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Random rotational motion of a molecule together with its environment in a thermal hydrodynamic 
fluctuation field is studied for a classical liquid. A long-time asymptotic behavior of the angular 
velocity and angular momentum correlation functions of the molecule is obtained which is the same 
for various liquids. The rotational-motion correlation functions and mean-square displacements of 
molecules in a liquid with relaxing shear stresses are obtained which are valid for all hydrodynamic 
times. A more exact value of the Lagrange diffusion coefficient is presented. The low-frequency 
asymptotic form of the Fourier transform of the rotational-motion correlation functions of a 
molecule is considered. 

1. INTRODUCTION 

Rotational thermal motion of molecules becomes Sig­
nificantly manifest in the spectra of many processes and 
liquids, namely, dielectric relaxation, electron and 
nuclear magnetic resonances, infrared absorption, Raman 
and Rayleigh scattering of light, and other processes. In 
all cases, the theory calls for knowledge of the time­
dependent correlation functions of quantities that describe 
the rotational and turning motion of liquid particles. The 
Simplest of them are the correlation functions of th~ 
components of the angular velocity wet) and the angular 
momentum met) of a certain selected molecule 

«",.(O)",,(t») = '/3«(0 (0)(0 (t»)6., "" 'Ia'f!(t) 6." (1) 

«m.(O)m,(t») = 'fa«m(0)m(t»)6.,~ 'Ia'f!,(t) 6." (2) 

where the double angle brackets denote averaging over 
the equilibrium distribution of the moleeular variables. 
In the case of magnetic resonance, the functions cp (t) and 
CPl(t) suffice to describe the spin-lattice relaxation. In 
more complicated cases, the correlation functions of the 
functions of the turning angles of the molecules can be 
frequently expressed exactly or approximately in terms 
of cp(t) or CPl(t)[l,2J . Irrespectively, knowledge of the 
functions cP (t) and CPl (t) is quite important for the analy­
sis and understanding of the mechanism of turning and 
rotational thermal motions of molecules and liquids. 
Certain inf.ormation concerning the exact course of these 
functions are known from computer experiments[3,4]. 

The detailed course of the functions cP (t) and CPl (t) is 
quite complicated and differs for different liquids. Their 
asymptotic behavior at long times, however, as will be 
shown below, is universal and can be described exactly. 
If we are interested not only in the limiting asymptotic 
forms of the functions cp(t) and CPl(t) as t - co, but also in 
their behavior at shorter times that are nevertheless 
long in comparison .with the characteristic proper mole­
cular times, then the universal asymptotic form gives 
way to certain simple types of behavior, depending on the 
type of liquid, which again can be accurately described. 
In the present paper we study the limiting asymptotic 
forms of the functions cp(t) and CPl(t) at very long times 
and their behavior at moderately long times for liquids 
with mechanically isotropic or weakly anisotropic mole­
cules. 

The "long" times of interest to us are those falling in 
the hydrodynamic time interval for a given type of liquid. 
Accordingly, the estimates we need can be obtained by 
the methods of the theory of thermal hydrodynamic fluc-
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tuations. Analogous estimates for the correlation func­
tions of the translational motion of a molecule in a liquid 
were investigated in detail by one of the authors[S,6J. It 
was shown that for simple and nearly simple liquids, the 
region of applicability of such a theory extends quite far 
in the direction of short times, and it is always possible 
to enhance this property by choosing more refined hydro­
dynamiC models. 

2. FUNDAMENTAL EQUATIONS 

Let 71 be the longest of the characteristic times of the 
translational and rotational motions of the selected mole­
cule with respect to its surrounding (without allowance 
for the nuclear-spin motions). For low-viscosity and 
nonpolar liquids, 71 ~ 10-12 sec. The molecule together 
with its environment as a unit execute slower motions, 
which can be described in hydrodynamic terms. If the 
molecule together with its environment is identified with 
the "liquid particle" of the Lagrangian formulation of 
the hydrodynamic equations, and if <I>(t) and <I>l(t) are the 
Lagrangian correlation functions of the thermal fluctua­
tions of the hydrodynamically-determined angular veloc­
ity 0 and density of the angular momentum M, then we 
have asymptotically for the functions of (1) and (2) 

'f!(t)-+<I>(t), 'f!,(I)-+<I>,(t), t»". (3) 

