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The intensity of gravitational wave emission is calculated for a rapidly rotating drop of a
homogeneous gravitating liquid that assumes the shape of a triaxial ellipsoid.

In connection with Weber’s experiments on the regis-
tration of gravitational waves from cosmic sources, in-
terest attaches to the possible sources of gravitational
radiation of extraterrestrial origin =41 We shall show
that a uniformly rotating drop of a homogeneous gravitat-
ing liquid, which assumes the equilibrium shape of a tri-
axial ellipsoid, can be a source of gravitational waves of
high intensity. The possibility of pulsed gravitational
radiation from a rapidly rotating tesseral-shape drop
as it changes from one tesseral figure to another was
considered in "7,

Thus, assume that we have a drop of a gravitating
homogeneous liquid, rotating as a unit with a constant
angular velocity 2. We assume its mass m, density P,
and angular momentum M given. It is well known &l
that ellipsoids with three unequal axes (Jacobi ellip-
soids), rotating about the minor axis, can be equilibrium
figures. Poincare and Darvin have shown that the shape
of a Jacobi ellipsoid is stable against small perturba-
tions if

0.239G"m"sp~"/v<M<0.309G" m*sp="s,

where G is the gravitational constant. Thus, the drop
in the indicated region of values of the angular mo-
mentum assumes the stable form of a triaxial ellipsoid
with semiaxes a>b>c.

The intensity of the gravitational radiation will be
calculated from the well known Landau-Lifshitz formula
for the quadrupole gravitational radiation '*:

dl G
4Q " 36t

""" (1)
where
Quv= [ 0 (32a2s—10us) AV

is the quadrupole mass tensor, ny is a unit vector in the
observation direction, and c is the speed of light, while
the points denote differentiation with respect to time.

In our case, if the drop rotates about the z axis, the
following independent components will differ from zero

(2)

Qu=—0n=—0x, tg 2Qt=""/ym (a>—b*) Q" sin 2Q¢.

We recalculate, a, b, ¢, and £ in (2) in terms of the
specified m, p, and M. To this end, we introduce new
symbols k?=1—b?/a® and n=1-c?/a’. As follows
from [6],- n and k are connected by the known relations
for the Jacobi ellipsoids. Representing

n (k) = 2 k™,

M0

(3)
we find that

1 2
=g, ¢= -—4{(1—{3, ),
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and the remaining coefficients c¢m>1 can be deter-
mined with the aid of a recurrence relation

—1 " eV (e2)? .. (er)t f 07w (E)
=n(§)[2’ : i'!jc’!...t'!c ( a;'_, )

T (e)i(e)’. . (e)t [ 8™ (5, 2)
+EZ (m—s)!i!j!...t!( aE™ ),_o] '
where the summations =’ and Z in (3a) should be ex-

tended respectively to all the solutions in integer posi-
tive numbers of the equations

Cm

(3a)

P2 U =m(V<m), i+2j+..Flit=s;

where r'=i’+j’+...+t’, r=i+j+...+t. Here
2(1-4¢8Y

n(g)= W , 'Y (g 2)=F(e,M)—E(e,M)+K(A)
1 292 1_E2 2 1-¢ K
—F(x,h)+—1—_?[E(x, N-EM)—oN s F(g.0) +e A( = ) ] ,

(3b)

1—E2\ " z
@=arcsin §, x=arcsin(1_xz) s 7~=§_’

¢ is the root of the equation

z(1—2%)" (3+10z?)
3+8z*—8z* !

E(¢,\), F(¢,N), E()), and K()) are elliptic integrals.

arcsin 2=

For numerical estimates it is important to approxi-
mate the function n(k®) by a sufficiently simple expres-
sion. Calculating with the aid of (3a) and (3b) the value
of ¢
o A-g 7 119 219 79
TOE(4E-1) (384 et s 3072)
and using the asymptotic form of n(k’) as k> — 1, we
find that the function n(k?) can be approximated with a
high degree of accuracy (as shown by a comparison with
numerical calculations of Darwin [6], the discrepancy is
not more than 0.001) by the expression

n(k?) =E+(c1—1) K+ (c;H2) k*+ (fo—4E—-3ci—2¢,) k°
+(38—3+2c,Fc2) k*— (1—K2) 2In (1—K*) +'/ek* (1—vh?)?
x In (1—vk?) —*/ok* (1~v) [ (1—K*) v+ (2— k%) In (1—v) ],

where v is the root of the equé.tion

Cz

(4)

(5)

z+ 22 +1n (1—z) =6 (In 4+°/:—6&—3ci—c2).

We denote by M, the drop angular momentum start-
ing with which the Jacobi ellipsoids become stable. Its
value is

gu-g)"
3/a+§z_§u N

s
=2 () 1weme, )= (6)

4n
It is convenient to introduce the parameter u= M/ Mo,
which characterizes the deviation of the angular mo-
mentum of the drop from the critical value M,. In the
region of values 1<u<1.293, the Jacobi ellipsoids are
stable.
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Putting k=tanh 77 and a second relation for the Jacobi
ellipsoid ™, we obtain

1—n*

(2cthn—thn)?ch”n
1—cth* nn®

n(1—n®)" [F((P/’ M- (1+
n(=md)®
——Chn(i_cthznnz)] (1-E)"f(B)w,

where ¢’=sin"'n and A’=(tanh 7)/n.

