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Doppler-shifted electron and hole cyclotron resonance and its effect on the surface re­
sistance of cadmium in the radio-frequency range are studied theoretically and experi­
mentally. Resistance oscillations due to excitation of electron and hole dopplerons in a 
plate and also impedance Singularities due to the presence of thresholds in the spectrum 
of the waves are Singled out by employing circular polarizations of the exciting field. 
The influence of dopplerons on the surface resistance of a bulky sample following dif­
fuse reflection of the carriers by the surface is considered for a simple model of a 
paraboloid-shaped Fermi surface. It is shown that the presence of thresholds in the 
doppleron spectrum leads to kink in the surface resistance as a function of magnetic 
field strength. The field strength dependence of the impedance are in agreement with 
the experimental results. The electron doppleron spectrum is determined from the 
plate impedance oscillations, and it is indicated how the nonlocal conductivity of the 
metal can be determined from these data. 

1. INTRODUCTION 

In earlier papers[1,2) we investigated the oscillations 
of the surface resistance of the cadmium plate in a 
magnetic field perpendicular to the surface and parallel 
to the hexagonal axis of the crystal (observation of 
similar oscillations was reported also in(3)). It was 
shown that these oscillations are the result of excita­
tion of electromagnetic waves (dopplerons) due to 
doppler-shifted cyclotron resonance (DSCR). The DSCR 
takes place when the length of the electromagnetic wave 
becomes equal to the extremal displacement of the 
electrons or holes during their cyclotron period. In ac­
cordance with the Kramers-Kronig relations ,.the reso­
nant singularities in the absorption lead to dispersion 
of the dielectric constant of the electron-hole plasma 
of the metal, and it is this dispersion which causes the 
DSCR modes or dopplerons. The doppleron wavelength 
is close to the maximum displacement of a definite 
group of carriers during their cyclotron period. There­
fore, when a doppleron is excited in a plate, the phase 
of the transmitted signal increases with increaSing 
field, and this produces in the plates surface-resistance 
oscillations that are almost periodic in the field. In[1,2) 
we have observed and investigated dopplerons due to 
DSCR of electrons from the lens and holes from the 
monster. The oscillations connected with the excitation 
of the electron and hole dopplerons have Significantly 
different periods, since the displacement of the elec­
trons of the limiting point of the lens are approximately 
four times larger than the maximum displacements of 
the holes. The regions of existence of both waves are 
bounded on the side of weak magnetic fields. The 
threshold of the hole doppleron lies below the threshold 
of the electron doppleron. The results of an experi­
mental study of both dopplerons are in good agreement 
with the theoretical conclusions. It follows also from 
the theory that the dopplerons have circular polariza­
tions: the field of an electron doppleron rotates in the 
same direction as the electrons (minus polarization), 
and the field of the whole doppleron in the opposite 
direction (plus polarization). However, inasmuch as 
in[l,2) the waves were excited with a radio-frequency 
field with linear polarization, both dopplerons were ob-
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served simultaneously. Obviously, to study the dop­
pIeron it is much better to use circular polarization of 
the exciting field. It is such an investigation which is 
the subject of the present paper. 

The use of circular polarization shows that the oscil­
lations of the electron and hole dopplerons are indeed 
observed at different directions of the exciting-field 
rotation. ThiS, first, is direct proof that the oscillations 
of the surface resistance of the plate are due to dop­
pIeron excitation, and not to the Gantmakher-Kaner 
size effect(4). In addition, the use of circular polariza­
tions makes it possible to investigate the Singularities 
of the surface resistance of the bulky sample, Singulari­
ties connected with the electron and hole dopplerons. 
The point is that the experimentally observed oscilla­
tions of the derivative of the surface impedance are ob­
served against the background of smoother but much 
larger changes of dR/dH. Thus, the derivative dR/dH 
increases quite strongly ahead of the threshold of the 
electron doppleron, and oscillations are observed on 
the threshold section (1). The oscillations of the hole 
doppleron are observed in weaker fields. These oscil­
lations are proceded by large maximum of the deriva­
tive of resistance[21. Unlike the doppleron oscillations, 
the behavior of the mentioned smooth variations of 
dR/dH does not depend on the thickness of the sample. 
This indicates that they are not connected with excita­
tion of standing dopplerons in the plate. It is natural to 
assume that these stages of the derivative are singu­
larities of the surface resistance of the bulky sample, 
connected with the presence of thresholds in the spec­
trum of the electron and hole dopplerons. Since these 
singularities do not have the character of oscillations 
and are not connected with the values of the extremal 
displacements of the carriers, the use of linear polari­
zation does not make it possible to separate the effects 
due to electrons and holes. To the contrary, the use of 
circular polarizations permits separate study of the 
singularities of the resistance of bulk samples, due to 
either electron or hole dopplerons. 