Let u(r, t) be the Euler field of the fluctuational hy­
drodynamic velocities and let ul(r, t) be its solenoidal 
part. Then OCr, t) equals (1/2)curl ul(r, t)). If ao = a(O) 
and aCt) are the Lagrangian coordinates of the liquid par­
ticle at two instants of time, then we get for <I>(t) from (3) 

<D(t) = '/.<rotu.dao, O)rotuda(t), t» = -'/.<u(ao, O)Llu(a(t), t».L, 
(4) 

where 6. is the Laplace operator and the angle brackets 
denote averaging over the distribution of the thermal 
fluctuations. Let furthermore a(r, t) be the average 
density of the moment of inertia of a liquid consisting of 
spherically-symmetrical or nearly symmetrical mole­
cules[7,8J . Then M(r, t) = a(r, t)O(r, t), and in the 
linear theory of fluctuations we must put a = (a(r, t) 
= const. For the function <I>l(t) it follows from (3) that 

<1>, (t) = -'/.a'<u(ao, O)/lu(a(t), t) > 1- = a'<D (t), (5) 

so that the functions cp(t) and CPl(t) of (1) and (2) have the 
same asymptotic form as t - 00. If the molecules have a 
mechanical angular momentum of their own or are 
noticeably anisotropic, then the definition of the function 
<I>1(t) must be replaced in accordance with the known 
expanded hydrodynamic models for these cases [7-10J 
We are not interested in this situation in the present 
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paper. It can be noted, however, that the relaxation time 
of the angular momentum or the anisotropy in ordinary 
liquids is quite small. For all longer times, the defini­
tions (4) and (5) remain in force. The presence of a 
proper angular momentum or of anisotropy of the mole­
cules leads only to a redefinition of the kinetic coeffi­
cients (and of the coefficient a in (5))[8,1OJ. 

If we neglect the displacement of the liquid particle 
during the time t and replace approximately in the right­
hang side of (4) the Lagrangian correlation function by 
the Euler function, putting art) ~ ao = r, then the result 

1D(t) "" -'/.<u(r, O)L'1u(r, t»l. (6) 

can be easily calculated with the aid of the known formu­
las of the theory of thermal hydrodynamic fluctua­
tions[1l,12J . Such estimates were made at t - 00 in[13,14J. 
It is clear from the foregoing that such an approximation 
cannot serve as an exact asymptotic estimate for the 
molecular correlation functions (1) and (2), in which the 
multipliers under the averaging sign pertain to different 
points on the trajectory of the molecule center. 

For an explicit calculation of the right-hand side of 
(4) and (5), the latter must be expressed in terms of 
known Euler correlation functions. We use for this pur­
pose the method and the approximation of[ 5J . We expand 
the function u(a(t), t) in a Taylor series in powers of the 
displacement oa(t) = art) - ao, and assume that the time t 
is long enough that the correlations between the displace­
ment at the instant t and the gradients of the velocity 
field at the initial point u(ao, t) can be neglected. Simul­
taneously, the distribution of the displacement approaches 
a normal distribution with increaSing t. If r (t) is the 
mean-squared particle displacement, r (t) = ([ oa(t)]2), 
then, taking into account the isotropy of the liquid in the 
absence of fluctuations, and repeating the simple proce­
dure of [5J , we obtain 

1~1(1 )" 1D(t)=-4 ~-;;J 6"r(t) (u(r,O)L'1"+l u (r,t»l.' (7) 
11=4; 

Equation (7) contains the total mean-squared dis­
placement r (t) of the liquid particle, which depends both 
on the solenoidal and on the potential parts of the field 
u(r, t). Let 

'I'(t) = <u(ao, O)u(a(t), t» (8) 

be the Lagrangian correlation function of the total veloc­
ity of the liquid particle investigated in[5J. In analogy 
with (7), we can obtain for it an expansion in the Euler 
correlation functions [5J 

!". 1 1 n 

'I'(t) = l:;;T' (6"r(t») (u(r,O)L'1"u(r,t». (9) 
11=1) 

We separate in each Euler correlator its solenoidal and 
potential parts and take into account the identity 2 iJ(t) 
= d2r /de. This leads to a closed equation for r (t), in the 
form 
---=2~ - -r(t) [<u(r,O)L'1n u (r,t»l. + <u(r,O)L'1nu (r,t»,,], d'r (t) ~ 1 (1 ) n 

dt' '-' n! 6 
n~O (10) 

with the natural initial conditions 

r(o) = (dr/dt),~o=O. (11) 

If the Euler correlation functions of the fluctuation 
field u(r, t) are known, Eqs. (7) and (10) constitute a 
closed system of equations for the functions r (t) and 
cf>(t), from which the functions cf>l(t) and iJ(t) can be easily 
reconstructed. The explicit form of these equations and 
the character .of the solutions depend on the employed 
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hydrodynamic model. We shall show below that the series 
in (7) and (10) can be summed in several important cases. 

