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It is shown that low-frequency magnetization self-oscillations can be explained by insta­
bility of collective degrees of freedom. The latter are space- and time-periodic varia­
tions of the amplitudes and phases of coupled pairs of parametric spin waves which in a 
certain sense are analogous to second-sound waves in a magnon system. The spectrum 
of the collective oscillations is studied and conditions are determined for appearance of 
the self-oscillations, particularly as applied to YIG. Nonlinear self-oscillation conditions 
are studied by means of an electronic computer. The theory and experiments are com­
pared qualitatively. Some properties of the self-oscillations are explained, in particular 
their giant crystallographic anisotropy in almost isotropic cubic ferro magnets . 

1. INTRODUCTION 

It is well known that, as a rule, no stationary regime 
is established in ferromagnets when spin waves are 
parametrically generated, and that the magnetization 
describes complicated oscillations about a certain mean 
value. This phenomenon is observed in the form of 
amplitude and frequency modulations of the pump power 
passing through a resonator with a sample, or in the 
form of low-frequency (LF) oscillations in a coil that 
responds to the change of the longitudinal component 
of the magnetization (Mz ). The self-oscillations ac­
companying parametric excitation of spin waves were 
first observed by Hartwick, Peressini, and Weiss(1). 
This inexplicable phenomenon aroused lively interest 
and was therefore extensively investigated experi­
mentally (see(2)). The first enthusiasm soon disap­
peared, however, after it turned out that the properties 
of the self-oscillations depend on practically all the 
possible parameters of the system, namely the pump 
power, the magnetic field intensity, the crystallographic 
anisotropy, the dimensions and shape of the sample, 
etc. Doubts were expressed concerning the possible 
existence of any simple regularities in this region. 

The main experimental facts obtained for perfect 
yttrium iron garnet (YIG) crystals with parallel pump­
ing consist in the follOwing. 

1. The self-oscillation frequencies lie in the interval 
from 104 to approximately 107 Hz (depending on the 
pump power and on the constant magnetic field). At a 
slight excess above threshold, the self-oscillation 
spectrum consists of one line, and when the pump level 
increases, the number of lines increases and they shift 
towards higher frequencies. At large excesses above 
threshold, the spectrum has a noiselike character. 

2. The threshold of the self-oscillations is usually 
quite small, 0.1-1 dB relative to the threshold of the 
parametric excitation, with the exception of the region 
of small wave vectors (H > Hc), where the threshold 
increases noticeably. The threshold also increases 
when internal inhomogeneities are introduced into the 
crystall3]. 

3. A giant crystallographic anisotropy of the self­
oscillation properties is observed; this anisotropy 
greatly exceeds the anisotropy of the spin-wave spec­
trum. The intensity of the self-oscillations in YIG with 
magnetization oriented along the [111] axis exceeds the 
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intensity of these oscillations along the [100] axis by 
apprOximately 100 times(2). 

The physical nature of the self-oscillations was con­
sidered in the literature from different points of view. 
Many authors (see, for example,[4]), have assumed that 
these oscillations are due mainly to changes in the mag­
netization following parametric excitation of the spin 
waves. Owing to the decrease of the magnetization (on 
the value of which the natural frequency of the wave de­
pends) the waves that build up during the course of 
generation become gradually detuned and attenuate. The 
process then repeats etc. This model was quantitatively 
analyzed by Monosov~2), who demonstrated the possible 
existence of self-oscillations in those cases when the 
change of the magnetization lags the change in the spin­
wave amplitude, in accordance with the Bloch-Bloem­
bergen relaxation model. Within the framework of these 
representations and certain additional assumptions, 
Monosov and co-workers succeeded in explaining a 
number of properties of the self-oscillations, for ex­
ample, the excitation threshold and the initial oscilla­
tion frequency. However, the inertia of the maretiza­
tion, as shown by Bar 'yakhtar and Urushadze[5 , may 
turn out to be appreciable only in that part of the spec­
trum where the following decay processes are allowed: 

For YIG (T = 300o K, wp = 21T • 10 10 sec -1) this is a 
narrow region near the saturation field Hs [6), Hs < Ho 
< Hs - 100 Oe. In addition, the appreciably arbitrary 
character of the assumptions made leaves open the 
question of the conditions of applicability of the model 
of "inertial" self-oscillations even in the decay part of 
the spectrum. 

