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Giant quantum oscillations of the electron absorption of surface sound waves in metals located in 
magnetic fields perpendicular or parallel to the sample surface are investigated theoretically. It is 
shown that in a normal magnetic field the absorption experiences sharp oscillations despite the 
absence of the law of conservation of the electron momentum projection on the H vector in the field 
of an inhomogeneous sound wave. The amplitude and shape of the absorption line are found as 
depending on the frequency, temperature, and mean free path. 

It is known that the absorption[l) and dispersion of 
the sound velocity[2J in metals at low temperatures 
undergo giant quantum oscillations in a magnetic field. 
This phenomenon is due to the quantization of the veloc­
ity of electrons located on the Fermi surface in the 
direction of the magnetic field H. The resonance maxima 
of the absorption and velocity of the sound arise at those 
values of H at which the projection of one of these veloci­
ties on the sound wave vector k becomes equal to the 
sound velocity s. 

A characteristic feature of Rayleigh (surface) sound 
waves is that the component of the wave vector of these 
oscillations that is normal to the separation boundary 
does not have a defined value. Because of this fact, the 
effective value v + K Ivxl enters in the absorption of the 
Rayleigh waves in place of the ordinary collision fre­
quency of electrons with the scatterers v. Here K is the 
damping decrement of the surface wave along the normal 
Ox, and v is the velocity of the electrons.[3] The study 
of the possibility of existence of the phenomenon of giant 
quantum oscillations of the Rayleigh sound wave is there­
fore of interest. 

The present paper is devoted to the study of the fea­
tures of Rayleigh wave absorption by conduction elec­
trons of a metal in a quantizing magnetic field. The 
effect of scattering of the electrons and the temperature 
broadening of the Fermi level on the amplitude and shape 
of the resonance absorption lines are considered for dif­
ferent orientations of the vector H relative to the sur­
face of the sample. 

1. GENERAL RELATIONS 

In this section we derive the general quantum-mech­
anical expression for the coefficient of electronic ab­
sorption of Rayleigh sound r in the case in which the 
vector H is oriented along the inner normal to the sur­
face of separation. The metallic half-space (x > 0) is 
assumed to be acoustically isotropic. For SimpliCity, we 
limit ourselves to a consideration of an isotropic and 
quadratic dispersion law for the conduction electrons. 
Generalization to the case of an anisotropic spectrum of 
the electrons does not present great difficulty (see [4J). 

1. The coefficient r is determined by the energy ab­
sorbed by the electrons in a unit time, which we denote 
byQ: 

(1.1) 

Here the bar denotes averaging over the period of os-
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cillation, Ly and Lz are the dimensions of the crystal 
along the y and z axes, W is the energy density in the 
Rayleigh wave, averaged over the period and referred to 
unit area of the interface, 

8 - 16~' + 11~' - 2~' 
W=lu,'(O)I'ApLW'k-', A(~)=~' (1-~')"'(2-~')'; (1.2) 

the parameter 1; depends in known fashion [5J on the 
ratio of the transverse (St) and longitudinal (sz) sound 
velocities, PL is the density of the crystal, w is the fre­
quency, k is the two-dimensional wave vector with com­
ponents ~ and kz' and ~(O) is the normal component of 
the displacement vector of the longitudinal mode (the 
superscript l) on the surface x = O. 

According to [4J , the quantum -mechanical expression 
for the electronic absorption coefficient r at finite tem­
perature and with account of scattering, has the following 
form: 

f= j dE !,(E)-/,(E + liw) f(E), 
o IiCiJ 

(1.3) 

where fo(E) = {1 + exp [(E - EF)/T]fl is the Fermi dis­
tribution function, EF the Fermi energy, and r (E) is the 
coefficient of sound absorption by electrons with given 
energy E: 

f(E)= nhoo' .E 1(aIUlb>12D (E-Eb)D(E-E.+/loo). (1.4) 
4WLuL, 

•• b 

The summation in (1.4) is carried out over the quantum 
numbers a and b of the electron states in the magnetic 
fleld, Ea is the energy of the electron in the state la), 
U = Aikuik(r) is the deformation interaction operator of 
the electron with the wave, Aik is the deformation po­
tential tensor, uik is the elastic deformation tensor, and 
by repeated vector indices we mean summation from 1 
to 3. The function 

D(E) = 1 /Iv 
2n E' + (hv/2) , (1.5) 

is the imaginary part of the single-particle Green's 
function of the electrons with account of their scattering 
by the short-range potential of the impurity. The product 
of two D functions in Eq. (1.4) arises as a result of fac­
torization of the two-particle Green's function of the 
electrons. According to [6J, replacement of the two­
particle Green's function by the product of Single-parti­
cle functions is valid under the conditions of strong 
spatial dispersion 
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xl = xv/v'> 1 (1.6) 

and for all energies E with the exception of a small 
region of values 

~ < 1 IN, 

where 

(1. 7) 

E = (N + II, + ~)IIQ, N = IE I IIQ - II,]' (1.8) 

N is the integral and ~ the fractional part of the quantity 
E/rm - %. Here n = elI/mc is the cyclotron frequency, 
e the absolute value of the electronic charge, c the 
velocity of light, and v the Fermi velocity of the elec­
trons. 

