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The problem of reflection of light waves in a randomly inhomogeneous medium by an infinite mirror 
is considered in the parabolic-equation approximation. An expression for the mean field strength of 
the reflected wave is obtained on the basis of the solution in the form of a continual integral. By 
employing the probability interpretation of the solution in the continual form, a relation is de-
rived between the mean reflected field strength and the statistical characteristics of the wave 
incident on the mirror. 

1. The present status of the theory of light propagation 
in a randomly inhomogeneous medium has been surveyed 
in[1,2J. The authors of these papers started from a des­
cription of the propagation of light in a randomly inhomo­
geneous medium on the basis of a stochastic wave (or 
parabolic) equation and analyzed the equations obtained 
for the mean values when the stochastic equations are 
averaged over the ensemble of realizations of the field 
of the dielectric constant. 

wave passes over the same inhomogeneities as the inci­
dent wave. 

We consider the problem of light-wave reflection in 
an randomly inhomogeneous medium from an infinite 
mirror located in the plane x = L. The reflected wave is 
described by the stochastic equation (see the figure) 

au i k 
- = - i'1.J.u + i- ,(x, p)u, 
iJx 2k 2 

u(O,p)= u.(p), (3) 

If large-angle scattering is immaterial, light propa- where 
gation can be described by the parabolic equation [2J 

iJu i ik 
8;= 2ki'1.J.u+Te(x,P)u(x,p), u(O,p)=u.(p), (1) 

where the x axis coincides with the direction of the inci­
dent wave, p = {y, z} represents the transverse coor­
dinates, to. 1 = ,/ /a y2 + a 2/a Z2, and E (x, p) is the fluctuating 
part of the field of the dIelectric constant, which we con­
sider to be a Gaussian random field with zero mean 
value .. 

It was shown in[2J that the process of light propaga­
tion in a randomly inhomogeneous medium is well des­
cribed by the approximation of a diffuse random process 
when the correlation function of the field E is approxi­
mated by the expression 

<8 (x" p,) e (x" p,» = 1\ (x, - x,)A (Pt - p,), (2) 

where 

A (p)= 2n S dx Ill,(x)exp {ixp}, 

and ~E(K) is a three-dimensional spectral function of the 
field E(r) of the two-dimensional vector K. The proof of 
formula (2) and a discussion of the considered model of 
the fluctuations of E is contained in[2J. We note that 
representation of the correlation function E in the form 
(2) in the statistical problem of the propagation of light 
constitutes an expansion in terms of a small parameter, 
the ratio of the correlation of the field E to other charac­
teristic scales. 

The diffuse random process approximation cannot be 
used directly to describe the process of reflection of a 
light wave from an obstacle. The reason is the reflected 

E(2rr.p E(f'P) 

;-_-:1 =~=~I =:::::::;1== "oIP) 
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f(X, p) = 

{ e(x,p), x,,;;,L 

= e(2L-x,p), L";;'x,,;;,2L' 

(4) 

For a medium described by the field E, the longitud­
inal correlation radius is of the order of L, i.e., of the 
same order as the path traversed by the wave. The 
diffUSion-process approximation can therefore not be 
applied to (3). Equation (3) can be rewritten in the form 

aUrer i ik (5) 
0;-= 2k i'1.J.urer+Te(2L-x,p)urer, L";;'x,,;;,2L, 

urer(L, p) = Uinc (L, p). 

In this case the field E has already a small longitudinal 
correlation radius in comparison with the path length 
traversed by the wave, but it is impossible to obtain an 
equation, say, for the average reflected field, since the 
boundary condition for (5) is itself functionally dependent 
on the field E-

2. We can, however, write the solution of (1) in opera­
tor form[3J 

or in the form of a continual integral 
'k 

u(x,!l) = S Dv exp { T! ds [v'(s) + 

+e (s,P+ S d'lV('l»)]} u.(P+ S dsv(s»), , . 
Dv = IT dv(S) / J. .. SIT dyes) ~xp {~k J ds v,(s)}. 

t=o ~=o 0 

Expression (7) admits of a probabilistic interpretation, 
namely, it can be formally expressed in the form of the 
average quantity 
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where the averaging is over the ensemble of the field 
v(O (~ ~ x), which can be regarded as a random 
Gaussian field with zero mean value and with a complex 
"correlation" function 

<lJ~(;')"'J(G'»Y = ik-'II~. JII(;, - s'). a, ~ = y, z. (9) 

It is easily seen here that all the formulas that are valid 
for the usual Gaussian random fields are valid in this 
case, too. 