Wang and co-workers(7) have proposed a different 
self-oscillation model, based on the postulated exist­
ence of a packet of parametric spin waves that are 
close in frequency (near wp/2). In this case a sample 
of finite dimensions acts like a Fabry-Perot resonator 
that selects a number of discrete frequencies separated 
by an amount Vg' 21T/d from the nonmonochromatic 
packet (Vg is the group velocity of the spin waves and 
d is the sample dimension). In the author's opinion, it is 
the ''beats'' between these frequencies whic h are the 
cause of the oscillations. 

Much experimental work was done[7,8] for the pur­
pose of confirming the dependence of the oscillation 
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frequency on the constant magnetic field as given by 
the beat model. The authors note surprisingly good 
agreement. The beat picture, however, completely ig­
nores the experimentally observed dependence of the 
frequency on the pump power. At the same time, the 
theoretical arguments concerning the parametric 
generation of spin waves, which were developed by 
Zakharov and one of us (9 ), favor the idea that the para­
metric waves have a high degree of monochromaticity, 
and at any rate that the scatter of their frequencies is 
much smaller than the reciprocal spin-wave relaxation 
time. It is shown in[9) that the low-frequency self­
oscillations of the magnetization, which are observed 
in the course of parametric generation of spin waves, 
are due to the presence of new branches of collective 
excitations in the energy spectrum of the ferromagnet. 
These excitations constitute periodic changes, in time 
and in space, of the amplitudes of pairwise coupled 
parametric and spin waves (analogous in a certain 
sense to second-sound waves on magnons); their char­
acteristic frequencies are determined by the magnitude 
of the interaction of the pairs with one another and 
usually lie in an interval 0-107 sec -1. 

The existence of collecti ve oscillations was experi­
mentally observed l1oJ in a study of the reaction of a 
parametric spin system to a weak signal. In these ex­
periments, resonant absorption of a weak electromag­
netic field, due to excitation of the zeroth (homogeneous) 
mode of the collective oscillations, was observed 
against a background of parallel spin-wave pumping. 

In addition to the homogeneous mode, in which all 
pairs oscillate in unison, there are many inhomogene­
ous oscillation modes and waves. As a rule, some of 
them turn out to be unstable and are self-excited even 
in the absence of a driving force. This instability oc­
curs when the frequency of the collective oscillations 
vanishes, and in this sense it is similar to the instabil­
ity of the "soft mode" in ferroelectrics. In ferroelec­
trics (under thermodynamic equilibrium !) the instabil­
ity of the soft mode leads to a phase tranSition. In our 
case, which is far from thermodynamic equilibrium, 
there is no other stable state, and an instability of the 
soft-mode type leads to oscillations of the system about 
the ground state. 

In the present paper we study the spectrum of the 
collective oscillations and obtain the conditions under 
which self-oscillations occur, principally in YIG. Next, 
a computer is used to analyze the nonlinear regime of 
the self-oscillations for the simplest modes. The depth 
of modulation of the ground state then turns out to be 
far from small and can reach ~100% in certain cases, 
thereby characterizing the excitation of the self-oscil­
lation as a phenomenon of strong turbulence. We inves­
tigate the properties of such turbulence, namely the 
period and waveform of the oscillations, the character 
of motion of the system in k-space, and the transition 
to the stochastic regime (noise). 

2. COLLECTIVE OSCILLATIONS 

The interaction of spin waves plays a decisive role 
in parametric excitation: it limits the level of excita­
tion of the spin waves and leads, as we shall show, to 
the appearance of collective oscillations against its 
background. In S-theory (see l11,12J), this interaction is 
described with the aid of a self-consistent field of 
coupled spin waveS ak, a-k. The Hamiltonian of such a 
system is given by 
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(1 ) 

Here ak and a_k are the "slow" wave amplitudes, Vk 
is the coefficient of their interaction with the parallel­
pumping field h(t) = h exp (-iwpt), and Tkk' and Skk' 
are nonlinear characteristics of the ferromagnet. The 
function Tkk' describes the natural frequency of the 
spin waves, 

(2) 

renormalized to account for the interaction, while the 
functions Skk' characterize the "collective pumping," 
which combines (with suitable phase shift) with the ex­
ternal pump hVk: 

(3) 