The functions D in (1.4) describe the ccllision broad­
ening of the energy levels of the electrons in the mag­
netic field and the degree of violation of the law of en­
ergy conservation for absorption of the quantum nw. We 
note that in the case (1.6) the collision frequency v in 
(1.5) describes only the" drift" of the electrons and is 
expressed in terms of the total scattering cross section 
from the impurity. 

2. We proceed to the calculation of the matrix ele­
ments of the deformation interaction of electrons with 
the Rayleigh sound wave. This calculation can be car­
ried out directly only in the case of specular reflection 
of the electrons from the surface of the metal. It will be 
shown below that the quantum effect of interest to us is 
due to electrons with a small value of their velocity 
projection vx ' For these electrons, the scattering by 
rough surfaces is close to specular. [7J The contribution 
of the rest of the electrons to r is nonresonant and is 
essentially identical with the classical absorption r cl 
which was calculated in[3J. In other words, the nonres­
onant part of the absorption, found below for specular 
reflection, must be replaced in the general case by the 
classical absorption with account of nonspecular reflec­
tion of electrons from the surface. 

The wave function and the energy levels of the elec­
tron in a metal for specular reflection from the boun­
dary have the form 

la)"" In., l'2me., P,.)=(1L,)-'" 

. (l'2me.) (P,. ) ( y lP,. ) x. sm -11 -x exp iTz 0~ 1+-11- , (1.9) 

E. = (n. + 'MhQ + e., 

where Ea = p~ 12m is the longitudinal kine~c2energy of 
the electrons; p its momentum; cPn{y) = e y 12Hn(Y) the 
Hermite function; Hn(Y) the Hermite polynomial, norm­
alized to unity. The vector potential Ao of the constant 
magnetic field has the gauge AOx = Aoy = 0, Aoz = Hy; 
y = (nC/eH)1/2 is the magnetic length. 

In the interaction Hamiltonian Aikuik there enters the 

u(r)= .L,u·(O)exP(-x.X+ikr), . 
displacement vector in which the index (]I takes on the 
values 1 and t, corresponding to longitudinal and trans­
verse sound, and 

><. = (k' - OJ' / s.') 'I. (1.10) 

is the damping decrement of the wave of given type. 
Consequently, the matrix element can be written in the 
form 
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where lipz, p'z is the Kronecker delta, equal to 0 or 1. 
The integral over x is easily calculated, but the answer 
fills a great deal of space and we shall not write it down. 
The matrix element of exp ikyy is determined by the 
formula 

I (n.lexp(ik.y) In.) 1= M ..... [ (t)'], Mnm (T) = T(n-m1!'L':-"'Cr) e-·i,; 
(1.12) 

L~-m(T) is the Laguerre polynomial, normalized to 
unity. 

Giant quantum oscillations of the absorption of the 
wave take place in strong magnetic fields, when the 
length of the sound wave is large in comparison with the 
characteristic size of the electron orbit R = v/n: 

kR« 1. (1.13) 

In this case, the matrix Mn nb can be replaced by unity, 
i.e., only the components wr-th na = l'lJ:> = n should remain 
in the sum over na and l'lJ:>. This result is obtained form­
ally from the asymptotic form of (1.12) under the condi­
tion that the argument Mnn is smaller than the recipro­
cal value of the index n ~ EF In n. In other words, the 
giant quantum oscillations are due to electronic transi­
tions without change in the magnetic quantum number n. 

3. Taking into consideration (1.17) and (1.13), we can 
simplify the expression (1.4) for r(E). We take into ac­
count the law of conservation of the z component of the 
momentum and substitute in (1.4) the expliCit expression 
for the magnetic element (1.11). Then 

f(E) = 2£T/iQ (hk)".,. ~ x.x, Re(B.B,) ~ ~S,~S· de. deb 
m ~ 'Xfo2-Xa2 ~ 

. a:,f> n=O 00 

x D[E-(n+ ' j,)hQ-e·lD[E-(n+ ' j,)hQ-e.+hro) (1.14) 
(e. - eb)' + (}' e. + l' e.)'(h><.)'l2m 

where 

(1.15) 

The quantity '!T is of the order of the coefficient of colli­
sionless absorption of volume sound, i:: is a dimension­
less parameter of the electron-phonon interaction; the 
quantity A, which is of the order of EF' represents the 
characteristic value of the deformation potential. The 
parameters B(]I characterize the contribution to the in­
teraction of the longitudinal and transverse modes of the 
Rayleigh wave with the conduction electrons. Summation 
over (]I and f3 eliminates the apparent singularity at 
K (]I = K{3' In the derivation of Eq. (1.14) we assumed the 
tensor Aik to be independent of p and, furthermore we 
replaced the smooth functions of the energy by their 
values at E = EF' 

The most Significant difference between Eq. (1.14) 
and the corresponding absorption coefficient of volume 
sound is that instead of a single integration p over the 
longitudinal energy, there is a double integral over Ea 
and Eb' In the absorption of volume waves, the law of 
conservation of the x component of the electron momen­
tum (H II Ox) is satisfied, as a consequence of which one 
integration over px is removed by the corresponding Ii 
function. In the case of the Rayleigh wave, there is no 
such conservation law, because of the fact that the x 
component of the wave vector does not have a definite 

A. M. Grishin and E. A. Kaner 366 



value. Therefore, in place of the delta function in (1.14) 
there appears a denominator which describes the non­
conservation of the quantity Px in the absorption of a 
quantum of the inhomogeneous Rayleigh wave. The char­
acteristic parameter which describes the diffusion of the 
delta function is the quantity fiKalvxl, which represents 
the indeterminacy of the longitudinal (relative to the 
vector H) energy of the electron in the field of the 
Rayleigh wave. We note that in the classical case[3] 
collision broadening and indeterminacy of the longitud­
inal energy enter additively through the effective colli­
sion frequenc y II eff = II + K a Iv x I. In the quantum case, 
these scattering mechanisms are separated. To be pre­
cise, the collisions smear out the conservation law and 
the energy levels themselves, while the spatial inhomo­
geneity of the field of the wave smears out the conserva­
tion law of the normal component of the longitudinal mo­
mentum (or of the longitudinal energy). 

