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5MBS in a plasma is considered under conditions of applicability of the hydrodynamic 
approximation with allowance for .1Onlinearity of the excited sound waves. It is shown that the 
intensity of the scattered radiation may be significant even near the threshold. 

In the investigation of the interaction of a powerful 
electromagnetic radiation with a plasma, one of the 
principal questions is the intensity of the stimulated 
Mandel'shtam-Brillouin scattering (SMBS). At the 
present time, on the basis of general concepts concern
ing parametric instabilities, there is a sufficiently well 
developed linear theory describing the initial stage of 
this phenomenon [1]. It is impossible, however, to con
struct a complete picture of the 5MBS without develop
ing a theory that describes the establishment of that 
quasistationary state which results from the develop
ment of the instability. Considerable progress has 
been made towards developing such a theorr, in a num
ber of papers, with ac count taken of linear 2,3] and 
nonlinear [4] effects1). 

In the present paper we consider 5MBS under con
ditions when the quasistationary state is the result of 
generation of the second harmonic of an acoustic wave 
that is absorbed in the plasma. The possibility of such 
a process was indicated in [10] , and was considered in 
W-13] as applied to current and drift instabilities. 

It is shown that under the considered conditions the 
5MBS intensity can be appreciable even at small ex
cesses over the instability threshold. The time of es
tablishment of the quasistationary state and the effect 
of collision frequency characterizing the loss of energy 
by the pump wave have been determined. 

1. INITIAL RELATIONS 

Our analysis is based on the system of hydrodynamic 
equations for a plasma in a strong high-frequency 
field [14], which we supplement with terms that take 
dissipations into account 

()N/()t+div(NV) =0, (1.1) 

av e2 
([' ]') a;+(VV)V=-v.Y-s'\llnN-z 2mm, V Jdt'E(t',r) ,(1.2) 

a'E 4:rte' 4:rte' , 
-. +c'rolroIE +--NE =--v,NJ dt' E(t',r). (1.3) 
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where N is the electron density, V is the plasma 
velocity, S2 == (zTe + Ti)mi 1 , z is the ion charge, E is 
the intensity of the high-frequency electric field, IIi is 
the frequency of the collision of the ions with the neu
tral particles or with ions of a different sort, and lie 
is the frequency of the collisions of the electrons with 
ions and with neutral particles. 

We can eliminate N from (1.1) and (1.2) and write 
down an equation for V [13]. We confine ourselves to 
allowance for the nonlinear interaction of only the low
frequency waves, and neglect nonlinear dissipative 
effects. As a result we obtain 

( a' a ) ze' a ([' ] ') --s'L'l.+v,- V=---V- Jdt'E(t'r) 
at' at 2mm, at ' 

a ( av) --(VV)V-v V- . 
iJt iJt 

(1.4) 

In (1.4) we take into account only the largest nonlinear 
terms, which are quadratic in V. 

490 SOy. Phys.-JETP, Vol. 38, No.3, March 1974 

We use the system (1.1), (1.3), and (1.4) to analyze 
small deviations from the ground state, characterized 
by a constant electron density No and a pump wave with 
a specified amplitude 

We then obtain for the Fourier components of the 
quantities 

6N=N-No, IlV=V, 6E=E-Eo. 

the following relations 

6E(w k)= WLo' {6N+(k(kEo) + [k[kE,ll ) 
'2k'No w'e (w) k'C2-W2e(W) 

( k (kEo') [k[kEo']])} +6N_ ---+ , 
w'e (w) k'c 2 - w'e(w) 

(1.5)* 

where 

ze' k 
e. (w, k) 6V (w, k) = - ---, -, (Eo'6E_ + Eo6E+) 

2mmi WCiJo 

+ : S dw' dk' [(k6V(k-k',w-W'»6V(W',k') 

+2k (6V(w',k')6V(w-w',k-k'»], 

No 
6N(w,k) "'-k6V(w, k), 

w 

IJN", = 6N(w ± Wo, k ± ko), bE", =6E(w ±wo, k±ko), 

k's' . Vi 
e.(w,k)=1- 7 +1-;;;-" 

(1.6) 

(1. 7) 

(loB) 

Introducing the potential oV= ViI>, we obtain from (1.5) 
-(1.7) one equation for iI>(w, k): 

D(w, k)~ (w, k) = S dw' dk' Q(w, k; w', k') ~ (w - w', k - k') ~ (w' k'), 

(1.9) 

where 

with k±=k±ko, w±=w±wo, E±=E(W±). 

