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A formula for the cross section for photon-bound electron scattering with ionization 
of the atom is derived for incident photon energies much higher than the ionization 
energy and for small aZ. The formula is valid for any magnitude q of the momentum 
imparted to the nucleus, including q ~ m. 

1. INTRODUCTION 

The scattering of hard photons (w ~ m) by bound 
electrons is, when accompanied by ionization of the 
atom, maximal at small momentum transfers to the 
nucleus q ~ 1'/, where 1'/ = maZ is the mean momentum 
of a bound K-electron (the inverse Bohr radius of the 
orbit). Simmation over the domain of all q leads in the 
weak-coupling limit (correct to terms of order (aZ)2) to 
a cross section coincident with the cross section for the 
Compton effect on the free electron. It is however of 
interest to consider the process at large q ~ m » 1'/ in 
the region which is kinematically inaccessible to the 
Compton effect on the free electron. In this region, the 
cross section for the process is much smaller than the 
cross section on the free electron and is of the order 
of 10-32 cm2 for hydrogen (Z = 1). However, for alum­
inum (Z = 13), this cross section is already of the order 
of 10-28 cm2 , while for iron (Z = 26) it is of the order 
of 10-27 cm: Scattering of photons by bound electrons 
at large q has a number of distinctive features not ob­
taining for the free electron. 

We consider only the light elements and derive the 
cross section in the first nonvanishing approximation 
with respect to aZ « 1. In this approximation the 
amplitude of the process can be obtained with the aid of 
perturbation-theory diagrams (Fig. 1). The diagrams 
1b and 1c include Coulomb corrections to the Green 
function of the intermediate electron and to the wave 
function of the outgoing electron, and are, generally 
speaking, of the order of aZ as compared to the dia­
gram 1a which includes scattering by the free electron. 
When q ~ m, however, scattering by the free electron is 
kinematically impossible, and all the diagrams contain 
a small term of order aZ connected with the Coulomb 
transfer of momentum q to the nucleus. For small 
q ~ 1'/ the contribution of the diagram 1a to the cross 
section is of the order of unity, and the amplitude com­
puted with the aid of the diagrams of Fig. 1 will be cor­
rect to within terms of the order of qjm ~ aZ. 

For large momentum transfers q ~ m to the nucleus, 
the entire process should take place at small distances 
of order of q-l ~ 11m from the nucleus. The probability 
of finding an electron at such small distances is pro­
portional to hp(r ~ 11m) 12 m-3 ~ 11th = 0) 12 m-3 ~ (aZ)3. 
Thus the cross section, together with allowance for the 
Coulomb factor aZ in the amplitude, is proportional to 
r~(aZ)5, where ro = aim is the classical electron radius, 
which determines the order of magnitude of the free 
Compton-effect cross section. 

All the computations are carried out on the basis of 
the electron-nucleus Coulomb interaction; this approx­
imation is valid for one-electron atoms. At large mo­
mentum transfers q ~ m the influence of the screening 
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by the atomic electrons is small and all the results 
obtained are applicable to neutral atoms with a relative 
accuracy of the order of (aZ). For processes involving 
K-electrons, screening is small for any q. 

The diagram 1c has a resonance behavior (Sec. 4) 
connected with the production of an almost real final 
electron of small virtuality ~ 1'/ and its subsequent se­
scattering by the Coulomb field of the same nucleus. In 
the region of the resonance, the factor (aZ)2, which 
arises as a result of Coulomb scattering, is cancelled 
out and the cross section becomes equal to the product 
of the Compton-effect cross section on the free electron, 
the Coulomb scattering cross section, and the resonance 
factor proportional to I lj!(0) I 2 ~ (aZ)3 and dependent on 
the state of the atomic electron. The resonance width 
~ 1'/ and therefore the total contribution of the resonance 
to the cross section yields a value of the order of (aZ)4, 
whereas the nonresonance part makes a contribution of 
the order of (aZ)5. As aZ increases, the contribution 
of the nonresonance diagrams increases and the reso­
nance is gradually smeared out. 

Diverse, simple, limiting cases can be obtained from 
the general formula for the differential cross section 
(Sec. 4). 