In spite of the fact that the external pump hVk ex­
ceeds the wave dissipation Yk beyond the threshold, the 
renormalization of the pump (3) leads to establishment 
of a stationary state in which the energy-balance condi­
tion is satisfied for each pair of waves: 

From among the set of stationary states (4), the state 
realized is the one having external stability with re­
spect to the production of new pairs at all pOints of 
k-space where ak = O. We call this the ground state; 
for this state we have (see l11 )) 

(4) 

(5) 

The theory of the ground state is contained in the 
papers of Zakharov and the present authors[1l,12J and 
reduces briefly to the following. We introduce the cor­
relation functions 

which are convenient for the description of a system of 
parametric waves. The angle brackets denote averaging 
over the time or, equivalently, over the random phases 
of the individual waves. The phases of the waves ak 
and a_k in the pair are rigidly correlated (within the 
framework of the S theory), so that 

la.1 =n •. 

The concrete form of the functions nk and Gk de­
pends on the structure of the coefficients Vk and Skk'. 
In an isotropic ferromagnet, and also in YIG with 
orientations Mo Ill111] and Mo II [100], the ground state 
has axial symmetry about the magnetization direction 
Mo. When the threshold is not greatly exceeded (up to 
6-10 dB in YIG( 13)), the spin waves are located in k­
space in a plane kz = 0 perpendicular to the magnetiza­
tion; namely, 

(0) No 
n. =--6(k,)6(k.L-ko), 

2itko 

a~O) = n~O) e-2itp, 

where cp is the azimuthal angle of the wave vector ko 
and No is the integral amplitude of the ground state: 

(6) 

(0) [(hV)'-y'P' (7) 
No= S n •. dk= 180 1 ' 

So is the value of the function Skk' averaged over the 
angle cp (see formula (11) below). 

We shall show that in a system of ferromagnetic 
spin waves described by the Hamiltonian (1) there exist 
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collecti ve oscillations against the background of the 
ground state, which we take for simplicity to be the 
state (6). This is easiest to show by separating in the 
Hamiltonian the part :Je( 0) corresponding to the ground 
state, and the parts :Je( 1) and :Je(2), which contain terms 
that are linear and quadratic in small deviations from 
the ground state. It is convenient to express the pertur­
bations in the form 

(0) No'" . 
a. = a. + -- a.e-'''i\ (k,) I) (k.c - ko), 

2nko 

la.1 <No. 

(8) 

In the study of the spectrum of the oscillations it is 
natural to neglect at first the dissipation (to put y = 0) 
and to assume :Je to be an integral of the motion. Taking 
(5) into account, we verify that the energy of the ground 
state is extremal: ;jC;( 1) = O. The part of the Hamiltonian 
which is quadratic in the small perturbations (8) is 
given by 

N '" 
:Je") = (2:)' f {[2T .. · + S •• ,e-"'·-··) ]a.,a.'· + (Too,a"a.' + c .Co) )d<p d<p'. 

o (9) 
Changing over to Fourier components 

1 S . a,., = -;;-- a.e''''d<p 
~lt 0 

and using the axial symmetry 

T •• , = T(<p - <p'}, S •• , = S(~ - <p'), 

we obtain 

(11) 

The quadratic Hamiltonian (10) reduces in standard 
fashion to the diagonal type 

(12) 

which is the sum of the energies of the oscillators with 
frequencies 

(13) 

These oscillators (normal modes) describe the collec­
tive excitations of the system of parametric spin waves. 
The coefficients Sm and Tm , which determine the 
spectrum of the collective excitations, depend on the 
pump frequency, magnetization, shape of the sample, 
and other experimental conditions (see formula (18) 
below). Under certain conditions there can occur an 
unstable situation in which oih < 0 for any m. This 
instability, as will be shown in Sec. 4, leads to oscilla­
tions of the distribution functions nk and ak about the 
ground state (6). It should be borne in mind that during 
the nonlinear stage of the development of the instability, 
the concept of individual normal modes becomes mean­
ingless to a considerable degree. We are dealing with 
a strong nonlinearity of the collective oscillations, when 
the energy of their interaction with one another (;jC;( ll) 

and :Je (4) is of the same order as the self-energy J'6;(2). 

As a rule, therefore, the oscillation waveform deviates 
noticeably from harmonic. 