The influence of the wave threshold on the impedance 
of a metal with equal concentrations of electrons and 
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holes was considered by Kaner and one of the authors(51. 
It was shown that in the case of specular reflection of 
the carriers from the surface of the metal, the imped­
ance has a root singularity in the vicinity of the thresh­
old. It was established later that the behavior of the 
impedance near the threshold depends on the character 
of the reflection of the carrier from the surface. In the 
case of the helicon threshold in an alkali metal, this 
was demonstrated by Alig(61. The influence of the char­
acter of the reflection of the carriers on the impedance 
of a metal with equal electron and hole concentrations 
was considered by Azbel' and Rakhmanov[7]. They 
reached the conclusion that in the case of diffuse re­
flection, the surface resistance increases smoothly 
with the field, changing from a constant corresponding 
to the anomalous skin effect in the region of weak mag­
netic fields to a linear dependence corresponding to the 
normal skin effect in strong fields. According to 
Azbel' and Rakhmanov(71, in the region of the wave 
threshold the surface resistance has no singularities 
whatever in the case of diffuse reflection, and has a 
root singularity in specular reflection. The character 
of the impedance singularity observed by us near the 
threshold of the wave favors diffuseness of the reflec­
tion. In the present paper we consider the behavior of 
the surface resistance in diffuse reflection of the car­
riers for the model of a lens having a parabolic shape. 
This model was used earlier by Chambers and one of 
the authors[81 to study DSCR in anisotropic metals with 
unequal electron and hole concentrations. Although the 
real lens in cadmium is, of course, not parabolic, the 
considered model gives a qualitatively correct descrip­
tion of all the properties of the electron doppleron. It 
should also describe correctly the field dependence of 
the surface resistance, especially if it is recognized 
that the impedance singularities near the wave thresh­
old depend not so much on the shape of the Fermi sur­
face as on the character of the carrier reflection [6,9]. 

It is shown in the present paper that the surface 
resistance has a kink in the region of the doppleron 
threshold. This kink has an infinite derivative in the 
absence of carrier scattering, and becomes smoothed 
out at a finite mean free path. The derivative of the 
surface resistance with respect to the field therefore 
increases rather sharply in the vicinity of the threshold, 
in good agreement with experiment. 

2. MEASUREMENT PROCEDURE 
We measured the derivative of the surface resistance 

of single-crystal cadmium plates in a magnetic field 
perpendicular to the plane of the plate and parallel to 
the hexagonal axis of the crystal. The constant magnetic 
field was produced with a superconducting solenoid or 
electromagnet. The solenoid constant a = H/ J was cali­
brated against NMR signals, and the field H was deter­
mined from the current J of the solenoid. The electro­
magnet field was measured with a Hall pickup calibrated 
with a NMR magnetometer(10] directly during the course 
of the measurements. A signal proportional to the mag­
netic field was applied to the X coordinate of an auto­
matic potentiometer. The accuracy of the X-coordinate 
measurement was about 0.5%. The dc field was modu­
lated in amplitude at a frequency 10 Hz. 

The samples were plates of thickness from 0.3 to 
2 mm; the normal to the plane of the sample was 
parallel to the [0001] axis (these samples were used 
earlier in[2]). The ratio of the sample resistances at 
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293 and 2°K, measured with direct current, was 
5 x 10\ so that the electron mean free path at 2°K was 
~1 mm. 

The pickup for the dR/dH Signals was an autodyne 
detector with constant sensitivity[ll]. The independence 
of the sensitivity of external factors, particularly of the 
magnetic field intensity, was an important characteris­
tic of the measuring instrument, since we were inter­
ested in this study not only in the oscillations but also 
in the smooth dependence of thp. derivative of the resis­
tance in a wide interval of magnetic fields. 

The measurements were performed in a radio-fre­
quency field having circular polarization. The polariza­
tien plane was parallel to the surface of the sample. To 
obt.:'1.in circular polarization, the measurement setup 
described in[l,7] was modernized somewhat. The sam­
ple was placed in the flat inductance coil of the tank 
cireuit of the autodyne. This coil, together with the 
sample, was inserted in another approximately identical 
coil. The coil axes made an angle 90°. A radio-fre­
quency voltage shifted in phase by 90° with the aid of a 
phase shifter was applied to the external (auxiliary) 
coil from the autodyne detector through an amplifier. 
With such a coil geometry, the radio-frequency field 
was in the general case eliptically polarized in the 
plane of the sample. Since the inductances of both coils 
are close, the voltages on the coils should be approxi­
mately equal if circular polarization is to be obtained. 
These voltages were measured with a vacuum volt­
meter. The voltage on the auxiliary coil was regulated 
by varying the gain of the amplifier. The phase shift of 
the voltage was monitored against Lissajoux figures on 
an oscilloscope. The phase was adjusted by magnetizing 
the ferrite core of the phase-shifter coil. The magneti­
zation current was measured with an ammeter. The 
circular polarization of the radio-frequency field was 
set by selecting the amplitude and the phase of the 
voltage on the auxiliary coil. The direction of the polari­
zation relative to the magnetic field (plus or minus 
polarization) was changed by interchanging the terminals 
of the auxiliary coil or by reversing the direction of the 
ma!,'1letic fie ld . 

As usual, the signal from the autodyne was detected, 
amplified at the modulation frequency, and fed after 
phase detection to the Y coordinate of the automatic 
potentiometer. All the measurements were made at 
2°K. 