2. ABSORPTION AT ABSOLUTE ZERO 
TEMPERATURE 

We investigate first the quantum features of the ab­
sorption of Rayleigh waves in the very low-temperature 
region, when T « fi(w + II) and the thermal diffuseness 
of the Fermi level cannot be taken into account. Two 
limiting cases can be distinguished here-the lower and 
upper frequencies-depending on the relation between w 
and II. 

1. Low frequencies (w ~ II). In this region, we can 
neglect the quantity fiw in the argument of the second D 
function of Eq. (1.14). Furthermore, inasmuch as the 
width of the D functions significantly exceeds fiw, and the 
difference of the Fermi functions is different from zero 
over a small range of energies EF - fiw :s E:s EF' the 
integration over E reduces to multiplication by the en­
ergy quantum fiw and the replacement of E by E F' In 
other wordS, the difference fo(E) - fo(E + fiw) must be set 
equal to fiw{) (E - EF)' As a result, we obtain 

r=2~IIQ (11k)' ~ Re(B.B,) ~ -Jd -Sd 
m ~')(cx.x,. 'X 2 _ X 2 ~ 8 a eo 

0:," ,. a; n_O 0 0 

D! (N - n.+ MfiQ - s.]D! (N - n + 1\]fiQ - e.] 
x (e.-e.)'+(l'e.+l's,)'(lIx.)'/2m . (2.1) 

where N and A now have the meaning of the integral and 
fractional parts of the quantity EF/fin - % (cf. (1.8)). 

In the sum over n there is left only those components 
in which n :s N + 1. In the remaining terms of the sum 
(n:s N + 1) the arguments of the D functions never van­
ish and are of the order of (n - N)fin :;}> fill. Therefore, 
such components make a small contribution (Significantly 
smaller than (lI/n)2, see below) and can be neglected. 

The double integral over fa and Eb in (2.1) is conven­
iently represented in the following form (the substitu­
tions fa = e, Eb = l are made): 

/= j ds.j de •... =4 j dtj d1:~ 
o 0 0 0 (t + 'f) 

x D!(N-n+L\)IIQ-t']D[(N-n+L\)IIQ-1:'] 

(t- 1)" + (1111.) '12m 
(2.2) 

First we consider the quantity I for n :s N. There are 
thre~ "sharp" functions under the integral of (2.2). The 
D functions have maxima for t = T = 1), where 

1]= [(N -n+ 1\)IIQ]'''. 
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The width of these maxima is of the order of fill/ 41/. The 
function 

aft - 1:) ... [(t - 1:)' + (1I11~)' / 2mj-t (2.3) 

is maximal for t = T and has the width fi Ka/(2m)1/2. We 
note that the width of the d -function is significantly 
smaller than the width of 1) for any values n:s N. Even 
for n = N and for the minimal value Amin = N-1, the 
width of the d function is less than 1) by a factor (KaRfl. 
Inasmuch as the maxima of both D functions and the d 
function are located on the line t = T in the (t, T) plane, 
then all the smooth factors can be replaced by their 
values for t = T. The value of the integral I depends on 
the ratio of the characteristic widths of the D and d 
functions, and also on the value of n. Here we should in 
turn distinguish two limiting cases. 

Let the width of the d function be the smallest param­
eter' i.e., 

IIx./ (2m )'f. <C: 1] <C: (2m) 'f·V / 211 •• 

Then the d function can be replaced by 
(rrv'2m/'fi K a)/i (t - T). We then get for I 

/= n(.2m)'f' S- dtD'(1]'-t') 
lixa. 41 

(2.4) 

Re(1]' + ifiv/2) -'t. - 1/,lIv 1m (1]' + ifiv12)-'/'(2m) 'f,. (2.5) 
2h'x.v 

In this expression, we must choose that branch of the 
radicand (1)2 + ilill/2)1i2 which has a positive real part. 

In the other limiting case, the width of the D function 
is small in comparison with the location of its maximum: 

IIv /21] <C: T]. (2.6) 

Thanks to the condition (2.6), the arguments of the D 
functions can be located close to the maxima, and the 
lower limit in each of the integrals is replaced by - co. 

Then the integral I is calculated exactly: 

/- -Jd -Sd D(2T]z)D(2T]Y) (2m)Y' (1+ 211. )-. 
- Z Y , --- T]-- (27) 

__ __ (z-y)'+(III1.)'/2m 2h'II.VT] v1'2m" 

The regions of applicability of Eqs. (25) and (2.7) over­
lap in the interval 

(IIv /2)'f' <C: T] <C: (2m)'/'v /2x •. (2.8) 

Therefore, it is not difficult to construct an excellent 
integration formula for the integral I, which gives the 
correct result in both limiting cases (2.4) and (2.6): 

/ = (2m)'/' Re{T]'+ illv/2)-'f, -1/.fiv 1m(T]' + ifiv/2)-'/' (2.9) 
41ix. fiv12 + fix.T]1 (2m) 'f. 