Equations (7) and (10) correspond to the Gaussian ap­
proximation for the distribution law of the random dis­
placements of a liquid particle, which is automatically 
valid at large values of t. They turn out to be exact also 
at very short times, as is seen directly from (4) and (8). 
Assuming that they are acceptably accurate also at inter­
mediate values of t, we use them as the fundamental 
equations for the conversion of the Euler correlation 
functions into Lagrangian ones. 

3. THE NAVIER·STOKES APPROXIMATION 

To obtain the universal limiting asymptotic form, 
mentioned in the Introduction, for the molecular correla­
tion functions (1) and (2) as t - 00, it suffices to use in 
(7) and (10) an incompressible-liquid model obeying the 
Navier-Stokes equation, which is valid for slow flow in 
any "Newtonian" liquid. In such a case we have 

1 a u" (r, t) = 0, L'1Ul. (r, t) = --,- Ul. (r, t), (12) 
v dt 

where v = Tf/p is the kinematic viscosity coefficient, and 
Eqs. (7) and (10) take the form 

1 ~ 1 1 " r) HI 

1D(t)= --~ -(-. r(t») -. -~;(t) 
4v .l...J n! 6,' r)t,,+1 

(13) 

d'r(t) ~ 1 ( 1 n iJn ~-=2~- -, r(t») -. ¢(t), 
dt' .::.... n! 6\' dl" 

(14) 
,,=0 

where I/i (t) is the correlator of the solenoidal part of the 
field u(r, t) in the Navier-Stokes approximation with 
equal spatial arguments. This correlator is equal to[5] 

¢ (t) = 2kT / p (4nvt)'/· (15) 

(p is the density and kT is the product of the Boltzmann 
constant by the absolute temperature). The series (13) 
and (14) can be easily summed, and we obtain 

~)(t)= __ 1_¢, (t+~r(t»), r"(t)=2¢(t+~r(t»), 
4v (,\' 6\' 

(16) 
where the primes denote differentiation with respect to 
the argument. 

We put 
1 kT 

t+-r(t)=z(t), -b (17) 
6v 3'1 (nv)'/' - . 

Equations (16) and (9) are rewritten as follows: 
. b 9b 

z"(t)=-;-r'I,(t), lD(t)=-;;;;-z-,/,(t), '1'(t)=3vbr'/'(t). (18) 
[1 tJ .... 

The first of these equations can be integrated once 
directly, and we have 

z"(t) = (1 + D / v)' - b I 1'z(t), (19) 

where (1 + D/V)2 is the integration constant. One more 
integration leads to 

t = (z + 3/,1' zoz) (1 - 1'zo I z) 'I. + '/8zo In (z I zo) 

+ '/,zoln [1 + (1-1'zo /z)'''] +c, 

where c is a new constant and 

b = (1 + D I v) '1'z.. 

(20) 

(21) 

The Navier-Stokes approximation is not satisfactory 
at very short times, so that the correlation function (14) 
does not exist at t - O. Consequently no choice of the 
constants c and D can satisfy the initial condition z (0) 
= 0 (see (11)). The second initial condition in (11), in 
conjunction with (17), yields Z/(O) = 1, and from (17), 
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(19), and (20) we obtain the values of c, z(O), and r(O). It 
follows then from (18) that the Lagrangian correlation 
functions <l>(t) and w(t), in contrast to the Euler function 
iJi(t), remain finite as t - O. 

