
On the theory of vibration-rotation excitation of 
molecules 

R. Z. Vitlina and A. V. Chaplik 

Institute of Semiconductor Physics, Siberian Division, USSR Academy of Sciences 
(Submitted February 2, 1973) 
Zh. Eksp. Teor. Fiz. 65,458-465 (August 1973) 

The transition of translational energy into rotation and vibration excitation in molecular collisions is 
considered. A modification of the sudden perturbation method is employed, it being assumed that 
the transition-inducing interaction is not small. In this way it is possible to increase considerably the 
range of collision velocities for which the transition probability and cross section can be calculated 
explicitly. The probability for rotational excitation of molecules under the action of a short light 
pulse is also calculated. 

A semiclassical approach, first suggested by 
Zener[ll, can be used in many problems of inelastic 
collision theory. The relative motion of the colliding 
particles is considered classically, while their internal 
degrees of freedom are described quantum-mechanically, 
The problem of inelastic collisions is thus reduced to a 
problem of quantum transitions under the action of non
stationary perturbations. The probabilities for these 
transitions can be calculated only for a few cases. One 
of them occurs when perturbation theory is applicable, 
for which it is necessary that the condition VT « 1 be 
satisfied, where V is the characteristic magnitude of 
the perturbation and T is its duration (the collision 
time). Another example is the adiabatic situation, when 
the condition wT » 1 (the Massey criterion) is satis
fied, where w is a characteristic frequency correspond
ing to the internal motion of the colliding particles. 

In the adiabatic approximation, however, the problem 
cannot be solved in general form (unlike perturbation 
theory) and it is necessary to introduce additional 
Simplifications, such as strong coupling between two 
states, simulation of the functional dependence of the 
quasi-molecular terms on the internuclear distances, 
etc. At the same time physical situations occur in which 
neither the Massey criterion nor the applicability con
dition of perturbation theory are satisfied. Most sensi
ti ve in this sense are inelastic collisions with excita
tion of vibrational and rotational molecular degrees of 
freedom or transitions between highly excited atomic 
states. 

We consider one concrete example in detail. In col
lisions of charged particles with molecular dipoles, an 
important role is played by the long-range part of the 
interaction potential, which in atomic units is of the 
form 

v = dR(t) / R'(t), (1) 
where d is the dipole moment and R(t) is the vector of 
relative motion. In the straight-line trajectory approxi
mation R = p + vt (p is the impact parameter and v is 
the collision velocity). The probability of rotational
level excitation can then be calculated by perturbation 
theory if f vdt « 1, Le., p » d/v. The adiabatic ap
prOximation is satisfied for p » Mv since wrot ~ 11M 
where M is the reduced mass of the molecule. Thus, 
for velocities satisfying the condition 11M « v « d a 
w~de range of impact parameters is excluded from con
sideration. 

In this paper we use a modified sudden-perturbation 
method, which is valid for WT « 1 independently of the 
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value of the interaction, Le., VT is not necessarily 
small. As will be shown, this allows us to extend con
siderably the range of velocities in which the transition 
probability between rotational levels can be calculated 
explicity. The method proposed is similar to the im
pulse approximation in scattering theory[2,31. 

We start from the nonstationary Schrodinger equa
tion 

iW = flo'qr + V(t) 'l' 

and introduce a new unknown function defined by 

-'l'=Texp ( -i I V-dt) !J', 

" 

(2 ) 

where T is the time-ordering symbol. For the function 
cp we obtain the equation 

- + -i~ = [ T exp( ~ i I V dt )] HoT exp ( - i I V dt) !J'. (3) .. -, 
We assume that the perturbation V(t) has the form of a 
short pulse, so that as WT - 0 we obtain in fact in the 
right-hand side of (2) a term proportional to 1>6(t): 

In Eq. (3) for the function cp, however, the coefficients 
are finite despite the discontinuity at t = 0, and there
fore the function cp itself is discontinuous at this point. 
The relation between the values of the wave function 'It 
before and after the perturbation is hence easily ob
tained: 

'Y(t_ + 0) = e-i1>'f(t_ - 0). (4) 

Thus, if the system was in state 'lti prior to the colli
sions, the probability amplitude of exciting the n-th 
level equals 

where q is the set of internal coordinates of the col
liding particles. 

(5) 

A function similar to (4) was used by Mizushima[4j 
to calculate collision widths of spectral lines. Mizush
ima's derivation, however, seems to us unsatisfactory, 
as it is based on assuming that Ho and V commute. 