The nonlinear equation (1.9) in the stationary state, 
when k and ware real, are equivalent to the two equa
tions 

~(w,k)[D(w,k)+D'(w,k)l= S dw' dk'[Q(w,k; w',k') 

+ Q'(-w, -k; w' - w,k' - k) l~ (w - w', k - k') ID(w', k'), 

~(w,k)[D(w,k)-D'(w,k)l= S dw'dk'[Q(w,k; w',k') 

- Q'(-w, -k; w' - w,k' -k) lID (w - w', k - k')~(w', k'), 

from which we can obtain both the dispersion law w(k) 
and the wave amplitudes iI>(w, k). 
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2. LINEAR THEORY 

If the nonlinear terms are disregarded in (1.9), then 
this equation reduced to the dispersion equation D = O. 
We shall henceforth be interested in the near-threshold 
region, when the weak-coupling approximation [14J is 
valid and the solution of the dispersion equation can be 
sought in the form 

Ol=ks(i+~), I~I «1. 

We introduce the notation 

-1 +c'(k-2k,cosX) 
1')- . 

2swo ' 

_ Ol,,'lv.I' (1 k' ,) 
a - 16Ol,ks' - ""k,' cos 'P , 

where vE=eEo/mwo, cosx =kko/kko, cos 'II =kEo/kEo. 
The quantity A is determined by setting (1.10) equal 
to zero: 

(~+i,"(,) (~+ i'"(,+ n) +a =0. 

Solutions that increase with time (1m A > 0) arise 
only if 

1]'< (a-'"(,'"(,) (y,+y,)'/'"f,y, < 1. (2.1) 

From the inequality (2.1) we obtain the following 
limitations on the region of unstable wave vectors: , 

k- 2k,cosx + 2~ 
c-

<12k ~o (Vi+V' Ol7:)[~COSX(1-4COS'XCOS''P)-i]'/'I' 
oC cos X Ulo , I VE Inop 

(2.2) 
where 

(2.3) 

Formula (2.3) determines the minimal threshold field. 

It is seen from (2.2) that at specified angles X and 
'II and at a specified field intensity there exists in the 
pump wave a narrow interval of absolute values of wave 
vectors of unstable waves. Thus, at X = 0 and '11= 1T/2 
the width Ak of this interval is maximal and equal to 

(2.4) 

where E==(lveI2/lvElthr)-1 characterizes the excess 
over the threshold field (2.3). According to (2.4), the 
interval Ak is sufficiently narrow (Ak« ko) even at 
E»1. 

If we assume as before that the amplitude of the 
pump wave is given, then we can obtain from (2.2) the 
angles at which the instability set in: 

I VE I' -,-,- cos x. (1 - 4cos' XO cos· 'Po) ;;;. 1. 
I VE Ilhr 

Unlike th/:l interval Ak, the region of instability with 
respect to the angles broadens rapidly with increasing 
E. At a slight excess above the minimal threshold field 
(2.3), however, the waves are unstable in a narrow in
terval of angles xo"'.f2 E. 

It should be noted that in the case of other mechan
isms of sound-wave diSSipation, unstable waves can 
arise in a wide angle interval even at a slight excess 
over the threshold field. 

3. NONLINEAR THEORY 

Among the possible nonlinear effects, we are in
terested in the process of the onset of higher harmoni
cal acoustic waves which draw energy from the un-
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stable waves, stop their growth, and determine the 
quasistationary states. 