3. MEASUREMENT RESULTS 

Figures 1-3 show typical plots of the derivative 
dR/dH against the magnetic field for two circular 
polarizations of the exciting field. In Fig. 1 are shown 
plots of the resistance derivative in the region of exis­
tence of the electron doppleron in the field interval from 
6 to 21 kOe. Curve 1 corresponds to minus polarization 
and curve 2 to plus polarization. The changeover from 
one polarization to the other was effected by reverSing 
the direction of the magnetic field. Both curves were 
plotted at identical gains of the measurement apparatus. 
At the minus polarization, the plate resistance at 
H > 9 kOe experiences larger OSCillations, due to exci­
tation of the electron doppleron. The character of these 
oscillations is the same as in the case of linear polari­
zation[1,2]. In the case of plus polarization, the oscilla­
tions of the electron doppleron are practically nonexis­
tent: their amplitude decreases by 2 orders of magnitude. 

V. V. Lavrova et al. 930 



cill/dJl 
I' 
I 

---

~ 

r----' 

I 
I 

" If 

'---r--~ 

I 
I 
I 

-+---
I 

I 

A fI j ! 
I -j 

1J\/V 
V j 

I __ J 
I 
I 

I 
18 

electron doppleron. The amplitude of the latter is some­
what larger than the amplitude of the hole oscillations, 
but much smaller than on curve 1. The presence of 
electron oscillations in the plus polarization on Figs. 2 
and 3 is apparently due to a certain inhomogeneity of 
the radio-frequency field of the coils, as a result of 
which the polarizations were not strictly circular over 
the entire surface of the sample. It should be noted that 
the oscillations of the hole doppleron on curve 2 (Fig. 3) 
are present in strong fields. Observation of weak oscil­
lations of the hole doppleron in the region of existence 
of large oscillations of the electron doppleron becomes 
possible because of the use of circular polarization and 
the almost complete separation of the oscillations of 
the two types. 

FIG. I FIG. 2 Oscillations of the electron and hole doppleron are 
FIG. I. Plots of the oscillations of an electron doppleron in the case observed on relatively gently sloping sections of the 

of circular polarization: curve I-minus polarization, curve 2-plus polar- " d~ / dH curves. On the other hand, in the region below 
ization; frequency f = 2.68 MHz, sample thickness d = 0.57 mm, T = 2°K. - the threshold of the corresponding doppleron, there is 

FIG. 2. Oscillations of hole dopplerons; curves I and 2 correspond to ' a rather sharp increase of d~/dH (see Figs. 2 and 3). 
minus and plus polarizations, the gain for curve I is half that for curve 2; For the minus polarization, this rise is monotonic, and 
f = 2,68 MHz, d = 0.57 mm, T = 2°K. for the plus polarization the deri vati ve has an asym-

dll!dJl 

I 
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FIG. 3. Plots of the derivative of the surface resistance at 255 kHz; 
the gain from curve I (minus polarization) is 1/3 that for curve 2 (plus 
polarization); d = 0.57 mm, T = 2°K. 

The oscillations of the hole doppleron have a smaller 
amplitude and cannot be observed at the given gain. 

Plots 'of dR/ dH at a larger gain, in the region of the 
existence of the hole doppleron, are shown in Fig. 2 
(curve 1-minus polarization, curve 2-plus polariza­
tion). In the case of plus polarization, short-period 
oscillations are observed and are due to excitation of 
the hole doppleron. They are not observed in the case 
of minus polarization. The large-amplitude oscillations, 
which begin in the region of 9 kOe on curve 1, are due 
to the electron doppleron. The complicated picture of 
the oscillations on curve 2 at H >, 9 kOe is connected 
with the presence of both hole and electron oscilla­
tions. The latter have an amplitude much smaller than 
that on curve 1. All the plots in Figs. 1 and 2 were ob­
tained at f = 2.68 MHz. 

The plots of the derivative of the surface resistance 
in the region of the existence of both the electron and 
the hole dopplerons at 255 kHz are shown in Fig. 3. On 
curve 1, corresponding to minus polarization, one can 
see large oscillations of the electron doppleron. On 
curve 2 (plus polarization) there are short-period oscil- . 
lations of the hole doppleron and oscillations of the 
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metrical maximum, whose left slope is much larger 
than the right slope. At an exciting-field frequency 
1 MHz, a maximum of dR. /dH is observed i.n a field 
of 4.54 kOe. When the frequency is varied, all the singu­
larities of the derivatives are shifted relative to the 
magnetic-field scale in proportion to the cube root of 
the frequency. 

4. THEORY 

A. Paraboloid model. The properties of the electron 
and hole dopplerons in cadmium were investigated theo­
reticallyearlier[1,2). In[l) we considered the model of 
a spherical lens with a sharp edge, and the concentra­
tion of the holes was taken into account in a local ap­
proximation. In[2) we investigated a model closer to the 
real Fermi surface of cadmium, namely, we considered 
a lens with a rounded-off edge and took into account the 
DSCR of the monster holes. The models considered 
have led to relatively simple expressions for the non­
local conductivity, which, however, did not make it pos­
sible to solve analytically the dispersion equation rela­
tive to the wave vector of the doppleron. The dispersion 
equation could be solved graphically. 