Within the framework of the S theory, the collective 
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oscillations of the system of parametric spin waves are 
spatially-homogeneous. When the spatial dispersion is 
taken into account, each normal mode corresponds to 
an entire branch of the spectrum 0m( K); formula (13) 
determines its gap: Om = Om(O). We shall confine our­
selves henceforth to oscillations that are homogeneous 
in space and that interact most strongly with the elec­
tromagnetic pump field. 

3. CONDITIONS FOR THE ONSET OF 
INSTABILITIES 

Let us consider in detail the conditions for the insta­
bility of the spectrum of collective excitations. We 
ascertain first the effect exerted on this spectrum by 
the spin wave damping, all the more since the damping 
Yk can be of the same order as the frequency of the 
collective oscillations (13). The damping is taken into 
account here within the framework of the canonical 
equations of motion 

da. 6:Je 
--+y.a.=-i--. 

dt Oak 

Taking the Hamiltonian :Je in the form (1), we obtain 

1 dn. 
2dt+ 1·n• + 1m (P.·o.) = 0, 

1 da. . 2"dt+(y, + i(fii. - oo pl2) )a. + iP.n. = 0, 

where Pk and Wk are defined by (2) and (3). 

(14) 

(15) 

Linearizing (15) against the background of the ground 
state (6) relative to the perturbations (8) and putting 
a, a* ~ e-iOt , we obtain a system of algebraic equations 
that are homogeneous in a and a *; the condition for the 
solvability of these equations determines the spectrum 
and the damping of the collecti ve oscillations: 

(16) 

This dispersion relation solves completely the problem 
of the stability of the collective oscillations. It follows 
from it that when 

Sm (2T m + Sm) ;;" 0 

the oscillations become damped. This fact is also con­
firmed by experiments [9] on resonant excitation of the 
homogeneous mode m = O. Namely, the measured 
width of the resonance band coincided with the value of 
Y determined from the threshold of the parametric 
excitation h V = Y. 

If the inverse inequality 

Sm(2Tm + Sm) <0 (17) 

holds, an instability sets in with respect to the growth 
of the mode m, and this instability, as in the case of 
Y = 0, has no amplitude threshold. 

To find the conditions under whic h the inequality (17) 
can hold, it is necessary to calculate the coefficients 
Sm and Tm for the investigated ferromagnet. The 
procedure of calculating these coefficients was de­
scribed earlier[12]. In cubic ferromagnets such as YIG, 
taking into account the energy of the dipole-dipole and 
exchange interactions, the Zeeman energy, and the 
energy of the crystallographic anisotropy, we obtain the 
following expressions: 

g Wp 2 +WM2 [ ooM'] 
To =-2M ' ooM(Nz -1)+ ( '+ '),,. - Boo" , 

o {Op (Op tJhf 

So = ~ (_ooM)' [ooM(N, -1) +(",P' + "",,')'!' - ~"'"], 
2M, "''' 
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S±, ~O"Sm ~ T", ~O for \m\ > 2, 

g (WU) [ (lk) 2 + ( , + ') 'f, R ] T±2=-,--- ffiex -(D.H b)p (D.u -ph)a, 

:Ulo 2w p 

S~, ~ J._{ [w", (lk)' - w" - ~w"]u±' + w2,,,, u± }, 
- 2Mo Wp 

u± ~ [(W,.' + O'M') 'I, 'f' Wp ] /2w". (18) 

Here wp is the pump frequency, WM '" 41TgMo, Wa 
'" 2g I k liMo is the anisotropy field in the difficult 
direction [100], and 

_ { 8 for M oll[111] 
~- -9 for Moll [100] 

The remaining symbols are clear from the expression 
for the wave dispersion law: 

(1~{ 'l,forMoll[111]. (19) 
- 1 for Moll [100] 

Formulas (18) explain the strong anisotropy of the 
spin waves beyond the threshold of parametric excita­
tion, namely, the contribution of the anisotropy energy 
to the coefficients of the nonlinear interaction of the 
T and S waves turns out to be larger by one order of 
magnitude than its contribution to the natural frequen­
cies of the waves wk. To illustrate this important cir­
cumstance, we present a table of the coefficients T and 
S for YIG in a typical experimental situation: Nz = Y3 
(sphere), wp '" 9.4 GHz, wex(Zk)2 '" 0 (H '" Hc ), wM 
'" 4.9 GHz, and wa '" 0.23 GHz (room temperature). 
All the coefficients are given in units of 21Tg2. 

