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A semi-phenomenological description of some properties of surface impurity excitations 
on a small-radius free spherical surface in liquid helium is presented. The results of the 
analysis are used to interpret the experimental data on mobility of anions in weak He3-He4 
solutions. 

Negative ions (or anions) in helium have the struc
ture of a vacuum bubble of radius Ro "" 20 A with an 
electron inside the cavity. In helium solutions there 
should occur on such a bubble, as on a flat surface of a 
solution (see [1J), surface impurity levels occupied to 
one degree of another by s-impurities (unlike the 
V-impurities that occupy the volume of the solvent). 
The purpose of the present paper is to describe certain 
specific properties of such s-impurities, due to the large 
curvature of the anion surface. In addition, we discuss 
the interaction of anions with v-impurities. The solution 
of the latter problem is all important for the understand
ing of the features of anion mobility in helium solutions. 

s-IMPURITIES ON A SPHEREICAL SURFACE 

1. Just as in the case of a plane surface, the question 
of the real existence of surface levels near strongly bent 
boundaries cannot be solved theoretically. To introduce 
the concept of such levels it is therefore necessary to 
carry out at least qualitative experiments that confirm 
the existence of adsorption phenomena on spherical 
small-radius surfaces. As one such experiment one can 
cite the observations by Rayfield [2J, who has shown that 
the critical velocities of negative ions prior to forma
tion of the vortex ring around the moving ion depend 
noticeably on introduction of small concentrations of He3 
in the He4. At the same time, the critical velocity of the 
pOSitive ions reveals no such dependence. And since the 
surface levels for impurities near the anion surface are 
the only possible detail that distinguishes the anions 
from cations in this case, the indicated difference can be 
regarded as an indirect confirmation of the existence of 
such levels. Unfortunately, it is hardly possible to 
present any quantitative estimates in this case (although 
some attempts have been made [3J ), since the very mech
anism of vortex formation remains practically unknown. 

Another possible but still unrealized experiment ad
mits of a quantitative description. We write down the 
total excess energy <5 <I> connected with formation of an 
anion in helium: 

1\$ = lI'li' / 2m,Ro' + 411aRo', (1) 

where me is the electron mass and QI is the coefficient 
of surface tension on the anion surface. Minimizing <5 <I> 
with respect to Ro, so that R6 = 1Tn2/8me Ql, we rewrite 
(1) in the form 

1\$ = 4111i(lIa / 2m,.),,'. (2) 

We assume now that the anion passes through a reg
ion of the solution with a steep gradient of He3 concen
tration (for example, through a stratification boundary). 
If the surface tension coefficient QI in (2) depends on the 
local value of the concentration n3, then the anion will be 
acted upon by an effective force F 
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F = _ al\<ll = _ 2111i (_11_) 'I, !!!:..!!!:. 
az 2m,a an, az 

that either helps or hinders the passage of the anion 
through the region with V'n3. Actually, in the case of 
stratification of helium solutions, the component in the 
upper part of the path (medium I) is richer in He3, and 
the component in the lower part (medium II) has a 
smaller He3 content. Therefore, if surface impurity 
levels do exist on the anion, i.e., if QI increases with de
creasing n3, then to move the anion through the stratifi
cation boundary downward it is necessary to overcome 
the barrier 

. ( 11 ) 'I, 'I. 'I L'.<ll = I\<lln -I\<ll, "" 4111i - (an - a, '). 
2m, 

(3) 

On the other hand, if there are no levels then, according 
to Andreev ClJ , the dependence of QI on n3 is reversed and 
no barrier is produced. 

In practice, the presence of any barrier in the path 
of the ions becomes manifest in an activation dependence 
of the current through the barrier on the temperatureo 
Such activation dependences were observed by a number 
of workers both for the liquid-vapor boundary and for 
the stratification boundary. In the latter case, however, 
Kushner et al. [4J investigated only the Singularities of 
the downward (and not upward) flow of the anion current. 
The barrier produced in this variant is of electrostatic 
origin, is due to the discontinuity of the dielectric con
stant on the stratification boundary, and has no bearing 
on the question of interest to us, that of surface impurity 
levels on the anion. Attempts to trace the motion of 
ions in the opposite direction have not yet been made, 
although they should encounter no difficulties. 