The entire analysis of the present paper is valid for 
incident-photon energies WI much higher than the ioniza­
tion potential 1'/2 /2m. For energies WI ~ 1'/ the momentum 
transfer q $ 1'/; therefore, as has been pointed out before, 
the formulas are valid to within terms of the order of 
wilm ~ aZ. In this case the dipole approximation is 

FIG_ L Feynman diagram for the 
process_ 
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inapplicable. Note that in this region the nonrelativistic 
Pauli approximation(l,3) yields correctly only the zeroth 
(with respect to aZ) term determined by the sea-gull 
diagram. (3) Terms of the order of w1/m that are con­
tained in the nonrelativistic pole diagrams (l) are an 
excess over the accuracy, for the relativistic correction 
to the dominant term is also of the order of (E - m)/ 
m ~ w1/m, where E = W 1 + m - 112/2m is the total energy 
of the system (the energy of the intermediate electron 
in the Dirac pole diagram in Fig. 1)(2,3). The low-energy 
theorem (terms ~ W1/m)(2) can be derived only on the 
basis of the relativistic approach. Thus, the nonrel­
ativistic approach with allowance for higher-order terms 
of perturbation theory in which the perturbation is the 
Coulomb field is valid only in the dipole approximation, 
i.e., for W1 « 11. The allowance for retardation carried 
out in the nonrelativistic approximation (1,4-6) is an exag­
geration of the accuracy. 

The Compton effect on the bound electron with ioniza­
tion, when 11 » W1 ~ 112/2m, has been considered in a 
number of papers (4,s ,7). The results of these papers are 
matched with the results of the present paper for 
11 » W1 » 112/ 2m. 

2. AMPLITUDE AND CROSS SECTION 

Let us denote by Ki = (Wi, ki) the momenta of the 
initial (i = 1) and final (i = 2) photons. P = (E, p) is the 
momentum of the outgoing electron. Let us also intro­
duce the 4-vectors: 

Q=(m,q), K=K,-K,=(w,-w"x), (1) 

(h = c = 1), where q is the momentum imparted to the 
nucleus and K = k1 - ~. We shall denote the absolute 
values of the corresponding three-dimensional vectors 
by the quantities p, q, and K. Using this notation, we can, 
in the approximation being used here, write the energy­
momentum conservation law in the form of a single four­
dimensional equation: 

K, + Q = P + K, and Q = P - K. (2) 

The amplitude of the process is determined by the 
sum of the three Feynman diagrams (Fig. 1) and three 
similar diagrams with the photon lines interchanged. 
Therefore, it is sufficient to compute the diagrams in 
Fig. 1. The hatched block in Fig. 1 represents the wave 
function of the initial electron, which we assume for 
simplicity, to be a K-electron. The wave function of a 
K-electron in the Coulomb field has in momentum space 
the following form (terms of order (aZ)2 are dis­
carded):(S) 1) 

<flcp) = (1 + fi 2m)u,<flcp'>, f = af, 

(1 + f / 2m)u, = Ut + 0(1' / m'), 
(3) 

where a and uf are the Dirac matrices and bispinor for 
an electron with momentum f, llo is the bispinor for an 
electron at rest, and (fl ql) is the nonrelativistic function 
of a K-electron: 

<flcp') = N(-o / orr)<fl v,.IO), (4) 

<fIV,.ls)=4n/[(f-s)'+rr'], (fIV,.ls)=<f-sIV .. IO), (5) 

N=1jJ(r=O) = (rr'/n)"', rr=maZ. (6) 

The quantity (5) is the Fourier component of the Yukawa 
potential. The function (4) is normalized by the usual 
condition: 
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The dominant contribution to the integrals (7), as to 
all integrals with the function (3), is made by the region 
f ~ 11 (6). The diagram in Fig. 1a is a simple product of 
the diagram for the free Compton effect and the wave 
function (3) with the argument f = q. Its contribution Ia 
can be written in the form 

(8) 
V2 = K2 + P, ro = a / m, a = q2 + 11 2, al = V2 2 _. m2, 

A = 1,Ao - "(A, Ul! = 2m. 

The vectors Q and P are defined in (1), ei are the photon 
polarizations, and up and llo are Dirac bispinors. 

In the diagram of Fig. la, the whole transferred 
momentum q can be imparted to the nucleus only via the 
wave function of the initial electron. Therefore, for 
large q this diagram is small owing to the smallness of 
the wave function (3) when q ~ m. For small q ~ 11 the 
wave function is not small and the quantity ~d3q ~ r~. 
The second term in (3) then yields a correction of the 
order of aZ as compared to the first term. 