We represent uo(p) in the form uo(p) = J dICuo(IC) 
x exp{iKp}. Then expression (8) can be rewritten in the 
form 

u(x, p)= S dx u,(x)exp{ixp} < exp {iX j ds v(s) 
o 

+ i: J ds e (s, p + J dT) v(T) )}) .' 
, I 

Using formula (A.11) of the Appendix, we can rewrite 
(8') in the form 

{ ix' } u(x,p)= S dxu,(x)exp iXp -'2k X 1jJ(x,p, x) , 

where 

(8') 

(10) 

Returning to the operator form, we can express </! (x, p, K) 
in the form 

{ i x II'} 
1jJ (x, p, x) = exp 2k ~ ds Ill" (S) 

o 

xexp{ ~k ~dse(s,p+~dT)[T(T)- ~])}I<~' (11) 

Expression (11) is a solution of the differential equation 

ii1jl i ik x 
a;-= 2k L'1.c1jl+2 e1jJ -T V.c1jJ, 1jl(O,p,x)= 1. (12) 

Expressions (10)-(12) are the expansion of the solution 
of (1) in plane waves. Expression (10) and Eq. (12) for </! 
can be obtained, of course, also directly from (1). We 
emphasize, however, that the foregOing conclusion is 
based on a probabilistic analogy for the solution of Eqo 
(1). In addition, it remains in force also in the case when 
there is no corresponding differential equation (see 
Sec. 4). 

We can write down the solution of (5) in operator form 
for the reflected wave in analogy with (6): 

u rer(2L,p) = exp { 2~ I as IIT~'(6) }{Uinc (L, P + I dST(S)) 

x exp [i ~ I dS8 (2£- S, P + 'f dT)T(T))]} L 
• L L 

= exp {2~ ~ ds Ill" (2~ _ s) } { Uino ( L, P + ~ ds T (2L - 6) ) 
o 0 

XeXp[i ~ ~d68(S'P+~dT)T(2L-T) )]}L. (13) 
o 0 

Recognizing that (13) contains in all terms the quantity 
1'(2L - ~), we can replace it by a new functional variable 
1'1(0 and rewrite (13) in the form 

{ i L II'} {( L ) u ref(2L, p)=exp 2k~ ds-,- Uinc L, p+ ~ dST1(S) 
o II~ (~ 0 

(14) 

x exp [ i {- ~ ds 8 (6, p + ~ dT) ~1 (T)) ] } I . 
o 0 .~ 
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Using now the operator form for the incident wave, we 
obtain the final expression 

Uref (2L, p) = exp { ;k ~ ds [ dT~: m + IIS(S) ]} 
o 

L k ~ ~ 
x {uo (p+ ~ds [TdsH TO(S)]) exp [i2~ dSB (l'" p + ~ dT) T1(T) ) 

o 0 0 

+i ~ ~dS8:(6,P+~dT)To(T)H~dT)T1(T))]}I<,_<.~· (15) 

30 In (14) and (15) we can already use the diffusion 
random process approximation, since the quantity 
uinc(L, p) depends functionally only on the preceding 
values of E (~, p) at ~ ~ L. Therefore, averaging (15) 
over the ensemble of the field E and using the correlation 
function of E in the form (2), we obtain an expression for 
the mean field of the reflected wave: 

{ i r [II' II']} (u rer(2L, p» = exp 2k ~ ds IIT1'(S) + liT.'(£) 

x [uo (p+~ dHrdsHT, (s»)) exp {_ k~ A(O)L 
o 

- ~' ~ dsA (~ dT) [TdT)H TO (T)] ) }]I • (16) 
O!; 'fl='t,=O 

Introducing the new functional variables 1'1 - 1'2 = T 

and 1'1 + 1'2 = T, we can rewrite (16) in the form 
(D(p) = A(O) - A(p)): 

(u rer(2L, Pl> = exp { ~ ~ ds 6T~'(S) }[ Uo (p + ~ ds T (s») 
o 0 

X exp{- ~. A(O)L- ~' ~ dsA(~ dT)T(T))}]L 

= exp { - ~A(O)L}exp {~t ds-~} 
2 k ~ 6TO(S) 

x [uo (p+ ~ cis T(S») exp { ~ ~ dsD (~ dT) T(T)) }]j.~. (17) 

The factor exp{-%k2A(0)L} describes the damping of the 
reflected wave in the absence of diffraction, and the 
operator-type equation in (17) is connected with the dif­
fraction of the light wave by small-scale inhomogenei­
ties of the dielectric-constant field. 