In the opposite case of large values of t we obtain 
from (20) an expansion 

z (t) ~ (1 + D I v) t - [ (1 + D I v)z,t]'l' - 'I,z, In (4t I z,) 

+ ["/8Z, - '/,z, In (1 + D I v1 - (1 + D I v1c] + ... , 
(22) 

the first three terms of which do not depend on the con­
stant c and on the incorrect initial conditions at t = O. 
After simple substitutions, these terms determine, with 
the aid of the formulas given above, the sought limiting 
asymptotic form of the functions r(t), w(t), and <l>(t), and 
in accordance with (3) also of the functions C{J (t) and 
C{J1(t). For example, for r(t) and <l>(t) we obtain 

r(t)~6Dt- 2kT, {i- . (kT)' In p'v't + 
p[n(v+D)]/, 12n'p'v(v+D)' (kT)' 

<D(t)~ :)nkT [1+ 5nkT 1 
32p[n(v+D)tj'/, 6p[n(v+D)]'/, l't 

(23) 

+ In--+ .... 5(kT)' p'v'i 1 
72n'p'(\' +D)"t (kT)' 

(24) 

According to (3), as t - 00, we obtain for the molecular 
correlation functions C{J (t) and <l>1 (t), asymptotically, C{J (t) 
= <l>(t) and C{J1(t) = a 2<l>(t), so that expression (24) does 
indeed determine the universal asymptotic limiting form 
of these functions. The first term of (24) with an inaccur­
ate coefficient was indicated in [13,14J . 

4. IMPROVED ESTIMATE OF THE FUNCTION r(t) 

To obtain not only an asymptotic estimate for <l>(t), 
but also an expression suitable for all hydrodynamic 
times, it is necessary to resort to more exact hydro­
dynamic models and to know the function r(t) for them. 
The latter problem was discussed in [S,6J. We present 
below some significant additions to the results of[s,eJ. 

We consider first an incompressible liquid with a 
dynamic viscosity coefficient 17(w) = 110/(1 - iWT), where 
T is the Maxwellian relaxation time of the viscous stres­
ses. The equation of motion for the velocity field is 

1 a a' 
t.u(r, t)~ - (- + ,-) u(r, t), 

v at at' (25) 

where v = 110/p and u(r, t) == u,i(r, t). The Euler corre­
lation function for u( r, t), for equal spatial arguments, 
was obtained for this case in [sJ and is equal to . 

I\1(t)~_kT ___ r'/2' [I, (~) +1, (~)], t>O. (26) 
8npv hv t 2, 2T 

Here In(x) is the modified Bessel function and we have 
left out the Singular term concentrated at the point t = 0, 
so that expression (26) has a finite limit as t - +0. 
Substitution of (25) in (10) leads to the equation 

d'r(t) 1 1. "rJ a' ) " ~~2~-(-r(t)) (-:-+T-.. ¢(t), 
dt' i..J n! Bv dt dt' 

(27) 
11=0 

in which the right-hand side can be summed. It is easy 
to verify that the result of the summation is [eJ 

2 "'- 1 [ <J ] 'j,) r"(t)~-= S 1\1 (t+-l'(t1+8 ~r(t1 e~"ds, 
l'n 6v .lv-

(28) 

where the function I/'(t) from (26) is assumed to be con­
tinued in even fashion in to the region t < O. It is neces­
sary to add to (28) the initial conditions (11). 

We introduce the dimensionless quantities 
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kT 
--:=::-=a, 
24npv' fTV 

t 
-=x, 
2T 

J... (t + _1_ r(t)) ~ Z(x). 
2T 6v 

Equation (28) can now be written in the form 

Z"(x)~ a SOO ljJ,(IZ(x)+ s[Z(x)-xJ"'llexp{-J... s'} ds, (30) 
l'2n 2 

with initial conditions 

Z(O)~O. Z'(O)~1. 

and with a function iJio(x) equal to 

ljJ,(x) ~ e~'[l, (x) + I,(x)] Ix. 

(31) 

(32) 

At x < 0, Eq. (30) can be solved directly in the form 
of a series in powers of x, and after changing over to r (t) 
we obtain 

3 { t' t' t' ( a ) t' ( 3a ) } r(t)~-aVT ---+- 1-- --- 7+- + .... 
4 T' 8T' 64,' 4 3840,' 4 

(33) 
At x » 1, we can obtain from (30) an asymptotic expan­
sion for Z(x), in which the first three terms lead exactly 
to expression (23) for r (t). The only difference is that 
in (23) the diffusion coefficient D appeared as an integra­
tion constant and remained undetermined. Now the co­
efficient D can be determined by solving (30). An ap­
proximate estimate can be obtained immediately by 
neglecting in (30) the second term in the argument of 
the integrand. The first integral of the resultant differ­
ential equation, taking (31) into account, leads to 

Z"(oo)~ 1 + 2a I I\1,(x)dx ~ 1 +3a, (34) 

whence 
D="'I,r'(oo) ~vU1+3a-1). (35) 

At small values of D "" 3va/2, which coincides with the 
estimate of[5J . A more accurate value of D will be given 
later on. 