Several cases are known when the time-dependent 
Schrodinger equation has an accurate solution, for ex
ample, an oscillator acted upon by a variable external 
force and a two-level system, if the time dependence of 
the nondiagonal matrix element has the form of a 

Copyright © 1974 American Institute of Physics 224 



rectangular pulse ' ). In all these cases Eq. (5) coincides 
with the limiting values of the exact expressions as 
WT - O. The order of magnitude of the corrections 
depends on the pulse shape: for an oscillator acted upon 
by an external force this correction is of order (WT)2 

for a Gaussian pulse shape and of order WT for a 
Lorentzian shape. The model of an oscillator acted 
upon by an external force pulse f(t) was used by Osipov 
and Stupochenko[5] to calculate the probability of 
molecular vibrational excitation in head-on collisions. 
In this case P in (5) equals 

+~ 

x f fdt 

(x is the vibrational coordinate), and Eq. (5) gives then 
the result of ref. 5. As mentioned already, however, 
this model permits an accurate solution independently 
of the magnitude of WT. 

We consider now specific applications of Eq. (5). 

1. Rotational-level excitation of diatomic dipolar 
molecules in collisions with heavy charged particles. 

a) The rigid rotator approximation. As will be seen 
from the results, the excitation cross section is large 
in comparison with the atomic cross section, therefore 
the long-range part of the interaction (Eq. (1» plays 
the principal role. The quantity P equals 

P=~cos~ 
pv dp 

Let the initial state correspond to a ~-term and to 
a zero rotational number. A selection rule for the azi
muthal quantum number, .:lMK = 0, follows from the 
expression for P. For the excitation probability of the 
K-th rotational level we obtain the equation 

n , 2d 
WOK =(2K+ 1)2t:""IK+'l,(t.) , t.""P;-' (6) 

where J is a Bessel function. 

At large values of A (the case opposite to the ap
plicability condition of perturbation theory), levels with 
K ~ A are most effectively excited. This is seen from 
(6) since WOK has a maximum at K ~ A. The total ro
tational level excitation probability equals 

f, sin't. 
£..J WOK=1-~. 
K_l 

The condition WT « 1 implies that Eq. (6) is valid 
only if K satisfies the inequality K« Mv/p. The inte
grals determining the excitation cross section of rota
tionallevels converge for p ~ d/v if K ~ 2. Thus, when 
the condition Mv2/ d » 1 is satisfied there exists a large 
number of rotational states, transitions into which are 
described by Eq. (6). Integrating over the impact 
parameter, we find the c ross section aOK: 

-2.n;S~ W d 8n (d)' (2K+1) . - 3 
eJOK - 0 up P=T -;- K(K-1)(K+1)(K+2) ' K-2, , .... 

. (7) 

As to the excitation cross section of K = 1 leve Is, the 
corresponding integral in WOl diverges logarithmically 
at the upper limit. This means that in this case large 
p, for which the suddenness criterion WT « 1 is vio
lated, play an essential role. When, however, the al
ready mentioned criterion Mv 2/ d » 1 is satisfied the 
applicability regions of Eq. (6) and perturbation theory 
overlap, since the first is applicable at p « Mv and the 
second at p » d/ v . 
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The cross section aOl evaluated by perturbation 
theory diverges logarithmically at the lower limit. To 
take correct account of all contributions we proceed as 
follows. We choose R for which the inequalities 

are satisfied and in the integral with respect p we sub
stitute W dp) from (6) in the interval [0, R], and use 
the expression obtained for the probability from per
turbation theory in the region lR, 00]. Owing to the 
overlap of the applicability regions the quantity R 
drops out 'from the result. After rather cumbersome 
calculations we obtain 

8n ( d ) '{ v· 7 } eJ01=- - In--+C+--ln2. 
3 v (i),o,d 4 (8 ) 

Here C is Euler's constant, and Wrot is the rotational 
transition frequency between the zeroth and first level. 

It is seen from Eqs. (7) and (8) that the cross sec
tion is large when d2/v2 » 1. Impact parameters large 
in comparison with the molecule dimensions play then 
an important role, and this justifies the asymptotic form 
of the interaction (1). All conditions used above are, 
thus, compatible in the velocity range diM « v2 « d2. 

b) Rotating harmonic oscillator. If the condition 
WT « 1 is also satisfied with respect to the "~""rational 
frequencies, Eq. (5) can be used to obtain rotational
vibrational molecule excitations. In this case the quan
tity P is of the form 

2d. ( x ) np P=- 1+- COS-, 
pv r. p (9 ) 

where x is the vibrational coordinate, de is the dipole 
moment at the equilibrium internuclear distance denoted 
by re, and n is a unit vector along the molecular axis. 