The third possible source of information on s-impuri
ties on the anion surface are data on the anion mobility 
in weak He3-He4 solutions and offer practically un
equivocal evidence of the presence of surface states. 
This question will be discussed in detail below. 

2. Having verified that s-impurities actually exist on 
the anion surface, let us consider the properties of such 
states. It is necessary to note in this connection, first, 
that a similar problem was already investigated by a 
number of workers. Thus, Lekner[5J has shown that in 
a spherical surface, just as in a plane one, one can con
struct a single-particle Schrodinger equation for the 
s-impurities. In addition, mention should be made of 
the work of Dahm PJ and Kramer[6J , aimed at calculat
ing different concrete effects due to the presence of 
surface impurity levels on the anion; the starting point 
was the use of a "plane" dispersion law for the s-im
purities. Such an approximation for a real anion, as will 
be seen below, turns out to be very crude. 
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The formal problem of the properties of s-impurities 
on a spherical surface begin with the determination of 
the excitation spectrum. Just as in the planar case, this 
question has a simple solution for low-lying energy 
levels 

8,=-8'+11(1+1), 

1 = Ii' / 2m.R",11(l + 1) < 8" 1=0, 1, 2, ... , 
(4) 

Eo > 0, ms is the mass of the s-impurity, and the energy 
q is reckoned from the bottom of the end of the v-im
purities. The condition for applicability of the definition 
(4) is the requirement Ro :::?> A, where A is the charac
teristic damping length of the wave functions of the 
s-impurities. ~ our case, when Ro ~ 20 A and 
A ~ n(2m Eof1 (Eo ~ 2°K, ms ~ 10-23 g, i.e., 
A ~ 2-31), the condition Ro :::?> A is indeed satisfied. 

It should be noted that in the general case the spec
trum of the s-impurities on a sphere, as well as on a 
flat surface, has a more complicated form 

8n , = -8. + 11(1 + 1). 

This circumstance is illustrated by the model example 
considered in the Appendix. For the concrete values of 
Eo and ms known for the plane case, the probability of 
existence of levels with n > 0 does not exceed one-half. 
For this reason there are no special grounds for intro
dUCing into the theory the additional quantum number n 
in either the plane or the spherical problems. 

One more fact, which will be needed later on, should 
be mentioned. As seen from the model example in the 
Appendix, the damping length A of the wave functions of 
the s-impurities in the interior of the liquid phase de
pends only on the quantum number n, and does not de
pend on l. For this reason, all the s-impurities at the 
level Eo, regardless of the energy El they possess, have 
a damping depth A. This situation is not universal for 
surface problems. Thus, surface electrons on the free 
surface of liquid helium have, like the s-impurities, a 
damping length that does not depend on the wave number 
k of the electron along the surface [7]. But surface 
phonons, for example, have a damping length that de
pends on k[8]. For real s-impurities, it is still more 
reasonable to assume that A depends on l. 

3. Having an excitation spectrum at our disposal, we 
can easily establish the connection between the total 
number Ns of the s-impurities and the chemical poten
tiallJ.s of the given system: 

~ [, ( e, - 11. ) ] -. N.= ~2(21+1) exp -T- +1 . 
,-, 

Here El is taken from (4), and L := lmax is defined by 
the requirement 

(5) 

8, -lL(L + 1) ;;;. O. (5a) 

The chemical potential IJ. s' as follows from general 
thermodynamic considerations [1, 9J, should coincide 
with the chemical potential IJ.v of the impurities that fill 
the volume of the solvent: 

[ 2m. (m,T ) '1,] 11.=-Tln - -- , 
cp 2nli' 

(6) 

where p is the density of the solvent, c is the relative 
volume concentration of the solutions, and m3 and m, 
are the masses of the He3 and He, atoms under volume 
conditions. 

Combining (5) and (6) we have 
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• 2 T 'f, I e I ) ] -1 

N(e T)=\"12(21+1)[~(~) exp (--'- +1 ., ~ ep 2nli' T 
1=0 

This relation connects Ns with c, i.e., it solves the 
problem of the dependence of Ns(c, T) on the volume 
characteristics of the solution. 

