can be re­
garded as the analog of the coupled pairs in the two-dimen­
sional system, and the long vortex filaments as the ana­
log of the single vortices. Indeed, a vortex ring in a 
plane cross section of the three-dimensional system 
gives two vortices of opposite sign. 

Quantum vortices above the A-transition in a rotating 
liquid helium were experimentally observed by Androni­
kashvili and co-workers[ll] within 18-20 min after heat­
ing the system to 0.1-0.2 K above the X-point. In the 
light of the foregoing, the fact that quantum vortices ex­
ist above the A-point is not surprising. The collapse of 
the ordered vortex structure 18-20 min after heating 
above the X-point is however effected by the randomly 
arranged long vortex filaments which form above the 
X-point. A complete analysis of the problem of the life­
time of the ordered vortex structure above the X-point 
is of course possible only in the framework of the 

I kinetic approach. 

5. The foregoing leads to the following conclusions. 

a) The method of continual integration provides a 
natural description for quantum vortices. To them cor­
respond the zeros of the functions I/J and I[j with respect 
to which the integration is carried out. 
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---------------------------~-----~----------

In the normal state the principal contribution to the 
continual integral is made by functions of the type of a 
superposition of plane waves. In the superfluid state the 
principal contribution is made by nonvanishing functions 
which describe the quantum-vortex-free states. In the 
vicinity of the phase transition, however, the principal 
contribution to the continual integral is made by function 
which are everywhere, except at the vortex cores, almost 
constant in magnitude. 

b) If we neglect the phonon-phonon interaction and the 
dispersion of the phonon spectrum, then the two-dimen­
sional phonon-vortex system is equivalent to relativistic 
two-dimensional electrodynamiCS. 

c) The phase transition of a two-dimensional Bose sys­
tem from the superfluid to the normal state amounts to 
the dissociation of coupled vortex pairs. The description 
of a two-dimensional Bose gas in terms of normal and 
superfluid components perforated by quantum vortices is 
valid both above and below the phase transition and loses 
meaning if, and only if, the vortex-core radius becomes 
of the order of the mean intervortex distance. 

d) In a three-dimensional Bose system the phase 
transition from the superfluid to the normal state is con­
nected with the formation of long vortex filaments. Thus, 
quantum vortices exist in the normal phase as well. 
There arises in this connection the alluring idea that 
the difference between the normal and the superfluid 
liquids is determined by the nature of the quantum vor­
tices existing in the liquid~in the normal liquid there 
should be long vortex filaments besides the vortex rings. 

e) The theory considered in Sec. 2 and obtained under 
the assumption that the phonon-phonon interaction and 
the dispersion of the phonon spectrum can be neglected 
is the relativistic theory of the complex scalar field 1jJ 
with the interaction gl1jJ1 4 and a negative squared bare 
mass: we would have been dealing with tachyons if we 
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had switched off the interaction. The interaction leads 
to a Bose condensation and the formation of massless 
particles, as well as of charged particles~quantum vor­
tices. Since we propose to discuss this question sepa­
rately, we shall not dwell on it at length here. 

The author is grateful to E. L. Andronikashvili for 
drawing his attention to the experimental results dis­
cussed in [llJ, and to L. D. Faddeev for a discussion. 

OWe shall henceforth use a system of units with h = kB = I, where hand 
kB are the Planck and Boltzmann constants. 

2)ln (2.3), W == wn = 2rrn/{3, ki = 2rrni/L; nand ni are integers. 
3)Here we denote both two-dimensional and three-dimensional vectors 

by boldface type. 
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