In the present paper we investigate the influence of 
dopplerons on the peaks of a semi-infinite metal in the 
case of diffuse reflection of electrons from the surface. 
This problem can be easily solved if analytic expres­
sions can be obtained for the roots of the dispersion 
equation. We consider here therefore a Fermi-surface 
model in which the lens consists of two cups in the 
form of paraboloids of revolution, and a round cylinder 
inserted between them. This model was used earlier to 
study dopplerons and their interaction with helicons in 
metals with non-equilibrium electron and hole densi­
ties[a). 

If the magnetic field is dir.ected along the revolution 
axis of the lens (hexagonal axis of the crystal), then the 
average displacements of all the electrons are equal on 
the parabolic cups, and are equal to zero on the cylin­
drical surface. The dimension and shape of the cups 
must be chosen such that the average displacement of 
the electrons during the cyclotron period be equal to 
the displacement of the electrons at the limiting point 
of a real lens, and the volume of the cups amount to a 
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specified part of the volume of the electron Fermi sur­
face. The height of the cylindrical section is deter­
mined from the condition that a volume of the model 
lens is equal to the volume of the lens of real cadmium. 

We choose as the hole Fermi surface two identical 
bodies similar to the electron lens, but of smaller 
dimensions. The concentrations of the electrons and 
holes in cadmium are equal, and the maximum displace­
ment of the monster holes during the cyclotron period 
is one quarter the displacement of the electrons of the 
limiting point of the lens. These conditions, together 
with specification of the fraction of carriers situated 
inside the parabolic cups, determine completely the 
shape and dimensions of the Fermi surface. It remains 
for us to determine the parameters ell and el2 that 
characterize the fractions of the electrons and holes 
inside the parabolic cups. We choose these parameters 
such that the values of the threshold fields for the elec­
tron and hole dopplerons coincide with the values ob­
served in experiment. 

The model of paraboloidal Fermi surface is con­
venient because the carriers on the surfaces of the 
paraboloids have identical average displacements along 
the field and participate simultaneously in the DSCR. 
Resonance set in when the length of the electromag­
netic wave becomes equal to the displacement of these 
carriers during the cyclotron period. These carriers 
lead to singularities of the pole type in the nonlocal 
conductivity. On the other hand, the carriers on the 
cylindrical surfaces have no displacements along the 
field and make a purely local contribution to the con­
ductivity. It should be noted, however, that the con­
stancy of the carrier displacement on the paraboloid 
surface, which makes this model Simple and attractive, 
leads at the same time to an essential fundamental 
shortcoming in that there is no collisionless cyclotron 
absorption in the region where the length of the electro­
magnetic wave is smaller than the carrier displace­
ment: 

kUj/2n> 1. 

Here k is the wave vector, Uj is the displacement of 
the carriers of type j, 

U; = 2ncp;/ eJ!, j = 1, 2, 

(1 ) 

(2) 

the subsL ipt 1 pertains to electrons, the subscript 2 to 
holes, ej is the carrier charge, Pj are parameters 
with the dimension of momentum and determine the 
curvature of the electron and hole parabolOids, c is the 
speed of light, and H is the magnetic field intensity. 

In the case of real Fermi surfaces there exists in 
the region (1) collisionless cyclotron absorption that 
causes the wave to become damped. In our model, on 
the other hand, we obtain dispersion-equation solutions 
that describe weakly-damped dopplerons with wave num­
bers k ~ 21T/Uj. Thus, a hole doppleron with wave vec­
tor k > 21T/ U2 is produced in minus polarization and an 
electron doppleron with wave vector k > 21T/Ul in plus 
polarization. The wavelengths of these dopplerons lie 
in a region where there should exist a strong cyclotron 
absorption of the waves by the corres ponding carriers. 
The absence of this damping and the appearance of ad­
ditional weakly damped waves is a shortcoming of our 
model. We shall investigate the influence of the dop­
plerons on the field dependence of surface resistance 
in the case of diffuse reflection of the carriers. It will 
be seen from the analysis that follows that the singu-
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larities of the resistance as functions of H depend not 
so much on the details of the doppleron dispersion law 
as on the presence of a threshold near which the char­
acter of the solution of the dispersion equation changes 
abruptly. The dispersion-curve section near the 
threshold is adequately described by our model, and as 
a result we obtain a correct description of the surface 
resistance. 

B. Nonlocal conductivity. The dispersion equation 
for a circular-polarization wave propagating along the 
magnetic field H (the z axis) is given by 

(3) 

where 

(4) 

(Jxx and a are elements of the tensor of nonlocal 
conductivii'; in the transverse plane. It is obvious that 
a± is the sum of the contributions of the electrons and 
holes: 

(5) 

In the case of a Fermi surface in the form of a 
parabolOid, the expression for the nonlocal conductivity 
can be written in the form[8] 

a;J) (k H) = -i Ne,c { a/2 + aj2 
-, H ±1-i"(;-ku;l2n ±1-i"(j+ku;l2n 

1-a) } +---±1-i"() , 

(6) 

where 

(7 ) 

N is the concentration of the electrons and holes, mj is 
the cyclotron mass of the carriers of a given type, Vj 
is the frequency of the collisions with the lattice, the 
expression for the displacement of the resonant car­
riers ej is determined by formula (2), and ell and el2 
are the relative fractions of the resonant electrons and 
holes, respectively. The first term in the curly brack­
ets of (6) describes the nonlocal conductivity of the 
resonant carriers moving in opposition to the wave. 
The second term corresponds to carriers moving in the 
same direction as the wave. The third term represents 
the local contribution from nonresonant carriers on the 
cylindrical surface. 