The probability amplitude of the (0,0) - (K, n) 
transition integrated with respect to the vibrational 
coordinate is of the form 

aJOxn = ~ [ (2K ~ 1~ r l' PK(z) (~)"exp{ - it.,z - :: } dz. (10) 
-1 

Here Ae ~ 2de /pv, v ~ re (Mwe)l/2pv/de, n is the 
vibrational quantum number, We is the vibrational fre
quency, and PK( z) is a Legendre polynomial. The 
general analysis of Eq. (10) is quite difficult, therefore 
we investigate below some special cases. 

If n = 0, we deal with pure ly rotational transitions. 
In this case expression (10) differs from the correspond
ing equation for a rigid rotator by the factor 
exp( _Z2/V 2) under the integral sign. For p ~ de/v 
(exactly such p are significant in the integral that de
termines the cross section), however, the argument of 
this exponential is of order 1/v 2 ~ 1/Mw~ ~ 1/Ml/2. 
Thus, the results of the preceding section are repro
duced with relative accuracy 1/Ml/2. 

Let now n '" O. Two characteristic dimensions rela
ative to the parameter p compete in Eq. (10): 

p, - d, / V, p. - d, / r,v};["'. 

They are found from the relationships Ae ~ 1 and ve 
- 1. If p of the order of p 1 are significant, one can 
put in (10) exp (_z"/v2) ~ 1 and obtain 

(11) 

It follows from the properties of the asymptotic expan-
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sion of the Bessel function if that such an approximation 
is valid Pl/K» P2, Le., K2« Ml/2. This implies that 
the rotational energy is much smaller than the distance 
between vibrational levels. Equations for the cross 
section then follow from (11): 

KI_ 2n 
000 - 3 

(2K + 1) do' 

(K -1) (K + 2) M ro,v'r,' ' 
K=2,3 .... (12 ) 

The (0, 0) - (1, 1) transition is a special case be
cause of the logarithmic divergence of the cross sec
tion at large p. Proceeding as in the preceding section, 
one can match Eq. (11) with the expression that follows 
from perturbation theory. The expression for the cross 
section a~~ is of the form 

4nd.' [ v' 1 ] oooil= In--+C+8-6In2+-6 ' 
3M ro,v'r.' Qd, 

(13 ) 

where a = wet wrot. The matching condition is deter
mined in this case by the inequality M1/2V 2 » 1. When 
this condition is fulfilled the cross section determined 
by Eqs. (12) and (13) is less than unity on the atomic 
scale. This, however, does not contradict the applica
bility of Eq. (1), since large P (p ~ de/v), as usual, 
contribute significantly to the cross section. The small 
cross section is due to the low transition probability 
1 a~112 ~ l/M 1/2. Expressions (12) and (13) are thus 
asymptotically accurate in the region d~ » v2 » d~/MI/2, 
K2 « M1/2. 

We find next the total vibrational excitation probabil
ity W~, equal to 

This can be performed at any ratio of PI and P2, 
since expression (10) has the form of the function 

(z / v)"exp {-iA-,z - z'/ 'II'} 

expanded in Legendre polynomials: 

In. 2n I z2n (2Z' ) 
Wo"=L,laoo""I'=-;;rJv,"exp -7 dz. (14) 

1(_0 0 

The corresponding total cross section equals 
2n 1 do' 

00"==----- n-2,3 .. ". 
3 n(n -1) Mro,v"''' ' 

(15) 

At n = 1 the asymptotic form of W~ (p) as p - "" is 

W o' "" 2d.' / 3r.'Mro,v'p'. (16 ) 

This coincides with the asymptotic expression for 
1 a~~ 12 as p - "'; consequently, the divergence of a'o is 
due to the divergence of one term of the series 

2n.EJ laoo'KI'pdp, 
K_O 

corresponding to K = 1. Replacing this term with the 
expression for aM in (13), we obtain the correct equa
tio n for the total excitation cross section of the first 
vibrational level 

1 4n. d,' v'(Mro.),"r, 1 C In 2 ] 
00 =---- In +-+----

3 Mro,v'ro' Qd. 3 2 2 . (17) 

The following comments must be made in connection 
with Eq. (17). W~ (p) reaches its asymptotic form at 
p ,;::, P2, whereas 1 a~~ 12 can be replaced by its asymp
totic expression at P ~ PI» P 2. In the region PI> P 
> P 2 the relation W~ » 1 a~~ 12 holds. These quantities 
become comparable only at P ~ PI and are of the order 
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/ 1/2 . of 1 M . It follows therefore that, as usual, large P 
(of the order of de / v » 1) contribute appreciably to the 
cross section a~. 