The criterion of validity of this expression is the condi­
tion (1.13), which is equivalent to the left inequality of 
(2.4). We note that the region of overlap (2.8) of the 
asymptotic expressions (2.5) and (2.7) is important only 
in the case in which 

(lIx.) , / m <: fiv. (2.10) 

If this requirement is violated then, by virtue of the left 
inequality of (2.4), the region of applicability of Eq. (2.5) 
vanishes and the integral I is described by the fCpres­
sion (2.7) inasmuch as the condition fi K a (2mfl 2 ~ 1) 

will not reach the limitingly small values of 1) • 

As has already been pointed out above, an important 
role is played in the sum over n in (2.1) by such com­
ponents with n = N + 1 if the parameter A is close to 
unity. The emergence of this and subsequent terms in 

A. M. Grishin and E. A. Kaner 367 



the sum over n is connected with the collision broaden­
ing of the electron states on the Fermi surface. For the 
integral 

1= -Sdt~SdT D[t'+(1-~)IiQ1Dh'+(1-':\)Mll 
o 0 ' (t-T)'+(llx.)'/2m ~ 

which corresponds to the (N + l)st term of the sum, the 
expression (2.5) is valid, in which the quantity 
1/ 2 - (1 - ~)n n is negative. The asymptotic form (2.7) 
cannot be realized in this term of the sum, because the 
maxima of the D functions are located at t = T = 0 and 
their width is always much greater than the width of the 
function (2.3). 

It is seen from Eq. (2.9) that for small v the quantity 
I has a singularity as 1/ - O. This means that the com­
ponents with n = N or n = N + 1 playa fundamental role 
in the sum (2.1), because they contain singularities at 
small values of ~ or 1-~. We separate these compon­
ents and replace the sum of the remaining terms with 
n, < N approximately by an integral over n. In the calcu­
lation of this integral one should use the expression 
(2.7), since the inequality (2.6) is always satisfied in the 
corresponding terms of the sum. The integrated contri­
bution of all nonsingular components gives the monotonic 
part of the absorption coefficient r mon: 

_ Re(B.B,) ,N-l (N-n)-'I. 
f mon- ff' ~ x.x, x,' _ x.' q. J dn (N _ n) 'I. + N'I'/x.l ' 

a,j) OJ 

q.=kjx". (2.11) 

Calculating the integral, we obtain 

f mon= fcll- ff' ~x.x, x~":::.' [ q.'ln ( 1 + ~~I~ ) - q,'ln (1 + ;~~ )], 
.,' 

(2.11') 

where r cl represents the classical absorption coeffi­
cient of low-frequency sound in a strong magnetic 
field: [3] 

fcr=ff' ~ x.x, B.D,· (q.'lnx.l-q,'lnx,l). 
~ X,2_ X rz,Z 
.,' 

The contribution to the absorption from the singular 
components with n = N and n = N + 1 describes the giant 
quantum oscillations of the quantity r. For small ~, the 
quantum effect is due to the N-th term of the sum (2.1), 
which is equal to 

f - Iff' ~, B' d'I'+N'I·/(X.+x,)1 
N - - 2- ~q.q,B.. (d'i. + NI·/X.l) (d'i. + N'I'/""l) .,' 

(2.12) 

This expression determines the shape of the absorption 
line from the low-field side with account of electron 
scattering. The other wing of the line is due to the 
(N + l)st term of the sum: 

TN+I=-ff'- Re d-I+i- --1m d-l+i- ' 1 kl [ (' v ) -'I. V ( V )' -'/, ] 

2 N'I. 2Q 4Q 2Q 

x~ k B.Bo' . 
~ x,,+x, 
".' 

, (2.13) 

We now consider the problem of the amplitude and 
shape of the lines of the quantum oscillations of the co­
efficient r. First of all, we note that the line shape is 
complicated by the fact that the absorption coefficient 
(2.12) is a sum of three like components with different 
coefficients and parameters, which depend on the charac­
ter of the sound mode (parameters K a and K(3)' In what 
follows, we shall analyze the form of the indivi.dual com-
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ponents of the sum over a and (3 in (2.12). 

As has been shown in the previous section, factoriza­
tion of the two-particle Green's function is valid upon 
satisfaction of the condition N~ > 1. Therefore the 
maximal value of rN or rN + 1 turns out to be of the 
order of 

ff'kl{ 1 + Nv j 2Q) -'I., 
(2.14) 

The situation here is entirely analogous to that which 
exists in the case of quantum oscillations of volume 
sound.[4J Consequently, the necessary and sufficient 
condition that the maximal value of the singular compon­
ents Significantly exceed the value of the monotonic part, 
is 

kl(1 + Nv / 2Q)-'" ~ se = IIn(1 j kl + N-'I.) I. (2.15) 

In the case of a not too strong magnetic field, when the 
parameter p = (n n2/vEF)1i2 is small in comparison with 
unity, the amplitude of the singular part of the absorp­
tion is of the order of r monpkl/se. The parameter p 
represents the relative amplitude of the static quantum 
oscillations of the density of states at zero tempera­
ture. [8J It then follows that the oscillations of the ab­
sorption of the Rayleigh wave are kZ/g: times greater 
than the static ones. They are giant if pkl »5l'. In the 
region of strong magnetic fields (p2 » 1), the inequality 
(2.15) transforms into kZ »5l', which is practically 
identical with the condition of strong spatial inhomo­
geneity (1.6). 