The parameter a, defined in (29), is small. For low­
viscosity liquids at ordinary temperatures we have 
a ~ 1O~13. This can be used to obtain for (30) and ap­
proximate solution that is uniformly suitable for all 
values of x. We put 

Z(x) ~x+aZl(x) + a'Z, (x) + ... , (36) 

Substitute this in (30) and (31), and after expanding the 
right-hand side of (30) we equate terms with light powers 
of a. As a result we obtain the following system of equa­
tions: 

Z,"(x) ~I\1,(x), Z,(O) ~Z,'(O) ~O; 

z," (x) ~ [ljJ,'(x) + 'M," (x) ]z,(x), 

Z,(O) ~ Z;(O) ~ 0, 

etc. We consider the function 

",(x) ~:l+'/,x-r'[(3+4x)Io(x) + (1+4x)I,(x)]. 

(37) 

(37') 

(38) 

It is easy to verify that w"(x) = iJio(x) and w(O) = w'(O) 
= O. We therefore obtain from (37) 

and after substituting in (37') and integrating, we get 

Z,(.1-)~ '/, [z",(x)""(x)+ ",(x)","(x)- ","(x) 

-.) f ","(y)dy + I (x - y)¢,'(y)dy ] . 

(39) 

(40) 

We can analogously reduce to quadratures the next ap­
proximation of (36). Substituting (39) and (40) in (36), we 

I. Z. Fisher et al. 148 



get 5. CORRELATION FUNCTIONS OF THE 
f(t) ~ 12an[",(tI2,) + aZ,(tI2,) + ... ], (41) ROTATIONAL MOTION 

with Z2(X) from (40). Differentiating this once with 
respect to t and then putting t - 00, and taking into ac­
count the explicit form of w(x) in (38), we obtain 

D~'I,f'(oo) ~'/2av[1-32aI15n+O(a')1. (42) 
It is necessary to substitute here the value of a from 
(29). The first term in (29) coincides with the first term 
of the expansion (35) and with the result of[sJ. We see 
also that the approximation (35) is very good. 

We have so far disregarded the effects of the com­
pressibility of a real liquid. A complete calculation of 
r (t) for a compressible liquid with relaxing kinetic co­
efficients and with allowance for the dispersion of the 
speed of sound the thermal conductivity is an exceedingly 
complicated manner. The problem was discussed and 
partially solved in [sJ. A qualitative picture of the 
phenomenon can be obtained by putting cp ~ cv. Neglect-

ing by the same token the influence of the thermal con­
ductivity on the longitudinal motions of the liquid and 
assuming the damping decrement and the speed of sound 
to be constant, we find that the Euler correlation function 
of the longitudinal component of the field u(r, t) with 
equal spatial arguments is then a particular case of the 
more general function obtained in [sJ , and is equal to 

4kTc' ( c't ) 
¢"(t)~ (u(r,O)u(r,t»1I ~-2-' a" - , 

n Pl 1 
(43) 

Yx 
a (x) ~ 1 - e-2X - 2 V:r e-x ~ eY'dy, (43') 

o 

where c is the speed of sound, Y = 411/3 + ,/p, and , is 
the second viSCOSity coefficient. In addition, we neglect 
the difference between the Euler and Lagrangian corre­
lation functions for the acoustic branch of the fluctuations 
of the field u(r, t). In this case, according to (10), it is 
necessary to add to the right-hand side of (28) the value 
of ¢s(t) multiplied by 2, and by changing over to the 
dimensionless quantities (29) we obtain the inhomogene­
ous equations 

Z"(x)= a J ¢o(IZ(x)+s[Z(x)-xJ"'llexp{-~s'}dS 
f2n 2 

+~(~,v) 'I, a" ( 2c', x.) 
3t "{2 'Y' 

(44) 

with initial conditions (31). 

