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The conditions of appearance of a narrow dip in the center of a homogeneously broadened line are 
investigated theoretically and experimentally. It is shown that the physical pattern of formation of 
the dip is different for the cases of single-component and multi-component lines. The method may be 
employed not only for obtaining narrow lines, but also for resolving the structure of homogeneously 
broadend lines. 

It is well known that a beam of previously polarized 
molecules spontaneously emits a highly monochromatic 
signal on subsequent passage through a resonator [1]. 
The signal frequency coincides with the frequency of 
the radiation that induces the polarization. In the pres­
ent study we have investigated the line shape of the 
spontaneous-emission signal of a previously polarized 
molecular (atomic) beam as a function of the deviation 
between the frequency W of the signal that induces the 
polarization and the natural frequency wL of the mo­
lecular transition.1) It turns out that under definite con­
ditions the emission line shape has a minimum (a "dip") 
at W = wL. The mechanism whereby this dip is produced 
differs radically from the mechanism of the "Lamb" 
dip in gas lasers [2] and consists in the fact that the in­
tensity of the coherent spontaneous emission in the 
resonator of a previously polarized beam is proportional 
to the square of the amplitude of the polarization I PI 2 
_(p,)2+(p")\ where P' and P" are the real and imag­
inary components of the polarization, respectively. 
However, at the emission frequency W = wL, the real 
part of the polarization P / = O. And while P" has a 
maximum at this point, the decrease of p,,2 with the 
detuning w-wL near WL, under conditions that will be 
described below, is less abrupt than the increase of P /2 . 
It is this which causes the existence of a radiation mini­
mum ("dip") at W = wL. 

We have investigated the dependence of the parameters 
of this dip, namely its depth and width, on the power of 
the polarizing radiation, on the structure of the homo­
geneously broadened line employed, on the average 
velocity of the molecular beam, and on the distance be­
tween resonators. 

On passing through the first resonator with a field in­
tensitv E1(w), the molecule beam acquires a polariza­
tion[l! 

P,(T,) = 1111'E,[6(coQT,-1) + iysinlT,j 11il', (1) 

where y=(02+1 ~12EVli2)1/2, O=w-wL, ~ is the matrix 
element of the molecule dipole moment, Tl = lJv, h is 
the length of the first resonator, and V· is the molecule 
velocity. The beam of molecules then traverses the 
space between the two resonators and enters the second 
resonator, where energy is radiated as a result of the 
polarization acquired in the first resonator. This radia­
tion is called "molecular ringing." 

The amplitude of the field E2 in the second resonator, 
in accord with [3], is determined by the relation 

when the effective resistance of the resonator, when 
tuned to the frequency w, is equal at a low regeneration 
level to Zeff=-i/Q, where Q is the figure of merit of 
the second resonator, T2 = l2/V, l2 is the length of the 
second resonator, T = L/v, L is the distance between 
resonators, Do characterizes the difference between the 
populations of the working levels of the molecules on 
entering the first resonator, N is the denSity of the 
active molecules in the second resonator, and the 
symbol ( >v denotes averaging over the velocities. 

Calculation of the dependence of the spontaneous­
emission power in the second resonator, which is pro­
portional to I E212 , determines the shape of the radiated 
line and the sought parameters of the "dip." 

We consider first a model of a single-component line 
for a monochromatic molecule beam. Then I E212 
-I P1(Tl)1 2. As follows from (1), the polarization P1(T1) 
induced by the field has an oscillating character as a 
function of the amplitude of the field El and the detun­
ing O. At small values of E1, it turns out that when the 
detuning is increased the quantity I E212 decreases, i.e., 
the power of the spontaneous emission will be maximal 
at the line center. However, one can choose a value of 
El such that when 101 is increased the value of I E212 
increases in the vicinity of the zero value. The mole-
cule radiation power in the second resonator will then 
also increase following detuning from the line center. 
In other words, a narrow dip should appear at the center 
of the line. 