The shape of the individual component in (2.12) is 
very complicated, asymmetric and dependent on the 
quantities N/(K al)2 and v/2 n. The relation between them 
does not contain the magnetic field and is determined by 
the already known parameter nK~/mv. Evidently, the 
greatest practical interest in the low-frequency case 
being considered (w <t:: v) is represented by the range of 
frequencies bounded by the inequality (2.10). Here v/2 n 
<t:: N /(Ka /Z)2 and the shape of the absorption line is 
described by the expression 

_ 1 ~ , • 1 d'I'+N'I·/(X.+x,)1 (216) 
f N - 2"ff' ~ q.q,B.B. d'i. (d'i. + N"/x.l) (d'i. + NI'/x,I)' • 

.,' 
It is valid for ~ »v/2 n, which corresponds to the right 
wing of the line in the scale of the inverse magnetic 
field. The absorption on the left wing is small and falls 
off more rapidly than in the case of (2.16): 

5 (V_)' kR ~ k B.B,' 
fN+1 = z:;ff' Q NI'(1- d)'l. ~ x. + x, 

.,' (2.17) 
v/2Q<1-d<1. 

We note that if 1- ~ in (2.17) is replaced by n - N -~, 
we then obtain an expression for the degenerate terms 
of the sum (2.1) with n > N + 1. 

The characteristic width of the peak of the quantum 
oscillations depends on the value of the factor N /(K al)2 
in comparison with unity. If it is large, then the width 
of the peak o~ turns out to be the same as in the static 
oscillations of the' density of states, Le., o~ ~ vn. Here 
the quantity r N has the form 

1 kl, ~ k B.Do' (2 18) 
f N =2"iT (Nd)"'~ ~. • 

.,' 
The amplitude of the oscillations in this case is small in 
comparison with r cl by virtue of condition (2.10) _ When 
the opposite condition is satisfied, 

(2.19) 
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the width of the quantum oscillation line 1)~ ~ N/(Kal)2, 
and rN turns out to be much greater than the monotonic 
part r mon0 For ~ » 1)~ we have 

r N = :: 13 q.q~B.B~·. (2.20) 
< a,~ 

We return our attention to the following circumstance. 
If we integrate the expression (2.12) for rN over ~ from 
o to 1, we then obtain a result compensating the second 
component in (2.11') in accuracy. This conclusion on the 
invariance of the integrated (over the magnetic field) ab­
sorption coefficient is valid for low-frequency Rayleigh 
sound to the same extent as for volume waves.[4J 
In other words, for giant oscillations, only the redistri­
bution of electron damping in the scale of the magnetic 
field takes place: the narrow peak of the giant absorp­
tion arises from the corresponding decrease in the 
monotonic part. 

At the end of the previous section, we spoke of the 
fact that the law of conservation of the x component of 
the electron momentum is not satisfied in the field of an 
inhomogeneous sound wave. However, in spite of the ab­
sence of an exact 1) function corresponding to this con­
servation law, the effective collision frequency for 
"resonance" electrons v + Ka1vxNI = v + K aV(~/N)1/2, 
which enters into (2.7) is of the order of or practically 
identical with v. This is connected with the fact that the 
electrons near the central cross section of the Fermi 
surface (with n = Nor n = N + 1) possess a small drift 
velocity along the magnetic field and the corresponding 
diffusion of the d function (2.3) and its difference from 
the 1) function are comparatively small. Herein lies the 
reason that the oscillations of the absorption of Rayleigh 
waves are giant, and the criteria of their existence (2.15) 
are practically identical with the condition for giant 
quantum oscillations of volume sound. [4J 

2. High frequencies (w »11). It is here that the dif­
ference between the giant oscillations of Rayleigh sound 
and the similar effect in the damping of volume waves 
is most pronounced. Since there is no exact law of con­
servation of the x component of the electron momentum 
for the absorption of a quantum of inhomogeneous sound 
wave, the D functions in (1.14) can be replaced by 1) func­
tions. Actually, in the integral over the energy (1.3), the 

, values of E from EF - tiw to EF are important. There­
fore, one of the D functions in (1.14) in the region of high 
frequencies can always be regarded as a 1) function. 
After this, the argument of the second D function turns 
out to be lOb - lOa + tiw. The characteristic value lOb - lOa' 
which is determined from the denominator of (1.14), is 
not less than the value nK a(tlwI2m)1/2 , i.e., the argu­
ment of the D function behaves as a 1) function. Thus the 
integrals over Ea and lOb are easily computed and only 
the components with n ~ N (for w « n) are left in the 
sum over n. As a result, we obtain 

Q N Q 

r= 2tr -;- .Eq.q~.B~'.E G [:;-(N - n + M; g.,g,]. (2.21) 
a:,~ n_O 

Here we have introduced the notation . 
G(x; g., g~)... J 

.x-mln(l,«) 

dx' . 1 + I'(x') 
[1 + g. + I' (x') ][ 1 + g, + I' (x') 1 ' 

(2.22) 
I'(x) = 2x + 2x'I'(1 + x) ''', g. = 2mro / It)l.,,'. 

In all the terms of the sum (2.21) except the last (n = N), 
the first argument of the function G is much greater than 
unity and the quantity G is approximately equal to the 
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integrand for x' = x » 1, i.e., 
1+4x . 

