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A simple method is proposed for calculating the ground term XII.; of the He2++ quasimolecule. It 
is shown that the He,+ + molecule possesses several quasistationary levels. 

A variety of electronic states in a molecule can be 
obtained by successively combining its possible constitu­
ent atoms or ions. Electronic states of the quasimole­
cular doubly-charged ion He;' are obtained by combining 
the He atom with its doubly-ionized form He H or by com­
bining two He + ions. 

We shall first investigate the behavior of the states of 
the quasimolecule that is formed from two helium ions 
as these ions come together. If the two helium ions are 
in their ground state, two states-1L~ and 3L~-Of the 
quasimolecule He~+ are obtained by bringing the ions 
together. The electron shells corresponding to these 
states of the quasimolecule are (1a~) and (1a~ou)' 
respectively. The lowest states of the doubly-ionized 
beryllium atom, Be++, which possess the same respective 
symmetry and are formed by combining helium-ion 
nuclei, are represented (showing their electron shells) 
by Be++(1s2) and (Be H )*(1s2p). Thus the 1Lg state of the 
Het quasimolecule, when the nuclei of the helium ions 
are ultimately united, becomes the 1S ground state of the 
doubly-ionized beryllium atom, while the 3L~ state is 
transformed into the 3p excited state of Be++. 

We shall now investigate the behavior of the states of 
the quasimolecule He~+ formed from a ground-state 
helium atom and a doubly-ionized helium atom when 
these two atoms come together. The approach of the 
He H and He nuclei leads to two states-1L~ and 1L~_of 
the quasimolecule He~+, whose electron shells corre­
sponding to these states are (1a~) and (1ag1au), respec­
tively. The lowest Be ++ states which possess the same 
respective symmetry and are formed by combining He++ 
and He nuclei, are denoted by (Be++)*(2p2) and 
(Be H )*(1s2p). Consequently, the ultimate union of the 
He++ and He nuclei transforms the 1Lg and 1L~ states of 
He;+ into excited states of Be++. 

The 1L~ state that results from the combination of 
two helium ions is the ground state of the Het quasi­
molecule. To determine the ground level of Hei+ we write 
the Schrodinger equation for two electrons in the axi­
symmetric Coulomb field of two fixed nuclei each of 
which has a charge z: 

(-~!i' -~!i2 -..!...--..!...--..!...--~+~) 'I' = £z(R) '1', (1) 
2 2 rAt r A 2. rBI fB'l r12 

where EZ (R) = E z (R) - Z2/R is the energy of electrons 1 
and 2; r A1' r A2' r B1 , r B2 are the distances of the elec­
trons from the nuclei A and B; R is the nuclear separa­
tion (here and hereafter atomic units are used). 

By means of the scale transformation 
PAl. PAZ PDI PH:? L 

rA1=-Z' rA2=Z-' rnt=Z-' rI12=Z-' R=z' 
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we obtain from (1) the Schrodinger equation for a hydro­
gen molecule with the electron interaction parameter 
A = l/Z: 

(-~L\' _~!i2 __ 1 ___ 1 ___ 1 ___ 1_+~)1jJ= £(A,L)$, (2) 
2 2 PA' PA2 p., PB2 P12 

where 

e(A,L) =p-z(R) /Z' (3) 

is the electronic energy and L is the distance between 
the protons A and B. For 11. = 1, Eq. (2) becomes the 
exact Schrodinger equation for the hydrogen molecule, 
while for A = 0 it splits into two Schrodinger equations 
for the molecular hydrogen ion. 

We must solve (2) with the electron interaction param­
eter A = 7'2. Calculating the electronic energy E(1I., L) 
for A = 0, 7'2, 1, and 2, we obtain: E(O, L) = 2EW(L), where 

2 

EH+(L) is the electronic energy of Hi; d7'2, L) 
2 

= 7'4EHe;+(L/2), where EHe;+(L/2) is the desired elec-

tronic energy of the Hei+ quasimolecule; E(1, L) = EH (L), 
2 

where EH2 (L) is the electronic energy of the hydrogen 
molecule. With further increase of A one electron is de­
tached, and for the energy E(1I., L) we obtain the expres­
sion E(1I. > 2, L) = EW(L). The value of the interaction 

2 
parameter A at which electron detachment occurs in-
creases with the internuclear distance L. At large separ­
ations L we have the asymptotic relation 

A-~+l+-~ +(1:._~)..!..+O(_l) 
2 4L 4 2 L' L'" 

where (3 is the polarizability of the hydrogen atom. 

Knowing the energy levels of the systems resulting 
from the ultimate union of the nuclei, we can calculate 
the electronic energy E(1I., L) for L = 0 and different 
values of 11.: 

f (0,0) = 2E",.+ = -4, E",+ - ground level of He +; 
d'/"O) = 'f.,En,++ = -3.41, E n,++ - ground level of Be++; 

c(1,0) =E",=-2.90, E Il ,.- ground level of He; 
f (2, 0) = 4E,,- = -2.09, FlI - - ground level of H-; 

e(A> 2. 0) = E lI ,+ = -2. 

The behavior of the E(1I., 0) curve is shown in Fig. 1; 
dO, L) = 2EH+(L) is taken to be the zero energy level. 