The amplitude of the dip becomes maximal when 
I P1(T1)1 2=O. On the basis of formula (1) we have 

Ip ( )I,_,26'(1-cosl';,)+10'(1-cos2F,)/2 (3) 
, T, (6' + 10')' ' 

where 10 = I ~ I 2 EVli2 . It follows therefore that at 0 = 0 
the dip will be maximal (equal in amplitude to the 
"molecular ringing" line itself) at YoTl = 1Tn 
(n= 1,2,3 ... ). So large a value of the saturation Yo 
makes it possible to calculate analytically the half­
width of the dip and the distance between the two max­
ima of the "molecular ringing" line, for when Yo ~ 0 
and n= 1 the trigonometric functions in (3) admit of the 
obvious transformations of the type cos yTl = COS(YoTl 
+ 02TJ2Yo)=-COS(02TJ2yo). Then, expanding the trig­
onometric functions obtained via such transformations 
in powers of the parameter 02TJ2yo < 1, we obtain 

Ip (,; ) I' _ 46' + 6',;,'/4 -1\',;,'/41,' 
, , (6'+10')' (4) 

E - 4 ND Z-' < exp {-i6T,} -1 _iOT P ( » 
2 - 11: 0 eff -Uhz e 1 'tl v' (2) From the condition al P1(Tl)I Yao=O we obtain the half-
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FIG. 1. Line shape of 
molecular ringing: solid curve~ 
for a monochromatic beam, 
dashed~dashed~for a mono­
chromatic beam. 

distance n", 2/ T1 between the maxima of the "molecular 
ringing" line. After determining the value of I P1(T1)1~ 
at the maximum point and substituting I P1( T1) Ih/2 in 
formula (4), we obtain the half-width of the dip n'''' 1.2/T1' 

It is of interest to trace the variation of the parame­
ters of the dip following introduction of averaging over the 
velocities, inasmuch as in practice one usually deals 
with beams that are not monochromatic. In this case, 
when calculating the dip parameters, it is necessary 
to take into account the phase factors [exp(~i6T2) 
~ 1]exp(-i6T)/(-i6T2)' It is convenient to use in the cal­
culations a distribution of the type F(v) - v- 3 exp(~v/v)dv 
(v is the average velocity of the molecules in the beam). 
Although it differs somewhat from a Maxwellian dis­
tribution, it permits, on the other hand, averaging over 
the velocities in analytic form and determining how al­
lowance for the velocity distribution affects the parame­
ters of the dip in principle. The calculations lead to the 
following results: at T» T 1 , T2 the condition of maximal 
dip depth remains unchanged, the half-distance between 
the maxima of the line is n", 1.13/T , the half-width of 
the dip is n '" 0.62/T, and the half-width of the entire 
"molecular ringing" line is 6' '" 1.45/T. Thus as a re­
sult of addition of the radiation phases of the individual 
molecules in a nonmonochromatic beam in the second 
resonator, the frequency characteristics of the "molecu­
lar ringing" and of the dip in it become proportional to 
T-1 and not to Til. The influence of the molecule 
velocity distribution leads to a change in the "molecu­
lar ringing" line shape, as shown in Fig. 1. One must 
not think, however, that the shape of the dip is strongly 
altered. The case of a beam that is monochromatic in 
velocity is represented by the solid line, and that of a 
nonmonochromatic beam by the dashed line. 

We recall once more that in a single-component 
homogeneous line the condition under which the dip has 
a maximum is a large value of the saturation in the 
first resonator, Yo = rr/ T1' The corresponding line broad­
ening exceeds the transit half-width Aw = 1/ T1 for a 
monochromatic beam and is equal to the transit half­
width Aw =rr/T1 for a beam with a Maxwellian distribu­
tion of the molecule velocities. 

A different picture of dip formation (namely, in the 
absence of saturation) can occur in a multicomponent 
line, in which the distance A1,2 between the components 
is smaller than its homogeneous width. Let us consider 
the case of two components of equal intensity. Then the 
moduli of the polarizations of both components will be 
the same at the center of the line; I P11 = I P21 = I P I. The 
summary polarization at the line center is then ex­
pressed in the form 

fJ' ~ I PI exp (it <p, + a, ~ /';",T 1 2 ~ arctg(/,;",r, 1 4)]} . 
(l+exp{i[/';" ,T+'P2+a'~'P,~a,+2arctg(/';" ,r;,/4)])], 

where CP1 and CP2 are the phases of the polarizations 
of the components on entry into the first resonator and 
0:1 and 0:2 are the phase shifts of the polarizations of 
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the two components due to regeneration of the first 
resonator by the beam of active molecules.' The influ­
ence of the regeneration can be taken into account ap­
proximately by regarding the effective amplitude of 
the field in the expression (1) for the polarization as 
equal to KE1, where K is the complex gain of the ac­
tive medium. Following the results of Vuylsteke [4], 

we express the gain in the form 

{ 1 1 Ih,}/{(2 1) 1 Ih'} 
K~ ~ IQMI +i IQMI2 Q:- IQMI +iIQMI2 

where QM is the equivalent Q of the inverted beam 
and Q1 is the figure of merit of the first resonator. 
We estimate I QMI by putting 6'" O. We then obtain 
IQMI=(ko+1)QJ2ko at I K(O)I=ko. Thus, 
0: '" rr- tan- 1 [(ko + 1)oTJ2]. 