In the diagrams of Figs. 1b and 1c, the whole mo­
mentum can be transferred to the nucleus via a second­
ary Coulomb photon, while the argument f of the wave 
function is made small: f ~ 11. The region f » 11 makes 
a small contribution, on account of the decrease of the 
wave function. Therefore, the second term in (3) can be 
discarded, i.e., in the diagrams of Figs. 1b and 1c, it is 
sufficient to consider only the nonrelativistic wave func­
tion of the initial electron. Discarding the quantify f ~ 11 
in the electron propagator2) of the diagram in Fig. 1b, 
and considering the momentum q to be arbitrary, we 
obtain the contribution Ib of the diagram in Fig. 1b in 
the form 

With the aid of the representation (4) and the trivial 
identity 

we obtain 

(9) 

<ql V,lcp') = N<ql Vp+,.IO)_ (10) 

Substituting (10) into (9) and setting p = 0, we finally 
obtain for Ib: 

(4n)'Nrr _ - - - -
I. = ro---u,e,(v, + mho (v, + m)e,u,; 

aa,a, (11) 
v, = K, + M, a, = v,' - m' = 2mw" M = (m, 0, 0, 0) 

In the diagram of Fig. 1c, the small three-dimensional 
vector f ~ 11 can also be discarded in the numerators of 
the electron propagators and in the denominator of the 
electron propagator coupling the photons of momenta 
k1 and~. The denominator of the second electron prop­
agator can however be small, and therefore, we cannot 
discard the vector f in it. Noting that this denominator 
can be written in the form 

(f+x)'-p' 
~<-xIV If> 
4n ' 

(12) 
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and using Eq. (10), we obtain for the contribution of the 
diagram c the following expression 

(13) 

P'=P-Q+M= (e,x),' a,=x'- (p+iTj)'. (14) 

The sum of (8), (11), and (13), together with the cross­
symmetric diagrams, leads to the following expression 
for the amplitude A of the process3 ): 

A = r,(4n)'NTja-'up Fu,; (15) 

F = {L,e, (v,+ m)e, (0 + m) + L,", (v, + m) fo (VI + m)", 

+L,fo(P' +m) ",(v, + m)", + (K2~ - K"e,~e,)} 

x (1 + 0 (aZq'jm', a'Z')), (16) 

L, = 1 / aa" L, = 1 / a,a" L, = 1 / a,a,; 

a=q'+Ij" a,=2mw., a,=v,'-m', a,=x'-(p+iTj)', 

v,=K,+M, v,=P+K" P'=P-Q+M, M=(m,O,O,O). 

The differential cross section for the process averaged 
over the initial and summed over the final photon and 
electron polarizations v and A respectively can be ex­
pressed in terms of the amplitude A in the form 

dr = d'pd'k,6(w, + m - e - w,), 

The expression for J has the form 

';.J = 2L,'{q'[PK,(w,-4) -EI +4[PK,(l +PK,) + 11} 
+4L,'{(w, -1) [PK,(k,k, + w,w,) +QK, - 2w,EI + ePK, 

+ 2E} +4IL,I'{K,K,[ (w, -l)(pk, + ew,) - ew, - 3w, - 11 
+ PK,(w,'+w, + 1) -PK,(w,w, + E) + eE(t + E) + w,(w,-l) 

+2e(e-1) (E + w,)} +L,M,{q'[(e -1)q' +3K,K,-41 
+ 4 (K,K, + 2)} + 2L,M,{(k,k,)' + (3 + e' - 2e') (k,k,) 

+ e[2(pk,) (pk,) + (2 - w,)pk, - (2 + w,)pk, + 6e - 21 
+ w,w,(e' - w,w, - 6e + 1)} + 2(L,M;) {(e' - e + px) [2(e -1)K,K, 

- 2e' + 5e -11 + (2e + 1) (K,K;) , - (2s' - e + 1)K,K, + e' + 4e -I} 
+ 4L,L,{PK,[E(PK,) + w,PK, - (e + 2)K,K, + 2w,w, + 2w, - 3w,I 

+ 2 (QK, - w,' + 2E)} + 4L,M,{w,(PK.)' - w,(PK,)' +PK,[ (e + 1)QK, 
- 2QK, + Ew, + 2ew,] - PK, (eK,K, + (o,w, + 2eE) - E (1 + e + 4w,) K,K, 

- 2w,'Q' - W,W, + 4e} + 4Re(L,L,) {PK,[E(PK,) - w,PK, - eK,K, 

+ (w, -1) (4e + w,) - w,(2e + ,i) I + K,K,e (6 + 2W2 - 5w,) 

-PK,(Q' + w,' + elll, + 2e' - 6e - 3E)+ 4eE+ 2w,(e - 1)+ 1ll,(Ill, - 2)} 

+ 4Re(L,M,) {PK, (28K,K, + 2PK, - QK, + elll, - 2e' - 58 - i) 

+ K,K,(e' + 28 - Ill, + 3) + PK.(2e - 2w, - Sill,) 

+ (K2K,) ' + w,w,Q' + e (61ll, - Ill, + 4 - 2ew,) + 31ll.} 

+ 4Re(L,L,){(1- Ill.) [(PK,)Q' -t: 2e(e -i)QK, 

+ 2 (EIll,PK - elll,PK, + EeK,K, - 1ll,Ill,) + Ill.) 