We are interested in the near-threshold region 
(E < 1), when the acoustic waves are unstable in a small 
solid angle, so that the wave vectors and the frequen
cies are close respectively to the values k=(ks=2ko, 
0, 0) and w = 2kos == ws' This makes it possible to use 
a /i-function approximation for the quantity cJ1(w, k) and 
to confine the analysis to only the first two harmonics: 

cD (Ol, k) = [cD,,s(o) - Ol,),s(kx - k.) + cD,',s(Ol + Ol,)li(kx + k,) 

+cD,,s (Ol - 2Ol,)li(kx - 2k.) + <1>,'li(Ol + 2Ol,)li(kx + 2k.) ],s(k,)6(k.). (3.1) 

Substituting (3.1) in (1.9) and equating terms with iden
tical /i-functions, we obtain 

4~1<1>,I' = -D(Ol" k.)D(2Ol.,2k,). 
s' 

Using (1.8) and (1.10),we get 

I cD,I' = s'v,'e/Sko'Ol,'. (3.1) 

With the aid of (1.7) we obtain from (3.2) expressions for 
the amplitudes of the perturbations of the electron den
sities at the fundamental frequency loN11 and at the 
second harmonic I oN21 : 

I oN,I'/ N,' = V/e/2Ol,', I oN,I'/ No' = 4vie2 /Ol,'. (3.3) 

F rom the condition I oN21 < I oN 11, under which we are 
justified in using the assumption that there are only two 
harmonics of the acoustic wave, follows the limitation 
E < 1/8 on the excess-over-threshold parameter. 

Formulas (3.3) and (1.5) enable us to find the ampli
tude of the scattered (Stokes) wave: 

IliE_I'/ I EoI' = Olo'vie/Svo'Ol,'. (3.4) 

Since we have assumed that the scattered wave is stable, 
our analysis is valid at I oE_ I < I Eo I, and according to 
(3.4) we have 

(3.5) 

Let us dwell briefly on the process of establishment 
of a quaSistationary state. Just as in [12J, on going to 
the Fourier representation we take into account the 
slow dependence of cJ1(w, k) on the time. As a result, 
we obtain from (1.1), (1.3), and (1.4) the following sys
tem of equations for the quantities in (3.1): 

2 d(JJ, Sko' 
i--d-+D(Ol"k,)<1>,= i--(JJ,' cD" 

w. t w. 
1 d(JJ, 2ko' 

i---+D(2Ol,,2k.)(JJ,=i~cD,'. 
m, dt Ol. 

It follows therefore (cf. [12J) that at E < 1 we'have 

IcDd'=[lcD,(O)I-'e-"+ 1<1>,(00)1-'(1-e-")]-" (3.6) 

where the quantity cJ11(oo) is defined by (3.2), and cJ1 1(0) 
is the initial perturbation of the velocity potential. The 
characteristic time T of establishment of the stationary 
state is 

",,,,,l/,"(=l/v,e. (3.7) 

The Appendix gives a general expression for the 
effective collision frequency (A.2), which determines the 
energy lost by the pump wave. Using formulas (A.3), 
(1.8), (3.1) and (3.3), and recognizing that in our case 
there arises a scattered wave with frequency wo - ws, 
we obtain from (A.2) 

(3.8) 

From a comparison of formulas (3.4) and (3.8) it fol
lows that lIeff/lle = XI oE_12/1 Eol2 < 1. 
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4. CONCLUSION 

Under real conditions the 5MBS intensity is deter
mined by those processes that ensure the most effec
tive energy removal from the unstable waves. One of 
the main parameters characterizing the effectiveness 
of one process over another is the time of establishment 
of the quasistationary state. 