(7) 

Let us discuss the content of formula (7). Let the 
concentration c and the temperature T be such that the 
following inequality is satisfied 

( leo I ) 2m. (m.T) 'I, 
A(e,T)exp --r ~1, A(e,T)=q;- ~. (8) 

In this limit, all the remaining terms from Ns(c, T) with 
1 > 0 will be exponentially small in comparison with the 
first term 1 = 0, and expression (7) simplifies to1) 

N.(e, T) ~ 2A-l(e, T) exp (1801 IT) < 1, (7a) 

recalling in this form the definition given by Andreev[ 1] 
for ns of the "plane" case. However, if we fix c in (8) 
and start to lower the temperature, then very soon this 
inequality is violated for the level 1 = 0, corresponding 
to saturation of the first possible level in the well for 
the s-impurities. Under similar conditions, when 
A(c, T)exp (-/Eol/T) < 1, but A(c, T)exp (-iE11/T) > 1, 
the occupation of the level I = 1 begins, and the quantity 
Ns(c, T) follows the following behavior: 

N.(e, T) ~2+6A-'(c, T) exp (le,J IT). 

When the temperature is reduced further, higher and 
higher levels are included, up to the degeneracy tem
perature T~, defined for a given concentration c by the 
inequality 

A(e, TF') exp (- le.1 / Tp ') '" 1. (8a) 

In the region T < T~ we have 
• 

N. (e, T) ~ N.(e, 0) ... N.' = 1: 2(21 + 1). 

• 
Thus, unlike the "plane" case, the temperature depen
dence of Ns(c, T) cannot be characterized by anyone 
activational exponential, with the exception of the vicin
ity of the parameters satisfying the inequality (8). 

The contribution t:.a of the impurity surface excita
tions to the coefficient of surface tension on a spherical 
surface is determined in complete analogy with 
Ns(c, T)[9]: 

0: = 0:, + Q. / 4nRo', 

Q,=-T.E 2 (21+1)ln[ 1+exp ( 11.~e,)], (9) 
,-, 

or, taking into account the relation IJ.s = JJ.v' 

Q, = - 2T.E (21 + 1)Jn [ 1 + A-'(e, T)exp ( I~I )]. (9a) 

Just as Ns(c, T), the quantity t:.a = ao - a at finite c 
and as T - 0 (T - T~) tends to a finite limit but does 
not depend on the temperature: 

. 1 • 
do: = --{ \"1 (21+ 1) le,1 - TN.'ln[A(e, T) l}. (10) 

"2.nRo2 -8 
However, whereas in the case of Ns(c, T) the approach 
to a constant value with changing temperature is at an 
exponential rate, in the case of a(c, T) the rate of this 
approach is given by a power law. 

SCATTERING OF v-IMPURITIES BY AN ANION 

1. The description of the interaction of v-impurities 
with anions is best started with a discussion of the ex-
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perimental data on the mobility of the anions in He3-He4 
solutions. Figure 1 of the article by Ketterson et al. [10J 
gives the presently most complete results of measure
ments of Jl in weak He3-He4 solutions for a broad tem
perature interval. From these data we plotted in Fig. 1 
the product JlC against c at different temperatures. 
Comparison of these plots with Fig. 1 of [1 oJ leads to the 
following conclusion: 

At low temperatures T « T~ and at solution concen
trations that are not small (c <. 10-3), there is a well 
prono~nxed temperature dependence of the mobility, 
Jl '" T 12, and JlC is independent of c. These circum
stances enable to use in the indicated region of c and T 
the well known expression for the mobility of an im
permeable sphere of radius R in a Boltzmann gas of im
purity excitation with volume density fi3: 

f! = 3e! 8n,R' (2nm,T) 'I,. (11) 

On the basis of (11) and the data of Ketterson et a!. [loJ, 
we obtain for R the value R = (2.6 ± 0.1) x 10-7 cm, which 
is much larger than the value Ro ~ 20 A in pure He4. 