+1ll1(Ill,PK,-Ill,PK,- eK,K, + e) +E(PK) -PK,-21ll, 

+2e(i + E' + IllzE)} +4Re(L,M,) {(2e'- PK) (eK,K, +Ill,PK, 

- w,PK,) + K,K, (2PK. + 21ll, - 38- eEl + PK, (PK, + elll, + EIll, - ZE) 

- PK,(E' + eE + elll, + Ill,) + w,(2e' + 31ll, -Ill,) 

+ 4eE(e + Ill, - elll.)} + {(Ill" k,) .,. (-w" -k,)}. 

(19) 
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Here 

m = 1, E = 1 + Ill, = 8 + Ill" AB = a"b. - ab, 

P=(E,p), K,=(Ill"k,), K,=(w"k,), Q=(m,q), 

K= (Ill,-Ill"x), X=k,-k" Q=P+K,-K" K=K,-K" 

M,(w., Ill" k" k,) =L,(-w" -Ill,; -k" -k,). 

The above-cited formula has been verified by us by 
going over to the numerous limiting cases obtained in 
Sec. 4 by other methods. 

3. KINEMATICS 

For small q ~ 1/ the dominant term in the amplitude 
(15) and (16) will be the first term containing a-2 • For 
large q ~ m the dominant term will be the third term 
containing, for I K - pi ~ 1/, the factor a;~ To separate 
out the resonance region, we must go over to new var­
iables that fix the quantities q, K, and p. 

The process under study is, as can be seen from the 
diagrams of Fig. 1, equivalent to a process with five 
initial and final particles, and has five independent var­
iables. These five variables are W, and the four inde­
pendent variables entering into dr in (18). One of the 
azimuthal angles entering into dr corresponds to a rigid 
rotation of the whole system of vectors k" ~, and p, 
which are fixed relative to each other; it does not enter 
into the amplitude. The differential with respect to this 
angle can, after averaging over all the polarizations, 
be replaced by 21T. Selecting as such an angle the 
azimuthal angle of the vector ~ and going over from the 
polar angle to the variable K, we obtain 

To select the remaining variables, let us consider the 
system of coordinates shown in Fig. 2, with the Z axis 
directed along the vector -K, and the vectors k, and k2 
lying in the XZ plane. In this system, for fixed mag­
nitudes of the vectors q, K, and p, the rigid triangle 
formed by these vectors can rotate through an arbitrary 
angle 0 :::s cp :::s 21T about the Z axis. Using as the three 
remaining independent variables the quantities p, q, and 
cP , we obtain 

d'p - pq dp dq d'P. 
x 

For a fixed value.ofp, the energy Ii-function in (18) is 
removed with a unit Jacobian by the differential dw2 , 

and we finally obtain 

dr = 2n qplll, dx dq dp d'P. (20) 
Ill, 

On the angle cp depend, as can be seen from Fig. 2, 
only the scalar products p, k" P :~, q . k" and q:~. 
However, the analytical integration with respect to this 
angle considerably complicates the formula (19). Let 
us ,also write out the phase volume in the variables n~ 

z 

I~~--+-~Y 

FIG. 2 
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and q. Before integrating the energy a-function with 
respect to dW2 in (18), we can replace d3p by d3po For 
fixed nk2 and q the momentum p depends on W 2 • There­
fore, there appears a Jacobian in the integration of the 
energy a -function with respect to dw2, and the phase 
volume (18) assumes in terms of these variables the 
form 

oo,'e ( qk, ) ( q' ) df= I , dQ.,d'q""df.d'q 1+-· +0 2" ' 
moo, - qk, - q 12 moo, m 

The physical region of the variables p and K for a 
fixed Wi and different q is limited by the conditions: 

(21) 

Iq -pl<x<q + p, e - m = (i), - 00,< x< (i), +00,= 200, + m - e, 

£2 = pZ+m2. 