Using formula (6), we can easily reduce the expres­
sion for the total conductivity to the form 

(8) 

where 
2n . eJ! i 

%;=-(1 +l"(;)=--+-, 
Uj pp lj 

(9 ) 

ll,2 are the electron and hole mean-free paths. 

For simplicity we confine ourselves in the analysis 
that follows to the case when the ratio of the collision 
frequency. to the cyclotron frequency is the same for 
the electrons and holes: 

,,(,=-,,(,=,,(, 

and assume that the strong-field approximation is 
satisfied, namely 
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y«1. (11) 

C. Solution of dispersion equations for minus polari­
zation. To obtain the dispersion equation it suffices to 
substitute (8) in (3), which yields 

a, +2iY }k'_1 (12) 
-:-(X-,7, _----=-k"")---;(..,-1-c+" iy) 7 n - , 

kH' = 4n(j)N e / cH, 

where kH is the wave vector of a helicon in a metal 
with one type of carrier in the local limit. 

(13) 

The dispersion equation (12) is bicubic relative to 
the wave vector k. We are interested in those three 
solutions whose imaginary parts are positive. To find 
them we can use the fact that they have essentially dif­
ferent values. We seek the solutions of the dispersion 
equation in the region of not very weak fields, where 

(14) 

The value of one of the roots exceeds K2. To obtain an 
approximate value of this root it suffices to retain only 
the second term in the left-hand side of (12). This 
yields 

(15 ) 

The two other roots do not exceed I Kli and turn out to 
be small in comparison with k2. To obtain an equation 
that determines these roots we can therefore neglect 
the term k2 in comparison with K~ in the denominator 
of the second term of the left-hand side of (12). It is 
convenient to rewrite the obtained equations in the form 

{ 1 + 2' X,'} - 1 
(; 1- k'/x<' q a,k' - , 

where 

The roots of (16), which are of interest to us, are 
given by 

(16) 

(17) 

1 2iy 1 2iy' 2iy ] 'j,} 'I. 
k o., = 'F x{-2 ( 1 - (; + -;z-l; ) 'F h- ( 1 - (; + -;.- (;) -~ l; . 

(18) 
In the limit of an infinite carrier mean free path 
(y - 0), the root ko vanishes and kl takes the form 

eH'p,' 
Oh= 4na,Nc' (21 ) 

where the quantity wL, which is proportional to the 
cube of the magnetic field, has the meaning of the limit­
ing frequency of the electron doppleron. Expression (19) 
for k( 0) takes the form 

(22) 

With increasing field, the quantity (22) increases from 
zero value at WL = wand approaches the limiting value 
-eH/Plc. 

The dependence of k\O) on the magnetic field H is 
shown in Fig. 4 (curves 3 and 3') for the parameter 
values 

N = 5 .102l cm -3, p, = 1.5IiA-', p, = p, / 4, a, = 0.4, a, = 0.8 (23) 

and the frequency f = 3 MHz. The solid curve 3 lies 
above the threshold and corresponds to a real value of 
k(O). The dashed curve 3' is below the doppleron 
threshold and corresponds to the imaginary value of 
k~O) . 

Carrier scattering leads to the appearance of an 
imaginary part of kh describing the damping of the 
electron doppleron, and also to the appearance of a 
complex root ko. In the region of strong fields, the 
asymptotic expressions for kl and ko are 

k. = x,(1-£)'I., (24) 

ko '" (2iykH') 'I. = (1 + i) (4nNmv(j) 'I. / H. (25) 

The root ko describes the normal skin effect in a mag­
netic field, and the depth of the skin layer is propor­
tional to H. Plots of the real (curves 0 and 1) and 
imaginary (curves 0' and 1') part of ko and kl at II 
= 1 mm are shown in Fig. 4. 

D. Solution of the dispersion equation for plus 
polarization. We consider now the properties of the 
hole doppleron. Substituting the expression for (1+ (k, H) 
in (3), we obtain the dispersion equation 

{ . a, + a, + 2iy }kn'= 1, 
(x,' - k') (1 + iy) (x,' - k') (1 - iy) k' 

-:;"j(H) =xi(-H). 

(26) 

(27 ) 

(19) The roots of the equations will be deSignated Ks' 

where ~o is the value of ~ at y = O. 

Let us discuss the physical meaning of the obtained 
solutions. The root k2, the value of which exceeds K2, 

is connected with the DSCR of the holes and describes 
a hole doppleron. As already noted above, the existence 
of the doppleron with wave number k> K2 is the conse­
quence of our model, in which there is no cyclotron ab­
sorption in this region. In a real metal, the root k2 
would be complex and the hole doppleron with minus 
polarization would be damped. 