2 

. The E(1I., 0) curve intersects the boundary of the continu-
ous spectrum, E(A > 2.0) = -2, at A = 2.13. For larger 
A, E(A, 0) becomes a quasistationary level, because a 
potential barrier appears. 

It is seen in Fig. 1 that within the interval 0 to 1 the 
E (A, 0) curve is almost linearly dependent on A. The 
curves for large L lie below that curve and their behav-
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FIG. I. Electronic energy €(X, L) as a function of the parameter X 
for different values of L. 

FIG. 2. Total energy EHer (R) of the quasimolecule He;+. The up· 
per curves were calculated using the variational method of Kolos and 
Roothaan. [3] 

ior will be similar. Therefore in the given interval 
(0-1) adA, L) curve can be replaced sufficiently ac­
curately by a straight line; after this, for A = Y2 and 
arbitrary L the electronic energy can be written as 

B ('i" L) "" BlI,+(L) + '/,BlI,(L). (4) 

It should be noted here that for large internuclear dis­
tances L, since each electron can be closer to either 
nucleus, in the vicinity of the point A = 0 the derivative 
of the electronic energy with respect to A, fA (A, L), has 
the constant value 5/16. However, calculations show that 
this region of small A decreases exponentially as L in­
creases. 

From (3) and (4) we obtain an expression for the 
ground level of the quasimolecule Her: 

fH,,++(R) "" 2 (2eHi (2R) + ell, (2R)) . (5) 

At R = 0 we estimate a maximum relative error ~ 1% 
here; this is probably not much reduced at R ~ 1. At 
very large R the error decreases as l/R4. It must also 
be noted that the error is negative for all internuclear 
distances. 

From Eq. (5), taking into account the Coulomb nuclear 
repulsion for the total energy of Her, we obtain 

En,,++(R) ""2(2Bn,+(2R) +BH,(2R) +2/R). (6) 

To calculate the ground level of Her we used Kolos and 
Wolniewiez's variational calculation of the hydrogen­
molecule ground level [lJ and Bates' numerical calcula­
tion of the ground level of the molecular hydrogen ion. [2J 
The results are given in the table and the corresponding 
curve is shown in Fig. 2. This curve, repre senting the 
total energy of the Het ground state, is seen to possess 
a maximum and a minimum; at infinite separation of the 
nuclei it approaches a constant value, which is the total 
energy of the He+ + He+ system. Figure 2 also shows 
total-energy curves of ground- state He~+ that were cal­
culated in the region of the minimum by means of the 
variational method of Kolos and Roothaan, [3J using wave 
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R I-EHe·++(R)11 R I-EHe,++ (R) 

0.;'0 2.056 2.50 

I 
3.705 

0.75 3.342 2.75 3.709 
1.00 3.687 3.00 3.716 
1.25 3.763 3.25 

I 

3.726 
1.50 3.758 3.50 3.737 
1.7;) 3.736 4.00 3.760 
2.00 3.717 4.50 3.783 
2.25 3.707 5.00 3802 

functions with forty and with nine parameters, respec­
tively. From the (lowest) calculated curve the follOwing 
values of the quasimolecule's parameters are obtained 
(Ro is the equilibrium separation, D is the dissociation 
energy, and w is the vibrational frequency): Ro = 1.34 
= 0.71 J.., D = 0.062 = 1.69 eV, and w = 0.016 = 3504 cm-1. 
It is easily perceived thereby that the potential well of 
the quasimolecule contains four quasistationary vibra­
tionallevels: Eo = 0.241 = 6.55 eV, E1 = 0.257 = 6.99 eV, 
E2 = 0.273 = 7.42 eV, and E3 = 0.289 = 7.86 eV. The 
respective lifetimes are of the follOwing orders: To 

~ 1016 sec, T1 ~ 106 sec, T2 ~ 10-3 sec, and T3 ~ 10-12 
sec. 

The approximate formula (5) for the electronic energy 
of He;+ gives values that lie below the true values. How­
ever, it can be shown that this underestimation of the 
electronic energy is not responsible for the minimum of 
the total-energy curve. The reason lies in the fact that 
the total-energy curve of Het possesses an inflection 
point where its electronic energy is replaced by the elec­
tronic energy of the hydrogen molecule. 

The Het molecule can be formed by ionizing the 
stable He; molecule, which has the parameters Ro = 2.06 
= 1.09 J.., D = 0.092 = 2.5 eV, and w = 0.0074 = 1627 cm-1. 
The ground state of this molecule will be X2~U' By 
analyzing the ground-state potential curves of these two 
systems it is shown that, according to the Franck-Condon 
principle, ionization of ground-state Hei produces He;+ 
in vibrational excited states. It should also be noted that 
there is a small probability of obtaining ground-state 
Hei+ by ionizing Hei in a vibrational excited state. 

Calculations show that the ground state Xl~g of the 
Het+ system is a monotonic function of the internuclear 
distance R and thus possesses no inflection point. Conse­
quently, the He;++ system possesses no quasistationary 
states. The maximum charge (Z) at which a single elec­
tron can still bind the two nuclei is 1.40. 
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