In Fig. 3 are drawn three straight lines: K: p + q, 
K: p -q, K: q -p, and two hyperbolas: K: EO - m, 
K : 2wi + m - Eo The physical region, which is the 
region enclosed by these curves, is hatched. For q: 0 
the straight lines K : p + q and K : p - q coincide, and 
the physical region degenerates into the straight line 
K : p with the maximum momentum p : Po : 9'0(0), where 

9' ( )= (2oo,+q) (2oo,+2m+q) 
• q 2(2oo,+m+q) . 

The value Po coincides with the maximum electron 
momentum in the free Compton effect. As q increases, 
the maximum value of the momentum Po(q) increases 
and attains the point of intersection of the two hyperbolas 
with the value p : Pmax : (Wi (Wi + 2m))1/2 when q: ~ 
: Pmax - Wi· When q > ~ the curve K : p - q ceases to 
be a boundary of the physical region. The value W2 : 0 
corresponds to p : Pmax. These values of the variables 
are attained only when q > ~. For q < ~ there exists 
a minimum W2: 

The resonance region I K - P 1 ~ 1] corresponds to the 
nearest vicinity of the straight line K : p. The regions 
p < q/2 and p > Po lie below and above the curve K : p. 
Therefore in these regions a resonance in the amplitude 
cannot arise on K : p. This is natural, since the section 
of the resonance diagram in Fig. 1c located to the left 
of the pole term with momentum p is the amplitude of 
the free Compton effect, for which the maximum mo­
mentum is Po, while the minimum 

pmin= Ix+qlmin=q/2 for X=pmin' 

Thus, the regions p < q/2 and p > Po make a contribution 
of the order of (aZ)5 to the amplitude, while the con-

p 

" " " " " " 
lp.;qino.r 

FIG. 3. The physical region (hatched) of variation of the variables, 
m:\. 
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tribution of the entire remaining region, which contains 
the resonance, is of the order of (aZ)4o 

For q > 2Wi there arises a minimum momentum value 
equal to Pmin : - Y'o(-q) > O. For q ?:: 2po the entire 
physical region is located in the region p ?:: Po, where 
there is no resonance 0 Therefore, the cross section is 
of the order of (aZ)5 when q > 2po. In the region q ~ 2po 
the cross section da/dq should drop from a value of the 
order of (aZ)4 for q < 2po to a value ~ (aZ)5 for q > 2po. 

4. ASYMPTOTIC FORMULAS FOR THE CROSS 
SECTION 

10 The region of small momentum transfers q: 

q ¢: p = x, p ~ 1], (i), ~ 1]' /2m, 0 < cp < 2n. (22) 

In this region the dominant term is the diagram of Fig. 
la, Le., the amplitude (8), or the first term in the 
amplitude (16). The diagram of Fig. la, (8), is the pro­
duct of the nonrelativistic wave function of the bound 
electron (ql cl> and the amplitude of the Compton effect 
on an electron with the initial momentum q. The latter 
factor contains linear correction terms of the order of 
q/m, the neglect of which leads to the standard impulse 
approximation. Furthermore, the linear terms of the 
order of q/m arise from the wave function of the final 
electron and are contained in the diagram of Fig. 1c, 
(13) . 

Thus, in terms of the variables of (21), and up to 
linear terms of the order of (q/m), the expression for 
the cross section has the form 

QK d' . '+ ' , 
dcr= moo', 1 <'I'°lq> I' (2!),dcrq(1-::~ (n~)':'l' )(1+0( ~,)), 

. (23) 
where n: K/K and daq is the cross section for the free 
Compton effect on an electron with the initial momentum 
q. The latter factor arose from the wave function of the 
final-state electron. 

Expanding (23) in powers of q and retaining only the 
linear terms, we obtain 

d'q {( e xq q' + 1]' ricr= 1<'I"lq> 1'--. dQ" a. 1--
(2n)' m x' (nq)'+'l' 

+~) -a,~-(l,~}, 
mUll m(j}, mcuz 

iJ ((i)" ) a,=U);-,,- --zoo, 
(j(Ui uh 

(24) 
ro' { W1 W2 a l (WI, hl 2)=--;-- -~-
2 uh (1)1 

where dao : aodnk2 is the differential cross section for 
the free Compton effect on an electron with zero initial 
momentum: 

cro=!~=~(~)'{~+oo, +(~-~)'+2(~-~)}. 
dQh~ ::: w, (JJ~ (')\ (J), {JJ2 Ul, (tJz 

(25) 

Upon integration of (24) over the angular variables, 
the terms linear in q vanish, and we obtain 

ria = ~2 (;5~ ~q), cro'"' ((i),) [ 1+ 0 ( ::,) ] , (26) 

where a~ot(wi) is the total cross section for the free 
Compton effect. After integrating (24) with respect to 
d3q, we find dO' to be coincident, on account of (7), with 
dao when terms of the order of (aZ)2 are discarded. 