According to (1), the phase shifts cP of the polariza­
tion are determined from the equation tan CP=_Y6- 1 cot 
(yTJ2). It is therefore impossible to obtain the phase 
shifts in general form. However, if 6 »Yo, then this 
equation admits of the solution cP = rr/2 + 5TJ2. We have 
)"=0 when T =[(2n+ 1)rr+CP1 +a1~cp2-a2-2tan-1 
(A1,2T2/4)]/A1,2 (n=O, 1, 2). Consequently, the dip be­
comes maximal at 

l' ~_1_ [(2n + 1)IT + /';",r, ~ 2 arctg (k' + 1 /';",,;,) ~ 2an:tg (/,;1,,';, )] . 
/';", 2 4 4 

( 5) 

Thus, the interference of the phase shifts of the polari­
zations of the two components leads to formation of a 
dip at the center of a two-component homogeneously 
broadened line even in the absence of saturation in the 
first resonator. This dip will have a maximum depth 
in the case A1,2« 1/T1 , 1/T2 at a distance between 
resonators 

L;ni,' ~ f[ (2n + 1)IT ~ le,/';",,;, 12 ~ /,;",,;,/2]//';,,,, (6) 

i.e., the amplitude of the dip is periodic with change 
of distance. Knowing the value of Lmin we can deter­
mine the distance A1,2 between the line components. 
Allowance for the velocity distribution of the molecules, 
if it has a symmetrical form, should not change the 
final result in principle. 

Unfortunately, it is impossible to determine analyti­
cally the dependence of the width of the dip and the 
width of the "molecular ringing" line on the distance 
between the resonators for a two-component line. 
However, a qualitative picture can be presented. We 
recall that a narrowing of the "molecular ringing" 
line occurs in a single-component line, owing to the 
interference between the phase shifts of the_ polariza­
tions of the individual molecules. The presence of one 
more component leads to the need for taking into ac­
count the phase shifts of the polarizations of its mole­
cules. Let us examine the line wings. In the wings, 
owing to the fact that 52 > 61 (or 62 < 61 for the second 
line wing), the polarization phase shifts of the second 
component are more smeared out in magnitude and 
therefore, upon averaging, their influence is smaller 
the closer they are to the line center. Consequently, 
the central region of the "molecular ringing" line 
"settles down," as it were. This should lead to an 
increase in the width of the dip and of the width of the 
"molecular ringing" line itself with increasing dis­
tance, but only up to a certain limit. The indicated 
values of the widths should be periodic with distance, 
as is also the amplitude of the dip. 

Concerning the resolving power of this method, it 
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should be noted in view of the foregoing that the inter­
ference of phase shifts having opposite signs, and con­
sequently leading to the formation of the dip, occurs 
only at frequencies that lie between the frequencies of 
the components. Therefore the width of the dip should 
correspond approximately to the distance ~1,2 between 
the components. Thus, the smaller ~1,2' the narrower 
should be the dip, but the dip naturally becomes maxi­
mal at larger distances Lmin. 

An experiment was performed to verify the main 
conclusions. A maser was used as a spectroscope with 
two resonators in tandem. In one case, the maser op­
erated on a beam of ammonia (N15H3) molecules, since 
its prinCipal transition lines have nefiligible hyperfine 
structure (within several tens of Hz 5J), so that these 
lines can be regarded as single-component. In the sec­
ond, it operated with a beam of N14H3 molecules. In 
both cases, the resonators were tuned to the transition 
J = K = 3, the principal line of which for N14H3 consists 
in general of three components. Since the intensity of 
one of them is always small [6J, this can be regarded as 
a two-component line. The line widths were determined 
mainly by the transit broadening. 

The field was produced in the first resonator by using 
the harmonic of a quartz oscillator, the power level of 
which was specially monitored. The resonators had 
Q1'" 2000 and Q2'" 5000, and their lengths were h = 6 cm 
and 12 = 8 cm. The distance between them could be 
varied continuously from 3 to 12 cm. The small regen­
eration level in the second resonator was monitored by 
means of a movable diaphragm placed in the region be­
tween the resonators. Then, by smoothly blocking off 
the molecule beams, the absence of regeneration could 
be verified by watching the behavior of the line shape of 
the molecule emission in the second resonator. 