Substituting the tabulated data in the criterion (17), 
we can compare the predictions of theory with onset of 
instability on the one hand and the experimental results 
in YIG on the other. It is easy to verify with the aid of 
the table that in the easy direction (Mo II ll11]) there 
is an instability with respect to the zeroth mode (m '" 0), 
and that in the difficult direction (Mo II [100]) all the 
modes of the collective oscillations are stable. In ex­
periment at H"" Hc , there are actually no self-oscilla­
tions up to excesses of 6-7 dB (second threshold[13J) in 
the difficult direction; in the easy direction, on the 
other hand, intensive self-oscillations are observed 
almost immediately beyond the parametric-excitation 
threshold. An analysis of expressions (18) shows that 
when the wave vector of the spin waves increases (with 
decreasing external magnetic field H), an instability of 
the mode m '" -2 sets in in the difficult direction. The 
onset of self-oscillations of small amplitude in fields 
H :5 H* < Hc , as is clearly seen from Fig. 4.4 of Mono­
sov's monograph [2 J, is indeed observed in experimene) . 
The agreement between the theoretical predictions con­
cerning the onset of the self-oscillations and experi­
ment[12 1 can be traced also for YIG samples in the 
form of disks magnetized parallel (Nz '" 0) and perpen­
dicular (Nz '" 1) to the plane. It is of interest to note 
that turning off the anisotropy field (wa < 0.022 GHz) 
leads to an unstable zeroth mode. Indeed, intensive 
self-oscillations are observed in a YIG sphere with a 
scandium impurity that decreases the anisotropy to 
wa"" 0.016 GHz. 

It must be emphasized that in the theory considered 
here, the threshold of the self-oscillations is equal to 
zero (it coincides with the threshold of the parametric 

TABLE. 

Orientation T, 

I 
s, I T, ~ T-, 1 8 2 .'-)-2 

[1001 \ 0.28 I 0.52 
1 

0.11 
I 

0.01 1-0 . .36 
[1111 -0.75 0 . .30 0,05 0,01 -1.27 
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excitation), whereas in experiments one observes a 
small threshold ~0.1-0.5 dB in YIG. We believe that 
this is connected with the influence of the inhomogenei­
ties of the YIG crystal. The magnetic inhomogeneities 

" f t' (0) d (0), lead to a "smearmg , of the unc lOns nk an Ok m 
the ground state (6) and to a certain renormalization of 
the damping and of the coefficients Sand TL141. One 
should therefore expect formulas (17) and (18) to de­
scribe at best qualitatively the real situation in crystals 
of poor quality. 

4. SELF-OSCILLATIONS 

The problem of the nonlinear stage of development 
of the instability of collective excitations can be solved 
only with a computer. Calculations for a concrete fer­
romagnet (for example YIG) call for a large amount of 
computer time and are hardly advantageous. From the 
physical point of view, it is much more interesting to 
consider some simple model that accounts qualitatively 
for the main properties of the self-oscillations. 

We consider a system of pairs of spin waves that 
interact in like fashion with the pump field and fill two 
beams k, and k2 in k-space. In the initial state (prior 
to application of the pump) the distribution of the pairs 
on the beams n1k and n2k is, generally speaking, 
arbitrary. For concreteness we assume 

(20) 

The quantity no can be regarded as the level of the 
thermal noise in the system. 

Parametric excitation of the spin waves as a func­
tion of the level of the thermal noise is described by 
equations of the type 

(21) 

with analogous equations for the second beam. Here 

p,=hV+SII~(J,"+SI2E (J,., 
• • 

Wik = W1 + 2T'1 .Entk + 2Tt:~ .Ena, 
k • 

SI2=S21\ T\2 = T 2t o 

The change of the sum of the amplitudes on the beams 

simulates the zeroth collective mode (m '" 0), and the 
change of the difference N, - N2 simulates the higher 
modes (m '" 0). For a number of reasons, which will 
ber'()me clear later on, the investigation of a mode with 
m ,.. 0 is a simpler problem, and will therefore be con­
sidered first. To decrease the number of parameters 
of the problem, we put 

(m '" 0 is stable in this case). 