The root kl is due to DSCR of the lens electrons and 
describes an electron doppleron. It follows from (19) 
that in the collisionless limit kiO) is real when ~o < 1 
and imaginary when ~o > 1. This means that the elec­
tron doppleron has a threshold at a magnetic-field 
value corresponding to the conditions 

(;0 = 1. (20) 

If we neglect the insignificant difference between k~ -
and K~, then we can represent ~ apprOximately in the 
form 
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We separate first the smallest root Ko. Neglecting 
the term k2 in comparison with K~ in the first term of 

k· 70- 3• em- l 

1,------,,------,,------,--~ 

15 H, kOe 

-2~ ______ L_ ______ L_ ______ L_~ 

FIG. 4. Solutions of the dispersion equation for minus polarization. 
The solid curves 0 and I show the real part of the roots ko and kl at II = 
I mm, and the dashed curves 0' and I' the imaginary parts; curves 3 and 
3' show the real and imaginary parts of kl in the collisionless limit, f = 
3 MHz. 
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(26) omitting the second term in the left-hand side 
of (26), we get 

(28) 

The equation for the two remaining roots takes the form . 

_ CI.,kH' (1 + _Ko') + CI.,kH' '1 + !!.o' ) = 1,(29) 
(x,' - k') (1 + i1) x,' (x,' - k') (1- i1) x,' 

and its solutions are given by 

K,., = 'l' {~[-;" + -;,' +. CI.,k~' (1 + ~o' ) _ CI.,k~' (1 + ~' )] 
2 l+q x,' l-q x,' 

[ 1 (- - CI.,kH" Ko') CI.,kH' I Ko' )) , 
± - x,'-x,'---.- 1+~ ---.- 1+-=;-

4 1 + '1 x, 1 - '1 x, 
(30) 

_ 4C1.,Cl.2kII' (1 + ~::) (1 + ~: )] 'I,} "'. 

In the region of strong fields (~ «1), the root Ko is 
asymptotically equal to ko determined by formula (25), 
and the expressions for K1 and K2 become 

The root K1 is connected with electron DSCR and 
describes an electron doppleron in plus polarization. 
This root is somewhat larger than /(1, i.e., it is located 
in a region where strong cyclotron absorption of the 
wave by the lens electrons should take place. The exis­
tence ofa weakly damped electron doppleron in plus 
polarization is a consequence of our model. In a real 
metal, such a wave should be damped. 

The root K2 is connected with DSCR of the holes and 
describes a hole doppleron. It is located in the region 
k < K2 where there is no hole cyclotron absorption, but 
there is electron cyclotron absorption. The magnitude 
of the latter, however, decreases rapidly with increas­
ing k - /(b and is small at k ;:s /(2' Therefore the hole 
doppleron in plus polarization is weakly damped. With 
decreasing magnetic field, the value of K~ increases 
while K~ decreases, so that they become equal at a 
certain value of H. This is the location of the doppleron 
threshold. Plots of the real (curves 1 and 2) and imag­
inary (curves l' and 2') parts of K1 and K2 in the 
vicinity of the threshold are shown in Fig. 5. These 
curves have kinks at H RJ 6.6 kOe; curves l' and 2', 
which describe doppleron damping, decrease in strong 
fields and increase sharply in weak fields. At H < 6.6 
kOe, the damping becomes large and the wave cannot 
propagate. Curve 0 on Fig. 5 shows the real part of the 
root Ko, which coincides with its imaginary part. This 
root corresponds to the electromagnetic-field compo­
nent describing the normal skin effect in a magnetic 
field. 

E. Surface resistance. Let us examine the influence 
of dopplerons on the magnetic-field dependence of the 
surface resistance of a semi-infinite metal. Since most 
carriers in a metal are reflected diffusely from the 
surface, we confine ourselves to pure diffuse reflection. 
In this case the surface impedance is determined by the 
general expression [12J 

(32) 

where 

i J~ [ 4niw(J± (k, H) ] 
I±(w,H)=-; dkln 1- k'c' ' 

° 
(33) 

R and X are the real and imaginary parts of the im-
pedance. 

If we substitute formula (8) for the nonlocal conduc-
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tivity in (33) and factorize the argument of the logarithm, 
then L takes the form 

i ~ . (k' - ko') (k' - k/) (k' - k,') 
L=-;Jdkln k>(k'-x,') (k'-x,') ~. (34) 

° 
The function 1+ is determined by an integral obtained 
from (34) with the aid of the substitution 

ko-Ko, k, .... K j , Xj .... ~" (1=1,2). (35) 

The explicit form of L can be easily obtained by USing 
the formula 

00 k 2 - a t:? " , 

i J dkln-k, ;:=n(a,-a,), Ima,.,>O. 
o . -az 

As a result we find that the surface reSistance for 
minus polarization is given by 

R_(H)= 4nw Re 1 
c' ko + k, + k, - x, - X2 

(36) 

(37) 

and R+ is obtained from (37) by means of the substitu­
tion (35). 