The theoretical relations were calculated on the 
basis of formula (2). In the qualitative discussion above 
we used a distribution of the type F(v)-v-3 exp(-,,/v)dv 
in averaging over the velocities; this distribution en­
abled us to obtain an analytic result. In fact, however, 
the molecule velocity distribution in the beam is dif­
ferent. In this case it is determined by the parameters 
of the molecule-beam source and by the sorting system. 
A special investigation yielded the following expression 
for the distribution in the case of outflow from a source 
having the form of a hole in a thin wall: 

F(v) -v'exp(-v'/v')dv 

where 0.5".$ v.s 2" (this velocity interval is governed by 
the influence of the sorting system [7J). It is impossible, 
however, to average expressions (1) and (2) over the 
velocities with such a distribution in general form. In 
the present study this was done by expanding the trig­
nometric and exponential functions of formulas (1) and 
(2) in power series. 

Figure 2 shows the theoretical and experimental plots 
of the relative depth {3 of the dip in a Single-component 
line (a) against the degree of saturation, and in a two­
component line (b) against the distance L between res­
onators. We see that in the single-component line the 
dip starts to form at 'YOT1 > 1.7 and reaches 100% at 
'YOT1"'3.1, which, incidentally, agrees well with the 
calculations for a monochromatic beam. The experi­
mental dependence was obtained for a source of the 
channel type. This explains a certain deviation from 
the theoretical curve. The maximum of the dip was not 

456 SOy. Phys.·JETP, Vol. 38, No.3, March 1974 

/1, reI. un. ur7r( 1.0 (, 

0.8 
I II, 

'/ ' / ' " N 0. 

/J oJ J ' 
o.~ r : , Il.J / ! aZ 

, 
I 

u.r ,. I ,. 
o / l..f Z 2..f nnTo" J G 9 It l,em 

a b 

FIG. 2. Dependence of the relative depth of the dip: a-on the 
saturation for a single-component line; b-on the distance between the 
resonators for a two-component line (curve I (o)-for a channel-type 
source, curve 2 (e)-for a source in the form of a hole in a thin wall); 
solid lines-experiment; dashed-theory. 

reached, since the power of the quartz-oscillator har­
monic was not high enough. No dependence of the depth 
of the dip on the distance between resonators was ob­
served in the experiments, in agreement with the theory. 

In Figure 2b, curve 1 (0) was plotted for a source of 
the channel type (ko '" 2), and curve 2 (e) for a source in 
the form of a hole in a thin wall (ko '" 1.2-1.5). The dip 
for a source of the channel type therefore reaches max­
imum depth at a smaller distance between the resonators 
for a net type source (see formula (6)). Both curves 
were plotted at fields much lower than saturating. The 
theoretical curve corresponds to ko = 1 and therefore 
lies to the right of curve 2. The periodicity of the depth 
of the dip as a function of the distance L is well illus­
trated by curve 1. Since the molecule velocity distribu­
tion in the case of a channel-type source is unknown, 
no theoretical relation corresponding to curve 1 is given. 

Using formula (6) and knowing the values of Lmin 
and ko, we determined the distance between the two 
components of the homogeneously broadened line J = K 
= 3 of N14H3' It turned out to be 1500 ± 300 Hz, in good 
agreement with measurements made by other pro­
cedures [8J. Solving the transcendental equation (5), we 
can determine ~1,2 with much higher accuracy. 

The different physical pictures of dip formation in 
Single-components and two-component lines lead to 
different dependences of the "molecular ringing" line 
width and of the width of the dip in the line on the dis­
tance L between resonators (Fig. 3). As follows from 
Fig. 3a (single-component line), the widths of the line 
and of the dip decrease with increasing L, i.e., ap­
proximately like T-1 and in sufficiently gOCld agree­
ment with the theoretical calculations. The saturation 
'YOT1 was calibrated against the condition for the dip in 
a single-component line at 'YoT1'" 1.7. 

At the same time, it is seen from Fig. 3b that at a 
small field amplitude both the width of the entire "mo­
lecular ringing" line and the width of the dip in it have 
an oscillating character as functions of L, which we have 
already explained above. On comparison of Figs. 3a 
and. 3b, it can be noted that at high degrees of satura­
tion the principal role in the formation ofthe dip in a 
two-component line is obviously assumed precisely by 
the mechanism of saturation in the first resonator. The 
values of the saturation in Fig. 3b are given in arbi­
trary units, inasmuch as there was no point against 
which to carry out the calibration in this case. The 
saturation value x = 0.4 is tantamount to absence of 
saturation, as monitored against the line shape in the 

A. S. Bashkin et al. 456 



26;'2.11; kHz 

8 

c~ 6' 

+ ' , 8r20,lR, kHz 

~ '~L 
z 
~"- " 