The formula (26) is for an initial electron in the 1s 
state. In the region 1] « q « m formula (26) remains 
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valid for states with arbitrary quantum numbers nand 
l, upon the replacement of 1/ by 1/n = 1//n and the multi­
plication of (26) by the factor (1/n/q)2l. 

2. Region of resonance behavior: 

Ix-pl-'1, q/2~p~p" q~'1, O~ep~2". (27) 

In this region the dominant term is the diagram of Fig. 
1c-the third term (13) in the amplitude (16). The reso­
nance behavior is due to the fact that the energy and 
momentum of the second intermediate electron line in 
Fig. 1c are fixed by the external variables K and p up to 
terms of the order of f ~ 1/: 

E' = (p' + m') "', p' = x. 

Therefore, for Ip - KI ~ 1/ this intermediate electron 
becomes almost real, while the corresponding propa­
gator becomes a large quantity ~ 1/-1. 

This phenomenon always arises when some term of 
the amplitude of the process can be split into two blocks 
which are amplitudes of real processes and which are 
connected by one line. Such a situation obtains for 
"three - three par tic Ie" trans i tions, as well as for "two­
three particle" transitions if one of the initial particles 
is unstable. UO) If by change the initial particles figuring 
in the various blocks are not bound, then the "resonance" 
is infinite, the amplitude is indeterminate, and the cross 
section depends on the laboratory conditions. In scatter­
ing on weakly bound systems there arises a resonance 
of width of the order of the binding momentum if the co­
ordinate wave function does not have singularities in the 
vicinity of the origin and depends only on the radius 
a = 1/-1 of the system, a situation which obtains in our 
case (the third particle here is the nucleus). In the 
presence of a singularity of the coordinate wave function 
at the origin, there arises, instead of a pole singularity, 
the well-known logarithmic singularity (see (29) below). 

Let us set K = P in all the terms in (13) (in the resi­
dues at the pole) except the resonance (pole) term a;1, 

PA, + ~ ,-, m= LUl(; U IC , P' =(e,x), 
, 

where u~ is the Dirac bispinor with polarization X, we 
can rewrite (13) in the form 

(28) 

(-xl vpleplO') /4" = N / a" a, = 2p(x - p - i'1), (29) 

where A~ and A~ are the Coulomb-scattering and free­
electron Compton-effect amplitudes, connected by the 
net polarization X of the intermediate electron: 

(30) 

Using the nondependence of the Coulomb scattering 
in the Born approximation on the polarization X and the 
expressions (20), (25), (28), and (30), we obtain the 
cross section in the region (27) in the form 

dx [ (X - P )] do=R.,(x,p)z;:do,doc 1 +0 -p-.- ; (31) 

R", = :~, 1(- x IV. lep.I'> I', 

mpdp 
do, = 0,2,,-­

(U~-€ 

Oc =~= (2eaZ) , (1-.1..-.) 
dQ p q'. 48" 

N' 
RIO = ( )' + " x-p '1 

qdq 
doc = oc2" -­

.p2 ' 

e=ro, +m-ro" 
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, 
N'=~, (32) 

" 

(33) 

where ao and aC are the differential cross sections per 
unit solid angle for the free Compton effect and Coulomb 
scattering in the Born approximation; ao is determined 
by formula (25). 

As can be seen from (31), (32), and (33), the cross 
section depends only on the variables w, p, q, and K, and, 
what is more, the entire dependence on K is concen­
trated in the factor (32) (see (29) and (13)). The de­
pendence on the fifth variable cp in the region (27) dis­
appears dynamically, and, therefore, dcp is replaced in 
(31) and (33) by 21T. 

The cross section (31) depends on the state of the 
initial electron through the resonance factor Rnl (32). 
In the case of an initial electron in the Is state, RlO has 
the standard Breit-Wigner form (32). In the case of the 
2p state this factor has the form of a resonance at a 
pole of order 2: 

N,''1.' 
R 2I = [(~-p)'+'1,'l" (34) 

In the general case the expression for Rnl is rather 
unwieldy, but in the region 1/ « I K - P 1 « m the quan­
tity Rnl has the simple form: 

N." '1") I '1 
R ----(--- 1].=-. 

nl- (x-p)' (x-p)" n 
(35) 

Thus, from the shape of the peaks in the region 
I K - P I ~ 1/, as in the case of the region of small q « m, 
we can determine the quantum numbers of the initial 
electron. 