In the collisionless limit, the resistance R_ can be 
expressed in the form 

R~O)= 4nwp, Re[ 1- (1-~) ,', +~~]-', (38) 
ceH WL 4 WL 

where we have used the fact that above the threshold of 
the electron doppleron we have 

CI., W 
k2-X2~--Xl' 

Bal WL 

(39 ) 

It is seen from (38) that at wL = W the surface resis­
tance has a kink due to the existence of a doppleron 
threshold. In the collisionless limit, the kink has an 
infinite deri vati ve. 

A plot of R~O)(H) at f = 3 is shown in Fig. 6 (curve 3). 
The carrier-lattice collisions smooth out the peak. The 
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i\ 
'" 
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FIG. 5 FIG. 7 

FIG. 5. Plots of the real parts (curves 0-2) and of the imaginary 
parts (curves I' and 2') of the roots of the dispersion equation for plus 
polarization, f = 3 MHz, 11 = I mm,12 = 0.25 mm. 

FIG. 6. Plots of the surface resistance for minus polarization at f = 
3 MHz; curve I corresponds to the electron mean free path 11 = I mm, 
curve 2-/1 = 2 cm, curve 3-/1 = 00. 

FIG. 7. Plots of the derivative dR_/dH for 11 = I mm (curve I) and 
11 = 2 cm (curve 2), f= 3 MHz. 
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values of R_ (H) for II = 1 mm and l2 = 2 cm are repre­
sented respectively by curves 1 and 2. We see that in 
spite of the smoothing of the kink the general character 
of the behavior of R_ near the doppleron threshold 
remains the same, namely, K varies with H slowly 
below the threshold, and more rapidly above the 
threshold. The slope of the plot of R_ in the region 
WL> W depends on the electron mean free path. The 
singularities of the behavior of the resistance R_ near 
the threshold are seen more clearly in Fig. 7, which 
shows the derivative dRjdH. Curves 1 and 2 corre­
spond to an electron mean free path 1 mm and 2 cm, 
respectively. At the larger mean free path (ll = 2 cm) 
the derivative of the resistance has a sharp maximum 
in the vicinity of the threshold, and in the region of 
stronger magnetic fields it increases uniformly. At the 
smaller mean free path (curve 1), the plot of dK/dH 
takes the form of a smeared-out step. 

The field dependence of the surface resistance for 
plus polarization can be obtained in similar fashion. 
Plots of' R. (H) and dR. / dH in the vicinity of the hole:­
doppleron threshold are shown for II = 1 mm in Fig. 8. 
The behavior of R. near the threshold of the hole dop­
pIeron is analogous to the behavior of R_ near the 
threshold of the electron doppleron. The derivative 
dR. / dH has an asymmetrical maximum with a steep 
and long left-hand slope and with a more gently-sloping 
and shorter right-hand slope. In strong fields, the 
function dR. /dH increases slowly with H. 

We have considered above only the real part of the 
surface impedance of a semi-infinite metal. We are 
unable to obtain the correct order of magnitude of the 
imaginary part. The point is that in our model the ab­
sence of cyclotron absorption in the hole doppleron 
greatly increases its damping near the threshold. 
Therefore X. turns out to be smaller in our model than 
in a real metal, where the lens electrons produce 
cyclotron damping of the hole doppleron. 

5. DISCUSSION OF RESULTS 

We proceed now to a discussion and comparison of 
the experimental and theoretical results. We must note 
first that the use of circular polarization of the exciting 
field has made it possible to determine experimentally 
the polarization of the oscillations of the plate imped­
ance. The fact that the short-period oscillations are 
present only in the case of plus polarization and the 
long-period in the case of minus polarization (see 
Figs. 1-3) proves directly that they are due to excita­
tion of weakly-damped electromagnetic waves, and are 
not connected with the radial-frequency size effect in 
the normal field[41. The point is that the size effect is 
due to the presence of branch points in the nonlocal 
conductivity a as a function of k. These branch points 
are present both in a.(k) and in .a_(k), and therefore 
the amplitude of the size effect depends little on the 
polarization of the exciting field. The situation is dif­
ferent with doppleron waves, which are natural oscilla­
tions of an electron-hole plasma and have a definite 
circular polarization. Thus, separation of the electron 
and hole oscillations when circular polarization is used 
is direct proof that the observed oscillations are con­
nected with doppleron excitation. 

The second result obtained with the aid of circular 
polarizations is the separation of the singularities of 
the surface resistance of a bulk sample, due to the 

935 Sov. Phys.·JETP, Vol. 37, No.5, November 1973 

presence of thresholds for the electron and hole dop­
plerons. It is seen from Fig. 3 that doppleron oscilla­
tions of both types are observed against a relatively 
slowly varying background of the derivatives dR±/dH. 
The onset of the oscillations is preceeded by sections 
of rather sharp rises in these derivatives. As follows 
from the theory, these rises are due to kinks of the 
functions R± /H in the vicinities of the hole and elec­
tron doppleron thresholds, respectively. At a large 
electron mean free path (h = 2 cm), the derivative 
dK/dH has an asymmetrical maximum (curve 2 on 
Fig. 7). Inasmuch as the electron mean free path in 
the investigated cadmium samples was apparently on 
the order of 1 mm, the derivative dK/dH should take 
the form of a step. Comparison of curve 1 of Fig. 7 
with curve 1 of Fig. 3 shows good agreement between 
the results of the theory and experiment. 