With increasing temperature, the s-impurities begin 
to leave the s-levels. The start of this process corre
sponds to the vicinity of the minima on the plots of Jl 
against T in Fig. 1 of C10J • Thus, the position of the 
maxima of Jl (c, T) characterizes qualitatively the de
generacy temperature T~ for the s-impurities on the 
surface levels. Using the connection (9a) between c, T~, 
and lOU Which has the following explicit form: 

2m, (m,T.') ';'exp ( _~) "" 1 
ep 2nfl' T.·' 

and the experimental values of c and T~, which deter
mine the positions of the minima of Jl (c, T), we can 
estimate the value of EV The corresponding EL calcu
lated for different concentrations c are gathered in the 
table. The approximate constancy of EL with change of c 
in a wide interval indicates that the definition of T~ is 
reasonable. 

The transition region of mobility, which follows the 
temperature minimum, corresponds to a gradual spread
ing away of the s-impurity cloud, up to the vicinity of the 
maximum, where it is natural to assume the surface of 
the anion becomes completely rid of the s-impurities. 

2. The observed increase ~ of the anion radius at 
T « T~, together with the determination of the tem
perature-independent limits (7) and (10) for N<l and ~a, 
respectively, the presence of which qualitativJ'J.y justi
fies the appearance of ~R, is the most reliable (of all 
published) proofs of the existence of s-impurities on the 
anion surface. Moreover, the available experimental 
data on the anion mobility in helium solutions make it 
possible to estimate with a certain degree of accuracy 
the parameters Eo and ms of the s-impurity spectrum. 
To obtain these estimates it is necessary to calculate, 
in terms of Eo and ms' the total cross section for the 
scattering of v-impurities by an anion. The anion mobil-
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iO'c 

3.430 
0.726 
0.578 
0.170 
0.070 

0.15 ± 0.01 
0.10 ± 0.01 
0.09 ± 0.01 
0.07 ± 0.01 
0.06 ± 0.01 

0.27 ± 0.03 
0.23 ± 0.04 
0.26 ± 0.Q4 
0.26 ± 0.05 
0.26 ± 0.06 

ity corresponding to this cross section, which contains 
the arbitrary parameters Eo and ms' should be com
pared with the experimental data, from which Eo and ms 
are indeed obtained. 

One of tl),e main causes for the change of R in helium 
solution is the decrease of the value of the surface ten
sion on the liquid boundary of the anion. It is easy to 
take this influence of the impurities on R into account 
in the entire temperature interval: 

R' = nfl'! 8m,a, a = a, + Q.! 4nR,'. (12) 

with Us from (9). 

Much less rigorous is the description of the direct 
interaction of the v-impurities with the cloud of the 
s-impurities. Taking into account the complicated 
character of this multiparticle problem and planning 
henceforth only qualitative estimates, we confine our
selves here to the approximation called the "optical 
model." Within the framework of this model, the inter
action of the cloud of s-impurities with the v-impurities 
is described by introducing a certain potential barrier 
V 1 (which is generally complex), which additionally scat
ters the v-impurities. Recognizing the 15 -function char
acter of the impurity-impurity interaction 

(ao is the v-impurity-s-impurity scattering length), the 
height of the barrier Vi can be estimated from the ex-
pression 

(13) 

where n(r) is the average volume denSity of the s-im
purities in a spherical layer of thickness A around the 
anion: 

N,(e,T} (R-r) n(r}=---exp -- , 
4nR'", '" 

r~R. (13a) 

When writing down (13a), we used the fact noted above, 
namely that all the wave functions of the s-impurities 
with n = 0 attenuate at one and the same depth A which 
does not depend on l. 

Thus, the question of scattering of v-impurities by 
s-impurities reduces to a solution of the problem of s 
scattering of v-impurities by the potential V(r), 

V(r}= {U" r";;R(T} , (14) 
V.(r}+V.(r}, R(T}";;r<oo 

Vo(r) is an attraction potential that acts on the v-impuri
ties as well as on the s-impurities, V l(r) is given by 
(14), and Uo is the height of the principal barrier2 ), 

Uo ~ 6-7°K. 