The equations (20) have a stationary solution that 
possesses external stability (see the condition (5) and 
is of the form (as no - 0) 

N, =N, = [(hV)'- y'P I IS, + szI ~ No. (22) 

The nonstationary solutions were obtained with a com-
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puter for a system of 120 pairs under the initial condi­
tions (20). 

Figure 1 shows the calculated plots of N1,2(t) at a 
weak supercriticaJity (hV - Y < 1') and a relatively low 
noise level (E no/No ~ 10-4). At first, at t = t 1, the 

k 
packets nlk and n2k have a Gaussian form with a 
maximum at the point wk = wp /2 and increase with an 
identical increment h V - ')'. When N 1 and N 2 become 
comparable in order of magnitude with the character­
istic amplitude (22), internal instability with respect to 
the difference of the amplitudes N1 - N 2 comes into 
play, and the growth of one of them, say N2, lags the 
other (t = t 2) and subsequently N2 decreases. The ap­
pearance of the difference N1 - N2 shifts the packets 
in opposite directions away from the point wk = wp /2. 

This process continues until it turns out that N 2 
« N 1 ~ N\ 0) at t = t3, and accordingly the maximum of 
the packet nlk is in the position 

Wt - wp /2 = - 2TN,"), N,(') = [(hV)' - y'l"'/IS,I, 

where NlO) is the stationary amplitude of the 8 theory 
for one beam. 8uch a state, which is outwardly stable 
on its own beam, is unstable against pair production on 
the foreign beam, and the instability increment v is 
maximal at wk - wp/2 = 2TNi°>' and is equal to 

I ( S,-S')' [(hV)' ']'1 v,",,=IP, -1"" -s-,- -1 '. 

During the expectation time 

(t. - t,) ~ v,;;,~ In CE nolN. ) 
t 

The packet n2k grows to amplitudes on the order of 
N~O), while the difference N 1 - N 2 decreases. This 
leads to a reverse motion of the packets toward the 
center: wk = wp /2 (t = t 5 )0 However, the state at which 
N 1 "" N 2 ~ No exhibits no internal stability, and the mo­
tion continues. At t = t7 the picture coincides exactly 
with t = t3, except that the packets have exchanged 
places. Everything is then repeated. The swing of the 
motion of the packets in k-space is determined by the 
supercriticality and by the coefficients T and 8: 

L'!k= 4T [(hV)'-y.p/~. 
S, ok 

The period and the waveform of the self-oscillations 
depends strongly on the supercriticality and on the 
noise level no. If no is small, the period is determined 
mainly by the expectation time and depends logarith­
mically on no, while the depth of modulation of the am­
plitude is close to 100%. With increasing no, the ex­
pectation time decreases and at Eno/No ~ 10-3 it be-

550 

k 

FIG. I. Sum­
mary amplitudes 
of the pairs on 
each beam as a 
function of the 
time (h V = 1.4,)" 
~no INo "'"10-2 , 

S_ = - So, T = 
3S0 /4). 
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comes comparable with the "time of motion" (t4 - t6 
in Fig. 1). With further increase of no, the dependence 
of the period on no becomes even weaker, the depth of 
modulation decreases, and the self-oscillations assume 
a smoother form that is close to harmonic at certain 
values of 8 and T (for example at 81 = 0 and 
T = 38 2/4). In a real situation we have E no/No ~ 10- 2_ 

10-3, Le., we are at the plateau of the T(no) plot shown 
in Fig. 2. The period and the other properties of the 
self-oscillations are then not critical to the noise level, 
which subsequently is taken to equal 10- 2• 

Figure 3 shows the dependence of the period of the 
self-oscillations on the excess above threshold. At 
small and large excesses, the period is proportional to 
the characteristic time of the problem [(hV)2- 1'2]112. 
The period of the oscillations also depends on the coef­
ficients T and 8, albeit in a rather complicated man­
ner; for example, at hV ~ 2 I' we can suggest the em­
pirical formula 

"l"",,2(48T-7S-)[(hV)'_ ']-'1, S_=S,-S,. 
S_'+4TS_ y, 

At small excesses, the distributions n 1 2k take the 
form of a packet with a single maximum. This inspires 
the natural desire to describe the motion in k-space 
within the framework of the equations for the moments 
of the distributions of nlk and n2k. An analysis has 
shown, however, that even following very small trans­
formations the description with the aid of three mo­
ments (the summary amplitude, center of gravity and 
width of the packet) is insufficient, since the period, 
waveform, and even the very existence of the self­
oscillations depend on the method of splitting up the 
infinite chain of moments. For a correct description 
of the self-oscillations it is necessary to take the 
higher moments into account, and it turns out that there 
is not even a numerical splitting parameter. 