2. Rotational-level excitation by an ultrashort light 
pulse. 

At the presently attainable durations of ultrashort 
pulses, T ~ 10-12 sec, the criterion WT « 1 can be satis
fied (with small margin, to be sure) for several molecu
lar rotational transitions. For the CO 2 and h molecules, 
for example, the transitions between the zeroth and 
second rotational levels correspond to Wrot T "" 0.4 and 
0.04, respectively, Since at realistic temperatures only 
a small fraction of the molecules is in the state K = 0, 
the process considered is not an effective mechanism 
for light-energy dissipation. It can, however, be 
detected in the emission of excited molecules in the 
frequency region corresponding to transitions between 
low rotational levels. As to vibrational transitions, the 
quantity wvib T can be large because the large ratio of 
the rotational and vibrational times (of the order of 
Ml/2 ). 

The vibrations thus undergo adiabatic perturbations 
up to T ~ 10-13_10-14 sec and their excitation is there
fore of low probability. Since the characteristic wave
length of light is much larger than the dimension of the 
molecule, the electric field of the wave can be assumed 
to be quasistationary: 

E(t) = eEo(t) cos root, 

where e is the polarization vector, Eo is the amplitude 
of the wave, and Wo is the wave frequency. In reality 
Wo lies in the infrared or visible red region and is, 
consequently, much smaller than electronic frequencies 
of the molecule. One can therefore use the expression 
for the interaction energy of a molecule with an electro
magnetic wave, averaged over the electronic state: 

1 
V = 2'" a",e,e.Eo' cos' root, (18) 

where aik is the polarizability tensor of the molecule. 

Taking into account dispersion, aik must be re
placed by 

{) 
a;;-[rooa/A(roo) I 

(see[6]). If the molecule possesses a dipole moment, the 
corresponding interaction is of the form d' eEo cos wot 
and its contribution to the transition is negligibly small 
because of the fast oscillations (the characteristic 
dimension of Eo (t) cOincides with the pulse duration T, 

which is assumed to be much smaller than w- 1 t but 
much larger than W~I). Only the constant co~gonent of 
(18) is important in the calculation of P. 

For a linear or symmetric -top molecule, the tensor 
aik expressed in terms of the principal axes has only 
two independent components: a 11 = a zz = a 1. and a 33 

= a II. Converting to the laboratory coordinate system 
and assuming linearly-polarized light, we obtain 

1 +~ 

p=4a .. e,e~I Eo'(t)dt=lCos'e, 

1 +-

1=4(aJl-a.L~! Eo'(t)dt. (19) 

(A term independent of" was omitted from (19).) Only 
transitions satisfying the selection rules AMK = 0, 

R. E. Vitlina and A. V. Chaplik 226 



AK = ±2, ±4, ... , are possible. For the transition ampli
tude we obtain 

a'K = (2i'Y)KI'(2K + i) 'I. (K -i) II F( K + 1 K + ~. i'Y) 
(2K + 1)!! 2' 2' , (20) 

where F is a confluent hypergeometric function. Choos
ing2) T ~ 10-12 sec and \ a II - a.L \ ~ 1 to 10, we obtain 
Y ~ 1 for Eo ~ (2-5) X 107 V/cm2• Since field intensities 
attained in a pulse can exceed this figure, it is sensible 
to investigate Eq. (20) for both small and large Y. 

If Y « 1, the transition probability equals 

W ""(2'Y)K(2K+ 1) [ (K-1)!! ]' 
OK (2K+1)!! . 

For Y» 1 and K;:' y1/2 we have 

W ,.,~(2K+i)[(K-1)!I]' 
OK 4 'Y KI! 

It is seen from the last equation that WOK is prac
tically independent of K up to K ~ y1/2. It can be shown 
that at K» Y the quantity WOK decreases like 
2(Ye/2K)K/K. 

In conclusion we emphasize that the problem con
sidered in this paper is solvable neither by perturbation 
theory nor in the adiabatic approximation, since it is 
required to calculate the K-th term of a Born series to 
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find WOK, and in the adiabatic theory one is restricted 
to a small number of strongly bound states. Obviously, 
only in the region where (5) is applicable can one obtain 
an answer in simple analytic form. In several cases 
one can find asymptotically accurate equations for the 
cross section by using the overlap of the applicability 
regions of the sudden-action approximation and pertur
bation theory. 

I)ln the first case P( q) is simply a c-number and in the second case a two-
row matrix. 

2)For CO2, for example, a 11- a.L = 16.8 a.u. 
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