) E@n)

The angular velocity £ of the drop is then equal to

(1_n2) s
1+ch?y °

Q= (4npG)" f* (E)u ch*s n (8)
Formulas (3a), (3b), (5), (7), and (8) give a parametric
representation of the dependence of n, k, and 2 on u,
and consequently of the components Qa8 on m, p, and M.

Choosing a spherical coordinate system in which
ng =sin 6 cos ¢, ny = sin fsin ¢, nz =cos 0, we obtain from
(1) the instantaneous distribution of the radiation:

dI(t)/dQ=A[cos® 8+/, sin* O sin*(wi+2¢) ],

(1_n2)‘/1
M (14ch?q)®’

120 ( 3 )

K3
= gex (o) @m" o (E)utsht 2m e

w =28 is the frequency of the gravitational radiation.

Averaging (9) over the period of the revolution of the
drop, we obtain

dI/dQ="/,A (146 cos* B+cos* B). (10)

Consequently, the maximum intensity of the gravitational
radiation is directed along the rotation axis, and the
minimum is in a perpendicular direction. For the time-
averaged radiation intensity, their ratio is equal to 8.

The total radiation intensity is obtained by integrat-
ing (9) with respect to d2:

1) =T="/snA. (11)

We are particularly interested in the case when
(u—1) «< 1. Then the Jacobi ellipsoid differs insignifi-
cantly from the ellipsoid of revolution. Using the method
of expanding the corresponding expressions in powers
of 1, we have at (u —1) «1

_; 8m  3n (3 By g _E3) (g1
I=1= T A= (2] Gm P @B(E) (1-8) 1) (12)
~1.403G*c*m"/*p"> (u—1),
where

p(8) =92168* (4&*—1)T'(8),
The frequency of the gravitational radiation is deter-
mined in this case by the formula
o={(4npGf(E))"(1—€) " [1—y (&) (a—1) ],
v (&) =3I(§) [432E°+368 (E*—1) &*—8E*+113].

I'~'(g) —2880&°+616E°—14128*+ 75482 —339.

(13)

The emission of gravitational waves from the drop
leads to a decrease in the energy E and in the angular
momentum M of the drop with time, and consequently
also a decrease of the parameter 7. Using the obvious
relation

~dE[dt=1="/nA,
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we can easily obtain

T AR 8n
{(T)A (mdn=—""1, (14)
where
3 gdnns o r f(E)ut(1—n?) " chY n 2(1—n?)"s
E="_ {2 Gm'p* _ roar
10( 3) e [ 1+chn ekt m P ],
In the case (u —1) « 1, the integration in (14) can be
carried out in terms of elementary functions
,rlk
=1t — =1+ (g~ 1) e
¢ 8(®) (o=t) e, (15)
24 [ n % .
T (Ti) FE)B(E) 1—8) Gom/sp' o2 5, 449G mo Vs, to=u(t=0),

Substituting (15) in (12), we obtain the dependence of the
intensity of the gravitational radiation of the drop on the
time at (u—1)«<1.

We can regard white dwarfs and neutron stars, which
are at present identified with pulsars, as rapidly rotating
drops of a gravitating liquid. At the characteristic neu-
tron-star parameters m=mg and p=4x10" g/cm®, as-
suming M=1.0296M,, we have I=10°° erg/sec. At the
given value of the angular momentum, the shape of the
triaxial ellipsoid is stable. The frequency of the gravi-
tational radiation is equal to 1764 Hz, which corre-
sponds to a drop-revolution period T =0.001 sec, which
is smaller by a factor 30 than the periods of the pres-
ently known pulsars. Choosing the distance from the
earth to be 2x10%2 cm, we obtain a gravitational-
energy flux on earth 4 xX10" erg/sec-cm®. Using
(15), we find that after approximately 2.3 sec the radi-
ation intensity drops to 10% erg/sec.

In the case of a white dwarf, choosing p=10° g/cms,
m=mg, and M= 1.0296, we obtain I~10* erg/sec, a
radiation frequency 0.88 Hz, and a radiation intensity
that decreases by a factor 10 after 10 years.

It appears that one cannot exclude the possibility that
some of the presently known pulsars have an average
density of less than 10' g/em® (~10"-12" g/cm®. They
can in this case perfectly well assume a stable form of
a triaxial ellipsoid.

1J. Weber, Phys. Rev. Lett. 22, 1320 (1969); 25, 180
(1970).

’R. L. Forward and D. Berman, Phys. Rev. Lett. 18,
1071 (1968).

®K. S. Thorne, Ap. J., 158, 1, 997 (1969).

*J. R. Ipser, Ap. J. 166, 175 (1971).

°A. 1. Tsygan, Zh ETF Pis. Red. 14, 465 (1971) [JETP
Lett. 14, 317 (1971)].

P, E. Appell, Equilibrium Figures of a Rotating Homo-
geneous Liquid (Russian translation), ONTI, 1936.

"L. D. Landau and E. M. Lifshitz, Teoriya polya (Field
theory), Nauka, 1967 [Pergamon, 1971].

Translated by J. G. Adashko
130

M. N. Fedosov and V. P. Tsvetkov 642