3. In this section we obtain simple estimates for ms 
and Eo, using the experimental data on the anion mobility 
only in the low-temperature region T < T~. The lower 
bound for ms is obvious beforehand: ms ::> m~, where 
m O is the mass of the individual He3 atom. As to the 
up~er bound, it can be determined from the following 
useful considerations: it is natural to assume that the 
last L-th level in the well should be located at a height 
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such that the (L + l)-st level lies outside the well. 
Consequently, the distance between levels, ~EZ = EZ + 1 
- EZ' should satisfy the inequality ~EL ;;;:; EL in the reg
ion 1 ~ L, 

Taking into account the explicit form t:.EZ = 2y (l + 1), 
we obtain an estimate for L in terms of EL and ms: 

(L + 1) = "'8L / 2"(;;' 8.1 2,,(, "( = h' / 2m,Ro'. (15) 

We now write down the total change t:.R in the region 
T~T~: 

"'R"" '/,Rofj.a / ao + A.; 

1 L L' 
"'a=-R'" (2l+ 1) le,I L >, "" 4"(R' , eo"" "(L' + eL. 

2n 0 ~ n 0 

(16) 

1=(1 

In expression (16) for t:.R, the influence of the scattering 
potential (14) was taken into account by simply adding to 
t:.R the thickness A of the spherical layer occupied by 
the s-impurities. Such an approximation is valid if the 
height of the barrier (14) in the region T ~ T~ greatly 
exceeds the formal energy of the incident v-impurities. 
A numerical check on the inequality V 0 + V 1 »T in the . 
region T ~ O.l°K and ao ~ 2-3 A shows that at reason
able ms and Eo (taken from the plane problem) it is in
deed satisfied with a large margin. 

With the aid of (15), the value of L from (16) can be 
expressed in terms of EL and ms' Replacement of L by 
the smaller value EL/2y increases the term A in the 
expression (16) for t:.R, and decreases the term 
(1/4)Rot:.a/ao. As shown by trial estimates, the de
crease of the term (l/4)Rot:.a/O'o exceeds the increase 
of A, because in the former case L is raised to a higher 
power. As a result, relation (16) with allowance for (15) 
should be rewritten in the form 

8 'R'm' h' 
fj.R;;' _L_'_' + ~----:-----:---:-.,.,-~ 

32naoh' [2m, (ed"( + 1) ed'" 
(17) 

The inequality (17) connects the numerical values of 
t:.R, ElJ and ms' Substituting here t:.R ~ 6 A and EL 
~ 0.26° K, we obtain for m the estimate ms s;:, 1.2 
x 10-23 g. Accordingly, L ~ 17 and Eo :S 2.4-2.5° K. 

4. We proceed to a discussion of the singularities of 
the mobility jJ. (T) in the temperature region T > T~. 
Experiment reveals clearly that jJ. (T) is nonmonotonic 
in this region. Theory, on the other hand, yields the fol
lowing: We start with R(T). The quantity R(T) defined by 
(12) has the temperature dependence illustrated in Fig. 
2. The curves in this figure were calculated for 
c = 0.726 X 10-3 and for different variants of ms and Eo 
in the vicinity of ms ~ 10-23 and Eo ~ 2°K. With the aid of 
the data of Fig. 2 it is easy to verify that the expression 
f(T) = RaR/4TaT is positive in the entire transition reg
ion of the temperatures (this statement is valid in a wide 
range of values of c, ms' and Eo). However, the positive
ness of f(T) means that the observed nonmonotonicity of 
jJ. (T) is not connected with the dependence of the anion 
radius R(T) on the temperature. In other words, the rate 
of change of R with temperature turns out to be insuffi
cient for a change in the sign of ajJ./aT. The formal 
reason for the strong" smearing" of the transition region 
for R(T) is the already mentioned power-law character 
of the a(T) dependence at low temperatures (see (10». 

In view of these remarks, it becomes clear that the 
principal role in the formation of the temperature de
pendence of jJ.(T) in the transition region is played by the 
direct interaction of the v- and s-impurities. The ampli
tude of this interaction is proportional to Ns(c, T) and 
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FIG. 2. Plots of R2 (T)/Ro2 against 
Tat c = 0.726 X 10-3. The family of 
curves was constructed for the following 
values of the parameter ms and Eo (mo = 
10-23 g): I-ms = 1.3 mo, Eo = 2.l o K; 
2-ms = 1.1 mo, Eo = 2AoK; 3-ms = 
0.8 mo, Eo = 1.8° K. 