4. We now obtain the connection between the average 
reflected field and the statistical characteristics of the 
wave incident on the mirror. Representing uo(p) again 
in the form of a Fourier expansion and using the proba­
bilistic analogy for the operator form (17), we can re­
write (17) in a form similar to (10): 

S { ix' } (uref(2L,P)> = dxu.(x)exp iXP-TL 

~ • L ~ 
xexp{--A(O)L}exp{~Sds-} 

2 . k. IIT'(S) 

k' L L 2 
xexp{-SdsD(SdT)[T(T)-~])}1 . (18) 4 0, k ,_. 

From this we see readily that formula (18) can be re­
written in the form 

(uref(2L, p) > = S dx uo(x)exp { ixp -~L} (1jJinc(L, p, x) "'inc(L, p, -x», 
k (19) 

where the function </!inc(x, p, Ie) is described by Eq. (12), 
the solution of which is (11). 

In the case of a plane incident wave, when uo(p) == 1, 
expression (19) becomes much simpler, namely, 
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(20) 

We note that in this problem we cannot write the corre­
sponding differential equation for the statistical charac­
teristics of the reflected wave. 

APPENDIX 

MEAN VALUE OF A PRODUCT OF FUNCTIONALS 

Let z(t) be a random process!). Its statistical proces­
ses are completely described by its characteristic func­
tional 

(A.1) 

where the angle brackets denote averaging over the en­
semble of the realizations of the process z(t). The ex­
pansion of the functional cp[v] in a functional Taylor 
series is determined by the n-point moments of the 
process z(t). It is convenient to represent cp [v] as 

III [v] =exp {El[vl}, (A.2) 

where the expansion of the functional ® [V(T)] in a func­
tional Taylor series is determined by the n-point cumu­
lants (semi-invariants) of the process. 

For a Gaussian stationary random process with a 
zero mean value, which is usually considered in statis­
tical theory of light propagation, the only nonzero cumu­
lant function is (z(t)z(t') = B(t - t/), and the functional 
® [v) takes the form 

e[v ]~, - + IS d" d"B(" - ,,) v(,,) v(,,). (A.3) 

Let us examine the mean value of a I?roduct of two 
functionals, (Flz(t)) Rlz(T))), where F[zJ is specified in 
explicit form, and RLz) can depend on the random proc­
ess either implicitly or explicitly. To calculate this 
mean value, we introduce a determined function Tf (T) and 
consider the mean value of the product 

<F[z]R[z(,) + 1] (,)]> = ( F[z]exp {J du (,) 6T)~') }) R[ 1] (,)], (AA) 

where the operator in the right-hand side of (AA) is the 
functional-shift operator. 

We introduce also the functional 

Q[v(,)]= ( F[z(,) ]exp {i S du (,)v(,) }) / ( exp{ i S du(,) V(,)}). 

(A.5) 
Then (AA) can be rewritten as 

<P[z(,)]R[z(-t)+1](,)]> = 

=( F[z]exp {S du(,) 61]~,) })( exp{S du(,) 61]~,)}) -, 
(A.6) 

x( exp {S du(,) 6'1 ~,) }) R[1] (,)]"" Q L1]~,) ] <R[z(,)+ 1] (,) ]>. 
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Putting Tf == 0 in (A.6), we obtain the final expression 

<F[z(,)]R[zet)]>=( Q[ i6z6(,) ]R[z(,)]). (A.7) 

The case of a linear functional F(z) = z(t), when 

Q[v]= (z(t)exv{i S d1:Z(,)v(,) }) / ( exp{ is d1:Z(,)V(,» (A.8) 

1 6 III [v] 68[v] 
= Ill[vl i6v(t) ~ i6v(t) , 

was considered in detail in[4]. We consider now the case 
when the functional F(z) is given by 

F[zl=exP{i S dU(,)X(,)}. 

In this case 

Q[v] = exp {e[v + "l - e[v l}. (A.9) 

For a Gaussian random process described by the func­
tional (A.3) we have 

Q[vl=.exp{ -4-S d" d"B(,,-,,) [,,(,,),,(,,)+ 2V(,,),,(,,)]} 

(A.10) 

and therefore, according to (A.7), 

< cxp { i S du (,)" (,) } R[zl ) = ( exp { is du (,)" (,) } ) 

x( exp{iS d" d"B(,.-,,),,(,,)_1)_}R[z] ) 
6z (,,) 

~ III [x (or)] ( R [z(,) + is d" B(, - ,.)x (,,) ]) , (A. 11) 

i.e., a determined imaginary component is added to the 
random process Z(T) in the right-hand side of (A.11) 
under the averaging sign. 

OWe confine ourselves to a one-dimensional random process. The generali­
zation to many dimensions is obvious. 
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