The formulas (31) and (24) are valid for any process 
involving a bound electron, with dUo equal to the corre­
sponding cross section for the free electron. The 
formula (31) has a simple meaning. Notice that 

dx 
2"x' - dr, N'=~ 

V' 

where a = 1/-1 is the Bohr radius, V is the volume oc­
cupied by the bound electron (volume of the atom), and 
r is the path traversed by the electron between the 
Compton and Coulomb interactions. Then (31) can be 
written in the form a = aoacr/V. The cross section a is 
the cross section for a double interaction of an electron 
first with a photon and then with the Coulomb field of 
the nucleus. The probability of such an interaction is 
equal to the product of the probabilities of each of the 
interactions, while the cross section is equal to the 
product of the cross sections for one of the interactions 
and the probability of the second. The probability of the 
latter is equal to the ratio of the volume of a cylinder 
of cross section aC and length r cut out from the entire 
volume V occupied by the electron to the volume V. Far 
from a resonance r ~ l/m. A resonance develops in the 
sense that the electron is able to traverse before the 
second interaction a distance r of the order of the 
dimension a of the atom (i.e., r ~ a). In this case the 
probability of the second interaction is proportional to 
the ratio of the cross section ac for the interaction to 
the cross section S = 1Ta2 of the atom, and a = aoac/S. 
Note that V ~ n3 and S ~ n2, where n is the prinCipal 
quantum number of the bound electron. Therefore, as 
n increases, the cross section a decreases, becoming 
zero as n - co. This corresponds to the absence of the 
effect on a single free electron occupying the macro­
scopic (normalization) volume V. 

In real targets there is a finite density of atoms 
110 = L-3 , where L is the interatomic distance. There-
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fore, as the virtuality I K - P I of the electrons decreases 
right up to values of the order of the inverse inter­
atomic distances: I K - pi - L-1 , scattering of the out­
going electrons by neighboring atoms begins. The mag­
nitude of the cross section for this process is deter­
mined by the formula a = aollolaC = aoaCl/L3, where l is 
the target thickness. For solid targets this value turns 
out to be larger than the integrated cross section (31). 
However, the cross section with scattering of the out­
going electron by the neighboring atoms does not depend 
on the state of the initial electron and is confined in a 
considerably narrower peak for a varying K and a fixed 
p than the cross section (31), since 1/ = a-1 » L-1 • There­
fore, when the energy resolution is good, i.e., 6. « 1/, 
the process with scattering by neighboring atoms 
(multiple scattering) can easily be separated from the 
process with scattering of the outgoing electron by "its 
own atom" (31). 

Integrating formula (31) over K, we obtain a cross­
section distribution over the p and q variables that 
determines the central portion of the cross section in 
the plot of Fig. 4: 

~=2n1']'oooc~, ~,;;;p';;;Po. 
dq dp w,'ep 2 

(36) 

Notice that only the lowest order diagram, Fig. 1c, 
of the perturbation theory has a resonance behavior 
connected with the presence of the pole a;l in the 
amplitude (13). When all the subsequent approximations 
(with respect to the Coulomb field) to the wave function 
of the final electron are taken into account the pole is 
converted into a branch point of the form a;l-i~ (see[S)). 
The diagrams containing the corrections to both the 
wave function of the final electron and the electron 
Green function (for example, the combination of the 
diagrams in Figs. 1b and 1c) do not, in general, contain 
singularities in the neighborhood of I K - pi - 1/ and do 
not have a resonance behavior. As Z grows, these dia­
grams begin to playa greater and greater role and the 
resonance is washed out. 