In the case of larger supercriticality, substantial 
differences are observed in the properties of the self­
oscillations. With increasing pump amplitude, a change 
takes place in the character of motion in k-space, 
namely, the distribution functions nl,2k reveal new 
maxima, and the number of degrees of freedom that 
partiCipate effectively in the motion increases. This 
leads to violation of the "long-range order" in the time 
dependence of N(t). As seen from Fig. 4, at hV = lOY 
the motion is completely randomized; the characteristic 
time of variation of N( t) is of the order of Ilh V. The 
distribution function n( k) has the shape of a "picket 

lOll 

JIl 

JIl ---------- -

Il 

FIG. 2. FIG. 3. 

FIG. 2. Dependence of the self-oscillation period on the noise level 
no (hV = 2,)" S_ =- So, T= 3S0 /4). 

FIG. 3. Dependence of the self-oscillation period on the excess 
above the instability threshold (~no INo = 10-2 , S_ = - So, T = 3So/4). 
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FIG. 4. Time 
dependence of the 
summary amplitude 
of the pairs at dif­
ferent excesses 
(~n. /N. = 10-2 , 

S, = 0, T = 3S./4). 

fence" consisting of ~h Y /Y maxima of different heights, 
the average distance between which is 

/ ow 
Ak""y Ok' 

The form of n(k) changes completely after a time 
~l/hY. This picture corresponds to strong turbulence 
of the corr~lation functions nk and Uk. 

We now briefly consider the self-oscillations pro­
duced in the case of instability with respect to the 
zeroth mode m = O. It is shown in[15] that development 
of instability with respect to the zeroth mode in a 
medium that has spherical symmetry leads to an un­
limited growth of the pair amplitude. In the axially­
symmetric situation of interest to us, however, the 
growth of the amplitude Ne with e = 1T/2 leads to an 
increase of the self-consistent pumping 

P,. ~ kV,. + S ... N, exp (- iljJ,) 

into other pairs with e'". 1T/2, which are indeed ex­
cited as soon as P (j' exceeds the damping Y e'. The 
reaction of the new pairs blocks the growth of the pairs 
with e = 1T/2. On the other hand, as already noted 
above, in the stationary state (at not too large excesses 
h/ho ;S 2.5), there can be excited only pairs with 
e = 1T/2; they are, however, unstable with respect to the 
zeroth mode. As a result, self-oscillations are pro­
duced, the characteristic deviation of which from the 
self-oscillations considered above is the excitation of 
a packet of parametric waves, with extensive width 
relati ve to e. In the study of these self-oscillations we 
used the "asymmetrical" model of two beams k1 and 
k2 representing spin waves with ek = 1T/2 and ek 
= ;/4; Y2= Y1/2. The values of the coefficients Sand 
T were chosen close to the real ones in the YIG. The 
characteristic dependence of the summary amplitudes 
on the beams N1 and N2 is shown in Fig. 5 (hY1 = 2Y). 

We note in conclusion that the simple model of "two 
beams" conveys qualitatively the main self-oscillation 
properties observed in experiment, namely, the fre­
quency, its dependence on the pump amplitude, the 
transition from the harmonic spectrum to a noise spec­
trum with increasing amplitude (Fig. 4), the large am-
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FIG. 5. Time depend­
ence of the amplitude of 
waves with e = 1T/2(N,) 
and e = 1T/4(N,). hV1T/, 
= 21', ~n. /N. = 10-2 , 

T'2 = S" = S" /2, S" = 
S" =3S,,/4, T" =-0.7S", 
T" = T" = - S" /2. 

plitude of the self-oscillations in the case ?f inst~bility 
with respect to the zeroth mode in companson With the 
amplitude when the higher modes are unstable (~om­
pare Figs. 4 and 5), and finally, the important Circum­
stance that the self-oscillations occur near the ground 
state of the S theory, and their onset thus does not 
change essentially the level to which the amplitude of 
the parametriC spin waves is limited. 

!)The behavior of the instability-threshold curve in fields H < 1300 
Oe may be connected with the excitation of spatially-inhomogeneous 
self-oscillations. 
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