G(x;g.,g~)= (1+g.+4x)(1+g~+4x) (2.23) 

The sum of the nonspecial terms can now be computed 
explicitly. We put down the answer in unsymmetrized 
form in a and (3: 

r =tr~ Re(B.B,·) '[IIl(N+~+1+Ll) 
mon ~K(l.X~ 'XjlZ_Xa,2 qa. 4Q 

',0 

- III ( :~ + 1+ Ll ) ] , (2.24) 

where l/! (x) is the Euler function. 

The last term in the sum (2.21) describes the reson­
ance Singularity of the absorption 

rN=2tr ~ .Eq.q~.B~·G( ~ Ll;g",g~). (2.25) 
.,0 

The amplitude and the shape of the Rayleigh maxima de­
pend essentially on the quantity ga' which is equal to the 
ratio of the energy of the sound quantum to the charac­
teristic "energy yield" (tl K a)2/2m, which can be both 
greater and less than unity. In the region of not too high 
frequencies, where 

g., g~ ~ 1, (2.26) 

we can use the formula (2.23) for G(n~/w); this formula 
is valid for ~ > win. At lower values of ~ we must use 
the exact formula (2.22). The function G(n~/w; ga, g{3) 
for this case is shown schematically in Fig. L Its maxi­
mum is located at ~ = W(gag~)1/2/4n, and the value of G 
at the maximum is (g~2 ± g¥ (". At ~ = win, the func­
tion G has a kink, and the jump in the derivative with 
respect to ~ is equal to -nlwgag{3' The derivative at 
the left of the break is 5.83 nlwgag{3' i.e., the change in 
the angle of inclination at the point ~ = win is small. 

The value of the absorption coefficient at the maxi­
mum is much greater than the monotonic part if 

Q / rog -fiQ / ms' ~ 1. (2.27) 

Here 
fiQ r N ma~ -- rmon--, 1--, 

ms nN 

rmon= '/,tr(ln N + C) .E q.q~.B", (2.28) 

where C::::; 0.577 is Euler's constant. We recall that to 
determine the line shape and the exact value of the ab-

o • win 

FIG, I FIG,2 

FIG. I. Schematic dependence of the function G from Eq. (2.25) on 
t; in the region of not very high frequencies (2,26), The parameter t; rep­
resents the fractional part of the quantity (EF/hfl)-Y2. 

FIG, 2, Dependence of the function G on t; in the region of high 
frequencies (2,29), 

, 
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sorption coefficient at the maximum we need to take into 
account all the terms of the sum (2.25) over the indices 
a and f3 of the various modes of oscillation. In the region 
of weak magnetic fields, when the inequality (2.27) is re­
placed by its opposite, the amplitude of the oscillations 
turns out to be a small quantity of the order of (lWlms2)2. 

On going to hypersonic frequencies, the parameter ga 
decreases and the limiting case 

g., g~ < 1, (2.29) 

which is the reverse of (2.26), becomes important. Here 
one cannot take ga and g{3 into account in the definition 
(2.22) for the function G. Correspondingly, the small 
terms wgal4 in the arguments of the functions if! in Eq. 
(2.24) should be neglected. In this case, the amplitude of 
the oscillations reaches a maximum value of the order 
of nlw: 

r Nmox = o,638r ~ 1:,q.q~.B~·, (2.30) 
"~ 

which corresponds to is = win. Figure 2 shows the 
schematic dependence of the function G on D. in the case 
of (2.29). At the maximum, the jump in the derivative is 
equal to -nlw and the angle at the vertex of the kink is 
(3 + 2~Ywln(2 + ,12) ~ 7wlo. The shape of the line is 
determined by the function G(nD./w; 0, 0) (see (2.22)). We 
shall show that the presence of a kink in the dependence 
of the coefficient rN on D. leads to a singularity in the 
velocity of the Rayleigh wave of the type 
ID. - win lIn I D. - win I, which is similar to the Kohn 
singularity in the phonon spectrum. [9J 

To conclude this section, we shall clarify the problem 
of the invariance of the absorption integrated over the 
magnetic field in the high-frequency region. For this 
purpose, we integrate the expressions (2.24) and (2.25) 
with respect to D. from 0 to 1. As a result we get, for 
N, nlw »1, 

f ddr = r 1:, X'XP R:~~~::) q.,[ In ( x: )' -In{1 +g.-') ] . (2.31) 
o a,~ 

This formula differs from r cl (the first term in the 
square brackets) by an additional component, which con­
tains In (1 + g~). If the characteristic energy yield is 
small in comparison with the quantum energy llW, then 
this correction is also small. It can playa role only in 
the high-frequency region (2.29). In this case the ab­
sorption integrated over D. is not invariant, inasmuch as 
the quantity reI depends logarithmically on the effective 
free path length l = vii v - iwl and consequently does not 
have a collisionless character. 

3. ABSORPTION OSCILLATIONS AT FINITE 
TEMPERATURE 

From the point of view of experiment, the most real­
istic case is that of finite temperatures, which satisfy 
the inequalities 

/i(Ctl+v) <T</iQ. (3.1) 

The energy of thermal motion is much greater here than 
the energy of a quantum of the Rayleigh wave and the 
width of the energy levels of the electron, but is smaller 
than the distance between neighboring Landau levels. 
Evidently, the temperature is practically independent of 
the monotonic part of the absorption coefficient, since 
all the characteristic differences of the energies in the 
nonspecial terms of the sum (1.14) are much greater 
than T, by virtue of the right-hand inequality of (3.1). 
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The temperature can have a significant influence only on 
the value and shape of the special components with n = N 
and n = N + 1. As in the previous section, we shall con­
sider separately the regions of low and high frequency. 