Qualitati ve agreement between the experimental and 
theoretical curves is obtained also for plus polarization 
(compare curve 2 of Fig. 8 with curve 2 of Fig. 3). The 
maximum of dR. I dH on the experimental curve of 
Fig. 3 is more asymmetrical than the maximum on the 
theoretical curves. This is apparently due to the fact 
that in our model there is no cyclotron damping for the 
hole doppleron. Cyclotron absorption of the wave by the 
lens electrons should increase the damping of the hole 
doppleron near the threshold and split up the maximum 
of dR. / dH, i.e., should make the curves more similar 
in shape to a smeared-out step. 

In conclusion let us discuss the connection of the 
plate-resistance oscillations with the doppleron spec­
trum and with the nonlocal conductivity a(k, H). The 
field of a doppleron wave passing through a plate of 
thickness d contains a phase factor exp[ik (H)d], the 
variation of which with the field is indeed the cause of 
the resistance oscillations. In strong fields, the wave 
number of the electron doppleron tends to -eH/Plc, so 
that the oscillations become periodic. The limiting 
value of the period is 

(40) 

Let Hs be the magnetic field corresponding to one of 
the last distinguishable maxima of dK/dH. Dividing 
Hs by b.HL, we can obtain the number s of wavelenths 
spanned by the thickness of the sample at a given value 
of the field: 

H, / !1HL ~ S + II,; (41 ) 

the term 112 in the right-hand side is connected with 
the antisymmetrical character of plate excitation. De­
termining in this manner the number of the given maxi­
mum, we can ascribe numbers to all the maxima on the 
experimental curves. It suffices to determine the spec-

~1 

¥~~ .[;fr. roU: Oe~l 
M 

O,L----L----L--~,0 o,.L---~----~--~w 

H, kOe H, kOe 

FIG. 8. Plots of R.(H) and dR+/dH at 3 MHz, 1\ = I mm, 12 = 0.25 
mm. 
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trum of the doppleron in a number of discrete points: 

k(Hn)=2;(n+4-), n=1,2, ... s, (42) 

where n is the number of the maximum and Hn is the 
corresponding value of the magnetic field. 

Figure 9 shows plots of the function k(H) for two 
different models of the lens, as well as the experimental 
points k (Hn). The theoretical curve 1 corresponds to 
the paraboloidal model, and curve 2 corresponds to the 
model of a lens with rounded-off edge, which was con­
sidered in(2) (variant with quadratic dependence of the 
derivative of the cross section area as/apz on pz). 
The error of the experimental points, due mainly to 
the error in the determination of the sample thickness, 
is ~2%. We see that the experimental points lie close 
to curve 2. Curve 1 shows a larger deviation, but 
qualitatively it describes correctly the electron-dop­
pIeron spectrum. 

Knowledge of the k(H) dependence makes it possible 
to determine the nonlocal conductivity a(k, H). It was 
shown in(2) that the conductivity a_(k, H) can be written 
in the form 

a_(k,H)=-i.:.:..{_1_. F,(.'!.-) __ 1_F,(.'!.-)}. (43) 
H 1+/11 x, 1+il, x, 

The function FI and F2 describe nonlocal effects in 
the conductivity: in the local limit as k - 0, they are 
equal to the carrier density N. The explicit form of 
these functions is determined by the conduction-elec­
tron dispersion law. Substituting (43) in (3) and 
neglecting small terms of order i Yj, we obtain the 
equation 

FI(Q)-F,(q!2) = k'eH, (44) 
P, 4nCtle 

q = -kepI I eH. (45) 

The use of relation (42) enables us to find the differ­
ence F I - F 2 for a number of the three values of the 
argument q: 

( qnP,) nell. '( 1)' F,(qn)-F, -- =-- n+- , 
PI Ctled' 2 

(46) 

where 

t'J.HL (n+~). 
Hn 2 

(47) 

We have expressed qn in terms of the limiting value of 
the period of the doppleron oscillations, using the con­
nection of PI with ~HL( 40). 

It should be noted that since the period of the dop­
pIeron oscillations is ~H « HL[II, the values of qn in 
(47) turn out to be automatically smaller than unity. 
There is therefore no cyclotron absorption and the 
function F I and F 2 are real. From the values of F I 
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FIG. 9. Spectrum of electron doppleron at f = 3 MHz. Curve I cor­
responds to the paraboloidal model, curve 2 corresponds to the model 
of a lens with rounded-off edge considered in [2] (n = 2); the points 
correspond to the experimental results (the theoretical curves were plot­
ted for the value PI/h = 1.48)\ -I). 

- F 2 at the points qn we can plot this difference as a 
function of continuous q. According to (43), however, 
the difference Fl - F3 differs from a_(k, H) only by a 
factor -iec/H. Thus, the nonlocal conductivity of a 
metal can be determined in principle from the doppleron 
oscillations of the plate resistance. 

The authors are grateful to V. G. Fastovskil for in­
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