/~~ 
I} 9.1 D.t 0.3 D.¥ 

r, 'K 

consequently varies in the transition region at an expon
ential (and not power-law) rate, i.e., in principle, it can 
ensure a sufficiently rapid change, and of the required 
sign, in the total scattering cross section with increasing 
temperature. More detailed results, which confirm 
quantitatively the indicated point of view, are still un
available in view of the complexity of the corresponding 
multiparticle problem of v-impurity scattering by a 
clOUd of s-impurities. The simplified variant of the 
description of this interaction, used above to take s-v 
scattering in the region T ~ T~ into account (see form
ulas (13) and (14», was essentially based on the satisfac
tion of the inequality Vo + V 1 »T, In the transition 
region of temperatures, this inequality is violated. The 
applicability of the optical model to the description of 
s-v scattering under similar conditions calls for a more 
detailed discussion than given above. 

CONCLUSION 

The aggregate of the available experimental data on 
the properties of anions in weak He3-He4 solutions offers 
practically unequivocal evidence of the existence of 
s-impurity excitations on the surface of the anion. The 
spectrum of these excitations, unlike in the plane case, 
turns out to be discrete, and the occupation numbers are 
finite and sufficiently small. The calculation of different 
thermodynamic characteristics for an s-impurity gas on 
a spherical surface can be easily carried out by standard 
means and leads to a number of observable consequences. 
One such consequence is relatively high fermization 
temperature of the surface-impurity gas (in comparison 
with the volume temperature degeneracy for the given 
volume concentration of the solution). In practice this 
circumstance becomes manifest, for example, in the fact 
that the temperature dependence of jJ. (T) takes the form 
jJ. (T) c<> T-1/ 2 in a rather wide range of low temperatures, 
with a scattering length appreciably increased in com
parison with Ro. Under a similar situation, the s-impuri
ties fill completely the existing levels, so that the scat
tering cross section, increasing to the maximum possible 
value, ceases to depend on T, and the v-impurity gas 
retains its Boltzmann characteristics, as evidenced by 
the temperature dependence jJ.(T) c"" T- l12 • . 

The discrete character of the s-impurity spectrum 
introduces an entire set of activation exponentials into 
the temperature dependences of various thermodynamic 
quantities (unlike the plane case, when there is only a 
single exponential exp(Eo/T». The smoothest exponen
tial exp(EI'/T) with EL ~ 0.26° K, which determines the 
degree of occupation of the last and shallowest L-level 
in the well for the s-impurities, has nothing in common 
numerically with exp(Eo/T), Eo ~ 2-2.5° K, which char
acterizes the degree of occupation of the ground level. 
Therefore experimental observation of exp(EL/T) with 
EL ~ Eo (these data are gathered in the table), can be 
understood only within the framework of a theory that 
makes use of a discrete dispersion law for the s-impur
ityexcitations. Finally, the increase of the mobility in 
the transition region of temperatures and the tendency 
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of R(T) to approach Ro (which can be verified by direct 
estimates of the mobility in the vicinity of the tempera
ttu'es preceding the roton fall-off) is also qualitatively in 
good agreement with the general notions concerning the 
properties of s-impurities on the anion surface. 

However, not all the problems that have arisen in 
connection with the interpretation of the observed prop
erties of the anions in weak He3-He4 solutions can be 
regarded as solved even in principle. Thus, the question 
of the correct description of the interaction of s- and 
v-impurities in the transition region of temperatures re
mains open. The appearance of a dependence of MC on c 
at low concentrations (Fig. 1) remains unexplained, and 
this question can be regarded as a general one, having 
a bearing on the mobility of both the anions and the ca
tions. In fact, plots of MC against c for cations, con
structed by Neeper and Meyer[llJ, have a form similar 
to Fig. 1 at low concentrations. 

The author thanks A. F. Andreev for a critical dis
cussion of the results. 