Z D 

z 

o ,!! I I!!!, O~-'--L...l..-'--L...l.."",,--L...l..--'-.l...-l._ 

Z fl 8 rfJ !2/',cm 2 fl. 8 18 fZ 4,cm 

b 

FIG. 3. Plots of the molecular-ringing line width (L) and of the dip 
in it (D) against the distance between the resonators: a-for a single­
component line; b-for a two-component line; solid lines-experiment 
(a-for a channel-type source, e-for a source in the form of an 
opening in a thin wall) at different x, dashed lines-theory for a: 
"toT = 2.2, for b: "toT = 0.5. 
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FIG. 4. Plots of slope of the dip: a-against the saturation for a 
single-component line and b-against the distance between the two 
resonators for a two-component line. 

first and second resonators. The value x = 2.4 is given 
relative to x=O.4. At this value of the parameter x, sat­
uration was certainly attained. The curves drawn through 
the open circles were obtained for a channel-type 
source, and the curves drawn through the dark circles 
as well as the theoretical (dashed) curves were drawn 
for a net-type source. 

Figure 4 shows the experimental dependence of the 
slope of the dip J/2S1' (ratio of the signal/noise ratio 
for the dip to its width) for a single-component line (a) 
and for a two-component line (b). Such plots are of in­
terest from the point of view of technical ap&lications of 
narrow lines for the stabilization of lasers 9). It can be 
seen from Fig. 4 that this ratio is larger for a two­
component line. In principle, one should expect the dip 
to become much narrower and the slope of the dip much 
larger at a smaller distance between components. In 
concluding the analysis of the experimental data, we 
note that our experiments were not aimed at obtaining 
record- breaking results on the width of the dip. It 
served only as a clear illustration of the physical pic­
ture of dip formation in single- and two-component 
homogeneously-broadened lines. 

If the line consists of two components, each of dif­
ferent intensity, then to determine the distance between 
them it is necessary to know, from some other consid­
erations, the ratio between their intensities. On the 
other hand, if the number of components is more than 
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two, then by measuring the values of Lmin correspond­
ing to pairwise interference of the components, and 
knowing the ratio of their intensities, it is also possible 
to calculate the distances between the components. 
Similar calculations differ only negligibly from calcu­
lations for the two components. From the number of 
dips, each of which has its own period of appearance, it 
is possible to assess the number of components of the 
homogeneously broadened line. 

In addition to resolving the structure of the homo­
geneously broadened lines and determining the distance 
between the components of these lines, interest attaches 
to the following practical utilization of the dip in a two­
component line. If the line corresponding to the emission 
or absorption of electromagnetic fields is single-com­
ponent, and if application of, say, a magnetic field causes 
this line to split into two components, then when a sys­
tem with two separate fields is placed in a constant mag­
netic field we are dealing in fact with a two-component 
line. In this case the width of the dip, which is approxi­
mately equal to A1 ,2, and the distance Lmin are deter­
mined only by the applied magnetic field. It is conven­
ient to stabilize the frequency of a laser against such a 
supernarrow dip. 

For inhomogeneously broadened lines, one can ad­
vance arguments similar to those presented above. Let 
the molecule-beam direction be perpendicular to the 
axes of both resonators (Fig. 5). Then that fraction of 
molecules which experiences perturbation with one and 
the same phase during passage through the region of the 
first field acquires a polarization in this field. Conse­
quently, these molecules radiate in the second resona­
tor and produce "molecular ringing." According to the 
physical meaning of the "molecular ringing" effect, the 
corresponding line has a transit-governed width, since 
the averaging of the emission phases of the molecules 
polarized at frequencies that differ from the central line 
frequency by more than the transit width causes these 
molecules, in fact, not to produce a field in the second 
resonator. On going to higher frequencies, it is nec­
essary to use open resonators, which have a large num­
ber of oscillation modes. It must be borne in mind, how­
ever, that all the described effects develop within the 
limits of the homogeneous width of the line at small de­
tuning from its top. Therefore the molecules that par­
ticipate in the formation of the dip will interact only 
with the one mode that is closest in frequency to the 
top of the line. 

Thus, in the optical band it is possible in practice to 
resolve the structure not only of inhomogeneously 
broadened lines with the aid of the "Lamb" dip, which 
has a homogeneous width, but also to resolve the struc­
ture of homogeneously broadened lines. In addition, by 
using ultranarrow dips in homogeneously broadened 
lines and in the optical band, it is possible to stabilize 
the frequency of a laser. Dip widths on the order of 1 
kHz or even smaller are attainable in this case. 
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