For the process considered in tile present paper, at 
Wo = 1010 sec -1, lie = 106 sec -1, IIi 0= 105 sec -1, Ws = 3.6 X 107 

sec-I, and € = 0.1 we obtain T= 10-4 sec in accordance 
with (3.7). From formulas (3.3), (304), and (3.8) we then 
obtain loN112 /N~ = 5x 10-\ IOE_12/IEo 12 = 0.03, lIefr/lle 
'" 0.01. Attention is called to the fact that sufficiently 
strong scattered fields are produced even near the 
threshold, at a relatively small perturbation of the 
electron density. This is due to the fact that the per
turbations of the transverse fields add up coherently 
in the large region of space, equal in order of magni
tude to the quantity C/lle, so that loE_I/IEol 
- (wo/ lIe)( IoN I/No). 

I am grateful to V. P. Silin for a number of useful 
remarks. 

APPENDIX 

EFFECTIVE COLLISION FREQUENCY 

The energy lost by the' electromagnetic wave as a re
sult of scattering and transformation in a turbulent 
medium can be described with the aid of an effective 
collision frequency lIeffl which is connected with the 
extinction coefficient h 15J. In a unit volume and a unit 
time, an energy Ql = hS is released in the form of scat
tered waves (S = (C/87T)V €(wo) I Eo 12 is the energy flux 
density of the incident wave), and the energy released 
as a result of electronic collisions is 

Q 1 1 I' Wee' 2=-8 E, -,-v" 
Il Wo 

To be able to express Ql in a form similar to Q2, we 
must introduce the collision frequency 

(A.1) 

If the scattering in an isotropic medium is by slow 
fluctuations (with a small change of frequency), then the 
quantity h, neglecting the spatial dispersion, is ex
pressed in terms of the fluctuations of the dielectric 
constant o€(r, t) [15J, and from (A.1) we have 

wo' S "{ [k+k"ej' 
Veff ="'L,' dwdk(6e")w,k (k+ko)' 

(A.2) 

( • c' (k + ko)') _1 + (k + k" e) , I 1 } 
xlm e (w+wo)- (w+wo)' (k+k,)' me.(w+wo) , 

where e = Eo/Eo is the polarization vector and (/j€2)wk 
is the spectral density of the square of the fluctuations 
of the high-frequency dielectric constant, which is con
nected with the spectral density of the fluctuations of 
the electron density (oN~)wk by the relation 

(A.3) 

In formula (A.2), the first term in the curley brackets 
describes the loss of pump-wave energy as a result of 
the scattering (the appearance of transverse fields), while 
the second term characterizes the transformation (the 
appearance of longitudinal fields), and it is this term 
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which determines mainly the heating of the plasma. 

The electron-density fluctuations can be due to various 
causes. In particular, they can be produced by the scat
tered wave itself, owing to parametric instabilities. In 
this case the slow electron-density perturbations in a 
plasma are connected with the ion-acoustic waves [16J: 

where W s(k) is the spectral energy density of the ion
acoustic waves (krDe < 1). From (A.2) we obtain with 
the aid of (A.3) and (AA) 

Wee' 1 S W,(k) {[k+k"e]' 
"ff =----- dk--

e WO 2T,N, (21l) , (k+k,)' 

C'(k+k,)') -1 ( • C'(k+k,)')]_' 
X[lm(e'(w,+ks) (w,+ks)' +Im e (w,-ks)- (w,-ks)' 

+(k+k"e)' [1m 1 +Im 1 ]}. 
(k + k,)' e'(w, + ks) e'(w, - ks) (A.5) 

If we conSider only the transformation of the waves, 
put ko = 0, and assume the condition Re €( Wo - ks) = 0 to 
be satisfied, then we obtain from (A.5) an_exRression cor
responding to that used in [6J (see also [17 19). 

*[kEo] = k X Eo. 
I)We note that in a number of papers [5-9] they investigated a non

linear stage of parametric instability of a different type, when 
Langmuir and sound waves are the growing waves (unlike in 5MBS, 
where transverse waves and sound grow). In [5-8] account was taken 
of the nonlinear interaction of the wave due to the induced scattering 
by ions, while in [9j account was taken of the nonlinear frequency 
shift of the Langmuir waves. 
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