Equation (44) can be investigated by the same methods 
as (30). At x ~ 1, a direct solution in the form of a ser­
ies in powers of x leads in place of (33) to the expres­
sion 

f(t)~2avT[(~+2)!...--(~~+~)~+ ... ], ~~~,/v. 
8,' 5 64,' qn V , 

(45) 
For ordinary liquids we have (3 ~ 10, so that expressions 
(33) and (45) differ significantly. At t > y/c2, however, 
the free term in (44) attenuates rapidly, and the asymp­
totic solution as t - co again leads in the principal terms 
to the universal asymptotic form (23). In the region of 
intermediate values of x, the solution of (44) in the form 
of a series in powers of a leads to the result 

r(t)=~ ,/~[", (!...-) + ~a(~)] +O(a'). (46) 2npv V v 2, 1 
The term with (3 makes no contribution to the behavior of 
r' (t) as t - O(), so that the definition of the diffusion co­
efficient (42) remains in force. It can be shown that the 
next higher approximations yield a small correction to 
D, of the ordeF of (a/3)2. 
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We turn to the rotational motion of a liquid particle. 
We consider again the case of a liquid with relaxing vis­
cosity. From (7) and (25) in analogy with (30), we get 

$(x)= ~a S~ Xo(Z(X)+s[Z(x)-xJ"')exp{-~s'}dS, (47) 
32,' f2n 2 

where we have used the dimensionless notation of (29) 
and 

Xo(x) ~e-'(I,(x) +l,(x» lx', x>O (48) 

is the dimensionless Euler correlation function of the 
angular velOCity at equal spatial arguments, which must 
be continued in even fashion into the region x < O. Z(x) 
in (47) should be replaced by anyone of the estimates 
obtained above. At x < 1, direct expansion.in powers of 
x leads to the result 

9a[ 5t 5( a 2a)t' ] cI>(t)=-- 1--+- 1----~ -+ .... (49) 
256,' '12, 48 4 3 ,2 

For q,(t), unlike r (t), the effect of compressibility of the 
. liquid is weak, namely, (3 enters only in the combination 
a{3. Putting t = 0 in (49) and taking (5) and (29) into ac­
count, we obtain an estimate for the mean-squared hy­
drodynamic thermal fluctuations of the angular velocity 
and the density of the angular momentum 

(M') = a.' (02 ) ~ 3a.'kT (50) 
2np (16.v )'/, ' 

which would be difficult to obtain by another method. 

In the case x » 1, regardless of whether we take the 
compressibility of the liquid into account or not, we ob­
tain from (48) 19ain the limiting asymptotic form (24) 
with q,(t) GO t- S 2. 

At intermediate values of x, an approximate expres­
sion for q,(t) can be obtained by expanding Z(x) and q,(x) 
in powers of a. With the aid of (46) we thus obtain 

cI> (t) = 3~~2 {xo (;.) + a[ xo' C.) +1-xo" (2: ) ] . 
'[w(;,)+~a( c;t )]+O(a')}' 

(51) 

The function q,(t) is integrable over the entire semiaxis 
t ~ O. From (51) we obtain with the aid of (48) the esti­
mate 

S) 5kT (1 + 0 ( » 
cI>(t dt 128n'1(4",),/, a . (52) 

The quantity 
1 • 

D,=-S cI>(t)dt 
3 0 

can be taken to be the "coefficient of rotational diffu­
sion" of the liquid particle. 

For spectral experiments it is necessary to know the 
Fourier representation of the function q,(t). We put . 

Ill. = S cI>(t)coswtdt. (53) 

Taking into account only the first term in (51), we get 

cI>. = 'I,Dr{Re [6$ + 2$' - 2$' - $'] + O(a)}, 
(54) 

s = 1- 2iw. - [(1- 2iw.)'_1]'/,. 

The power-law asymptotic form of q,(t) as t - 0() makes 
q,w non-analytic as w - O. From (54) we obtain at small 
values of w the expansion 
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ID.=3D,[1+ 1~(!Jl'r)'/'-48(olT)'+ 6!(0l1:)'1.+ ... ]. (55) 
51'2 1'2 

A simIlar result was obtained earlier !Or the correla-
tion function of the angular velocity of a Brownian parti­
cle with allowance for the viscous aftereffect[13]. That a 
Brownian particle behaves like a "liquid" particle as 
t - 00 or w - 0 is physically obvious. The presence of 
fractional-power terms in (55) can be verified in prin­
ciple by means of suitable spectral measurements, for 
example in EPR. 

In conclusion we recall once more that, in accordance 
with the ideas developed at the beginning of the article, 
the investigated function .p(t) determines the behavior of 
the correlation function of the angular velocity and of the 
angular momentum of a singled-out molecule in the liq­
uid at extremely long times, and their behavior at all 
hydrodynamics times, for a model of a liquid with relax­
ing shear stresses. 
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