1. Low frequencies (w « v). At absolute zero tem­
perature, the resonance absorption line is described by 
the sum of the special components: 

(3.2) d if a=a(d)={ '. d<1 
d - 1, if 1 - d < 1 . 

In the limits of the line, la I « 1 and the quantity a itself 
can be either positive or negative. For a > 0 (the right 
wing of the line in the scale of the inverse magnetic 
field) rres(a) is practically identical with rN(a), and with 
rN + 1 (a) for a < O. At finite temperature, the difference 
of the Fermi functions in (1.3) can be expanded in llwlT 
and we get for the contribution to the monotonic part of 
the coefficient r 

.sr .... r-I: =~f~ da' 1',.,,{a') 
mOD 2 _N ch'[Q' (a' - a)] , 

Q' ... /iQ 
(3.3) 

2T 

The meaning of this formula is that the coefficient or 
at finite T is obtained by integration of rre~' found for 
T = 0, over the energy, with the weight afo/aE. It is evi­
dent that the lower limit in (3.3) can tend toward -00 and 
we rewrite this formula in the form 

.sr=~f~da'{ r,.s(a') _+ r,.s(-a')} (3.4) 
2 0 ch2[Q'(a'-a)j ch'[Q'(a'+a)]' 

It is easy to understand from physical considerations 
that the effect of the temperature should be important 
near the maximum absorption, when 

lal :;; TI/iQ. (3.5) 

On the wings of the line, where 

lal ';'$> TI/iQ, ( 3.6) 

the absorption is a smooth function of a and the tempera­
ture has slight influence on the value of or. In the reg­
ion (3.6), or is practically the same as r res(o) at T = O. 

We now consider in more detail the behavior of both 
terms in the formula (3.4). For a > 0, the first term' 
describes the broadening of the absorption of the right 
wing rres due to the temperature, and the second term 
describes the exponentially decaying (in n/a) contribu­
tion from the left wing of the absorption line at T = O. 
Inasmuch as the quantity r res on the left wing is small 
(see (2.17)), its contribution due to thermal broadening 
in the region a > 0 is unimportant. In other words, at 
a > 0 the second term in (3.4) can be neglected. 

The shape of the left wing (a < 0) is subjected to very 
strong temperature influence. In the region (3.5) the ab­
sorption is determined by the diffuse temperature con­
tribution from the right wing rres(a l ) (the first compon­
ent in (3.4)). The second component in (3.4) is unimpor­
tant. 

In the transition to the region (3.6), the value of the 
first component decreases exponentially and the absorp­
tion is determined by the second term of formula (3.4), 
in which the temperature can go to zero. Such is the 
qualitative picture of the effect of the temperature on the 
giant oscillations of low-frequency Rayleigh wave. 
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We now give the formula for the contribution or near 
the center of the line in the region (3.5): 

'~ Re(B.B~·) ,~S ch-'(x-aQ') 
1)r = Q tT x.x~ , , q. dx + b' ' 

XII - Xo: X a 
~,II 0 

(3.7) 

where the parameter b a has the form 

(3.8) 

The integral (3.7) can be computed only in the limiting 
cases of large and small values of b a • If In b a » 0.1, 
then the line shape is described by the equation 

1)r=~tTch-'(Q'a) ~ x~x~ ~.B~· ,(q.'lnb.-q"lnb~). (3.9) 
2 ~ x~ -x • •. ~ 

The maximum absorption takes place for a = 0, and 
ormax is approximately n'/2 times rcl' Near the maxi­
mum in the region (3.5), the line is symmetric; asymme­
try appears far from the peak (iai > T/n n). 

In the opposite limiting case of small ba , the coeffi­
cient or decreases, and the shape of the curve becomes 
asymmetric and is determined by the expression 

1)r=~btT~ k BoB. j dxch:-2(~2-aQ'), (3.10) 
2 -f.t x.+x., 

in which the quantity b differs from (3.8) by the replace­
ment K a - k. The maximum of the absorption is located 

• somewhat to the right of the point a = 0 and the value of 
the integral for (] = 0 is about (8/9)112. The absorption 
oscillations in this case are proportional to the oscilla­
tions of the static density of states at finite tempera­
tures. 

2. High frequencies (w » v). In this range of fre­
quencies, the finite absorption on the left wing is due to 
collisions of electrons with scatterers and disappears as 
v - O. Therefore, the collisionless absorption at T = 0 
is significant only if a > O. At finite temperatures, we 
obtain 

IIr=~ ·Sall rredll) (3.11) 
2, ch'[Q'(Il-cr)]' 

where rres(~) is determined by the formulas (2.25) and 
(2.23). In contrast with (3.4), the integral with rres(a /), 
which describes the small collision absorption on the 
left wing, is lacking here. The formula (3.11) means that 
collisionless resonance absorption at T = 0 should be 
averaged over the energy of the electron near the Fermi 
boundary, diffused by the thermal motion. 