3. The region of low w2 : 

W2« W" x"" w" p "" pm,,", q > pm"x - W" W,:$> 1']2 / 2m. (37) 

This is the infrared region, where the dominant terms 
are the diagrams of Figs. 1a and 1b, which contain the 
pole 1/w2' owing to the emission of the outgoing photon 
from the final-electron line. The cross diagrams in 
this case are small, but they play an important role when 
gauge invariance is used, for example, in the summation 

Ida/If. dpJlm'/MJ, mb 

IOf---.--+----+--1I----i 

o I.n 

FIG. 4. Plot of the dependence 
of the cross-section distribution 
daldqdp on p for an intial electron 
in the Is state for w, = 0.806m, q = 
0.925m, and Po = 1.115m: for the 
cUIVes I-Z = I, M = lOs; 2-Z = 
13, M = 10; 3-Z = 26, M = I; 4-
Z = 50, M = 10-'. The dashed 
cuIVes have been constructed in the 
region p - Pmax from the infrared 
formula (40). 
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over the photon polarizations. The cross section for the 
process in this region is represented in the form of a 
product of the cross section daf for the photoelectric 
effect and the probability dWy for the accompanying rad­
iation. As can be seen from Fig. 3, low values of W2 are 
possible only when q > ~ = Pmax - Wl, where <lo is the 
smallest possible value of the momentum transferred 
in the photoelectric effect" The cross section summed 
over the photon polarizations has the form 

sin'tt, = 1 - (nn,)', q = Pm", - k" 

dW = ex P:,"X - (Pm"xn2) , dQ dw, 
, (2,.,)' (e,,,,,, - (Pm"Xn,))2 ." W2 ' 

n, = k, / w,' n = pm,," I pm"" pm,," = (w, (w, + 2m)) 'I"~ 8 m ", = w, + m. 

Integrating dWy over the angular variables and going 
over to the variables q and p, we obtain the following 
cross-section distribution over the p and q variables 
(see Fig. 4): 

do / dqdp = o,W,2nq / w,w,emO"' 

W = w. dW, =.5::.. (~In emox + Pm", -1)' (40) 
, - dw, n 2Pmox em" - pm" ' 

m ';$ 002, = Emax - E ~ .1, 
where 6. is the resolution in the measurement of the 
photon energy. 

4. The region of small p: 

1'] «p« q '" x, W2=W,:$> 1']' 12m, 0,;;; '1'';;; 2n. (41) 

In this case all the three diagrams in Fig. 1 are of the 
same order when q - m. When q « m the diagram in 
Fig. 1b should be discarded in comparison with the dia­
grams in Figs. 1a and 1c. The cross section for the 
process in the region (41) differs from the photon-K-' 
electron elastic scattering cross section,[3) in that the 
phase volume of the final bound electron N2 , (6), is 
replaced by the phase volume of the outgoing electron 
d3p /(21T)3: 

1 d'p 
do=do,,---, 

N' (2n)' (42) 

ro' (41'] ) '{ , q' q' ( q') '} do" = - - (1 + cos tt) + -- - -- 1 - - (1 + cos tt) dQ". 
2 q 2m' 4m' 8m2 

where cos" = kl . ~/ W1 w2 • 

5. The region of small q and p: 

1'] « q - p ~ x «m, Wi:$> 1']' / 2m, 0,;;; '1'';;; 2n, (43) 

do= l<ql<p°)I' 1+- --doT =-- 1+- d'pdo T , (44) 1 a 'I' d'p 8 1']', q21' 
a, (2n)' n' q' a, 

Here 

dOT = 'hro'(1 + cos' tt)dQ' 2 

is the Thomson cross section, and a~ and a are defined 
in (16). If q« p, then a/as« 1, and (44) becomes the 
dominant term in (24) when p « m. If p « q, then 
a3 = a, and (44) goes over into (42) when q « m. Let us 
note an interesting equality that follows from (44): 

do / d'p I p«, = 4do / d'p I ,«p' 

We also derived the formulas (24), (31), (38), (39), 
(42), and (44) from the general formula (19). 

The authors are grateful to A. I. Vainshtein, E. G. 
Drukarev, and V. S. Polikanov for discussions. 
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t)The wave functions of electrons in other shells with the principal quan­
tum number n can be obtained from (3) by replacing 11 by l1/n, applying 
to (3) the differential operator rnlm [51, and discarding terms of order 
«(Xl)2. The amplitude of the processes involving such electrons is ob­
tained by applying this operator to the amplitUde of the process involv­
ing the K-electron. 

2)1t is not difficult to verify that in this case we discard terms of orders 
l1/m = (Xl and 11 2/2mw. 

3)We derived the expression (16) for the amplitude A also by computing 
one Feynman diagram of the form shown in Fig. la with the wave 
functions and the electron Green function taken in the Furry-Sommer­
feld-Maue [1,91 approximation, and subsequently expanding the result 
in powers of (Xl. To test the correctness of the computations, we also 
verified whether the amplitude (16) satisfies the condition of gauge 
invariance. 
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