APPENDIX 

We obtain the spectrum of the surface excitations on 
a sphere R with an attractive potential 

V(r)=-voexp ( R;r), Vo>O 

under the conditions AIR « 1 and q;(R) = 0 (q;(r) is the 
wave function of the s-impurity; it is assumed that a 
single-particle Schrodinger equation exists for the 
s-impurities). With the aid of the substitutions 

x= (r-R) / R, <p = np (A.1) 

we rewrite the Schrodinger equation in the following 
dimensionless form 

" [, 1(1+ 1) _,.] 
<p - % + (x+1)' -Voe, <p=0, 

<p(x) 10, _ =0, <p" == o"p/ ax', 
(A.2) 

Vo = Vo2m,R' / h', 6 = R / A :;}> 1. 

Recognizing that at 15 »1 and not too large IVai 
(corresponding estimates for IVai are given below), the 
major role in (A.2) is played, for all admissible l, by 
small x « 1, we replace (A.2) by the approximate equa
tion 

<p" + (Voe-OX-;')<p=O, 

<p(0) = <p(oo) =0, x'=%'+I(I+1), 
(A.3) 

Equation (A.3) can be solved exactly: 
<p(x) = Jv (£), 

(A.4) 

J 1I( ~) is a Bessel function with index v. The b0undary 
condition cp(O) = 0 leads to the equation JII(a) = 0, which 
is satisfied only for definite positive values of II. Having 
the set 110, 1'1> ••• , and expressing with Knl in terms of 
lin and 1 the aid of (A.4), we arrive at the following defi
nition of the spectrum: 

%n,' = '/,v.'6' -I(l + 1), (A.5) 

which is analogous to expression (4) of the main text. 
The quantity liiik for each value of n is determined by 
the requirement K~l > O. 

It should be noted that the behavior of the wave func
tion as a function of r is determined only by the con
stants lin' a, and 15, and does not depend on Knl or 1 
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separately. This means, in particular, that all the wave 
functions with given lin have the same damping depth, 
which does not depend on l. USing this remark, we can 
easily state a criterion for the applicability of approxi
mation (A.3). This approximation is valid for all vn that 
ensure a damping length An « Ro for the wave functions. 

In conclusion, let us estimate the probability of the 
existence of levels with n > 0 for a problem with param
eters R "" 20 A, ms "" 10-23 g, and EO"" 2-30 K. The 
damping length is Ao = n(2msEofll2 "" 2-3 1, i.e., the 
inequality AolR « 1 is satisfied. The parameter 110 is 
connected with Eo by the relation 

eo = h'vo' /8m,Ao', (A.6) 

From this we get 110"" 3-4. 

TUrning now to the dependence of Jv(a) on the index II, 
we choose from among the curves the first to vanish at 
110"" 3-4 on moving from the direction of large II. This 
curve coincides with the curve J II (7) shown in Fig. 3 
of[ 12J. We see that in the region of smaller II, there 
can be on the given line one more point V1 satisfying the 
condition J 1 (a) = O. But a small change of the param
eters R, Eo~ and ms ' whereby 110 is shifted closer to 3 
than to 4, leads to the vanishing of the intersection 111. 
For this reason, it is difficult to insist that there is a 
level with n = 1, although its existence is in principle 
possible. 

!lit should be noted that the real number of impurities on an individual 
anion cannot be much smaller than unity. It either has an impurity 
or has not. Formula (7a) and all the other relations of this type should 
be regarded as averaged over a large number of anions, each having or 
not having an impurity. 

2)The height Va of the principal barrier in the problem of the scattering 
of impurities by an anion consists of two parts: Va = Va (1) + Va (2), 
where Va (1) "" 2.7° K is the usual barrier for the impurity and the 
liquid-vapor boundary and Va (2) "" Pelv3 is a barrier of electronic 
origin (Pel = 31Th2 jBmeRoS is the effective electron pressure on the sur
face of the bubble and V3 is the volume of the v-impurity). Vsing the 
constants that enter in Va (2) and Pel (me is the electron mass), we ob
tain for Vo(2) the estimate V O(2) "" 2 - 3° K. The resultant sum is 
Va = Va (1) + Va (2) "" 5 - 6° K. 
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