It is rather apparent that the thermal scatter leads 
first to the appearance of an exponentially damped "tail" 
at the left wing of the absorption line for lal > T/n n; 
second, it leads to a smoothing out of the breaks on the 
absorption curves (see Figs. 1, 2) and third, it leads to 
a change in shape and decrease in magnitude of the ab­
sorption at the maximum. In the region of not too high 
temperatures, where the parameter 

a. = 8T / liro (1+ g.) «: 1, (3.12) 

the temperature has practically no effect on the value of 
the absorption, cited in Fig. 1. 1) This is connected with 
the fact that the coefficient rres(a) depends smoothly on 
~ = w/n; the absorption on the left of the maximum 
changes slowly with magnetic field in the characteristic 
range iai ~ T/nn. In order to obtain an explicit analytic 
expression for the contribution or in this case, it is 
necessary to replace the function G from (2.23) in the 
formula (2.25) for rres by the following asymptotic form 
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Q 4Q 
G (-ll; g., g.) = ll-. 

ro rog.g. 

After this, the integral in (3.11) is computed exactly and 
or is represented in the form 

Q 8T [ ( IiQcr )] 1: B.B~· 1)r=--tTln 1+exp - q.q~,~. 
ro liro r g.g~ .. ~ (3.13) 

This formula describes the absorption at the left of the 
maximum and is valid up to the point where or is less 
than r fr<'ID (2.28). Near the maximum and to the 
right 6f1f, th absorption is given by the formula (2.25) 
with the func·.~on G from (2.23). 

At higher temperatures, when aa » 1, it is conven­
ient to use the general formula (3.11) for or in the un-
symmetrized form: ' 

(3.14) 

which is like the expression (3.7). Just as in the case of 
large b a , when aa »1, the integral in (3.14) is equal to 

In a.' SW th (x - aQ') 
---+2 dxInx . 
ch'(aQ'), ch'(x-aQ') (3.15) 

It is not difficult to see that the maximum absorption 
lies somewhat to the right of the point (] = 0, and in the 
logarithmic approximation (In au » 0.22 ») for or, we 
obtain the expression (3.9), in which b a should be re­
placed by ra;;. We note that the parameter -ra;; is identi­
cal with the quantity b a , in which the effective path length 
at high frequencies v/w is substituted in place of l = v/v. 
It is seen from Eq. (3.14) that the higher maximum, 
which is represented in Fig. 2, decreases by a factor of 
about 5T/nwlnaa in this case. 

4. GIANT QUANTUM OSCILLATIONS OF RAYLEIGH 
WAVES IN A MAGNETIC FIELD PARALLEL TO THE 
SURFACE 

Up to now, we have considered the effect of quantum 
electron states on the absorption of Rayleigh sound 
waves in a magnetic field perpendicular to the boundary 
surface. If the vector H is parallel to the surface of the 
metal, then the amplitude and shape of the quantum os­
cillations differ materially. The differences are due to 
the fact that the electrons drift along the lines of force 
in a parallel field, i.e., they move in planes with the 
same amplitude as the inhomogeneous sound wave. In 
a strong magnetic field, when the penetration depth of 
the Rayleigh wave K-1 is much greater than the cyclotron 
radius R, the electronic absorption has an essentially 
volume character, inasmuch as the relative number of 
electrons colliding with the surface is small along with 
the parameter KR « 1. On the other hand, for electrons 
which do not collide with the surface of the metal, the 
law of the conservation of the longitudinal (relative to 
the vector H) component of the momentum, Pza - Pzb = ilk 
is satisfied exactly (here the z axis is directed along H). 
For this reason, the quantum effects have an influence 
on the absorption of the Rayleigh wave in precisely the 
same way as in the case of volume sound waves. 

Formally, the difference between the cases of normal 
and parallel magnetic fields is that in the expression 
(1.14), the exact 0 function, which expresses the law of 
conservation of the z component of the electron momen­
tum, appears in place of the d function. Therefore the 
situation in the parallel field does not differ at all from 
volume absorption, which was analyzed in detail in[4]. It 
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was shown there that the quantum effect in absorption 
reduces to the multiplication of the classical coefficient 
r cl by some universal function :T which depends on the 
magnetic field, the frequency and the projection of the 
wave vector on the direction of H: 

r= r3", 

fT = hQIIk •. 
m 

(4.1) 

~s~ f.(E)-f.(E+1!ro)·S~ 
x~ dE· hro. dp,DIE-e.(p,)jD(E+hro-'en(p,+hk,)],. 

• -, • (4.2) 

where the quantity r 0 is connected with the value of the 
classical absorption coefficient r cl by the relation 

f.=rcl n.,. T=V-'. (43) 
arctg(k,l- roT) + arctg(k,l + roT) • 

For /kz/l » 1 and /kz/l »WT the quantity ro is the 
same as r cl' This very case (ro = r cl) was considered 
in[4J. According to[l0J., the correct formula for ro in 
the strong magnetic field (1.13) is 

. n k E B.J3J f.=--fT k--
2 k, x. + Xp • 

1%,1'_ 

(4.4) 

The behavior of the function fT has been studied in detail 
in [4J and we shall not consider it here. We only note that 
in the case of Rayleigh sound waves, there should be a 
strong anisotropy in the absorption and dispersion of the 
sound velocity in the range of small angles of inclination 
of the magnetic field relative to the surface of the metal. 
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I)The inequality (3.12) leads asymptotically to the condition (2.26), inas­
much as 8T ~ hw. 

2)The integral in (3.15) is approximately equal to -0.1 for a = O. 
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