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Several new limitations on the "forward" scattering amplitude imposed by macrocausality 
requirements are formulated on the basis of an analysis of the propagation of a wave packet in a 
macroscopic medium. It is shown, in particular, that for particles with a zero rest mass the real part 
of the scattering amplitude at zero energy cannot be positive if the ratio Ima (K)/Rea (K) tends to 
zero as K---.O. 

1. STATEMENT OF THE PROBLEM 

Any situations in which the propagation of signals 
with a velocity greater than the velocity of light in vac­
uum is possible must be completely excluded from a 
consistent, relativistic, causal theory. As is well­
known, this imposes definite restrictions on the proper­
ties of the S-matrix. In particular, the dispersion rela­
tions for the two-particle scattering amplitude follow 
from the principle of causality. 

In the present article certain additional inequalities 
for the "forward" scattering amplitude are derived on 
the basis of a causal analysis of the propagation of wave 
packets over macroscopic distances; these inequalities 
have apparently not been previously discussed. The 
structure of the article is as follows. 

a) The passage of wave packets, corresponding to 
particles A, through a layer of a macroscopic medium, 
consisting of particles B, is investigated. The index of 
refraction, which is expressed in terms of the amplitude 
for elastic coherent scattering A + B - A + B at zero 
angle in the laboratory coordinate system, [1,2J is intro­
duced in order to describe the coherent interaction of 
the passing wave with the rarefied medium. The index 
of refraction determines the dispersion law in the med­
ium; accordingly the group velocity of the wave packet 
in the medium [3, 4J also depends on the "forward" scat­
tering amplitude. 

b) In a weakly-absorbing rarefied macroscopic med­
ium, composed of physical particles B, the group veloc­
ity of the wave packet A must be smaller than the veloc­
ity of light in vacuum. SpecifiC restrictions on the 
amplitude for the elastic scattering of massless parti­
cles, and also for particles with nonzero mass in the 
ultrarelativistic limit, follow from this requirement. 

In a situation when the events corresponding to the 
creation and detection of the particles are spatially 
separated, the propagation of a wave packet in the med­
ium corresponds to the transmission of a signal. 1) The 
local inequalities for the real part of the "forward" 
amplitude, which are derived in the present article, are 
related to the impossibility of transmitting such signals 
over macroscopic distances with a velocity faster than 
light. Therefore, one can regard them as macrocausality 
conditions. The most definite predictions pertain to the 
case of the low-energy scattering of particles with zero 
mass. 

2. THE GROUP VELOCITY AND THE MOTION OF THE 
CENTER OF THE PACKET IN A DISPERSIVE MEDIUM 

Let us consider from a formal point of view the 
propagation of a wave packet of arbitrary nature in the 
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presence of dispersion. Let us denote the wave vector, 
corresponding to the plane wave, by k, and the frequency 
by w. The dispersion law determines the function w(k), 
where k = lkl. We shall assume that damping of the wave 
doesn't occur or else it can be neglected. In this case 
1m w (k) = 1m k = O. 

Let us represent the wave packet in the form of a 
superposition of waves with definite values of wand k: 

Let us impose the normalization condition 

S hp(r, t) I'd'r= (Zit)' S Ic(k) I' d'k~1. 

(1) 

(2) 

on the function I/!(r, t). Let us introduce the coordinate 
of the center of the packet, 

R= S hp(r, t) I'r d'r. (3) 

Substituting (1) into (3) and taking the equality 

into consideration, after elementary calculations we ob­
tain 

where 

R=R,+vt, 

R,= (2n)' 1m S c (k)~ c' (k) d'k, 
ijl. 

S aw(k) 
v=(2n)' Ic(k) 12~-d'k. 

ilk 

One can rewrite Eq. (5b) in the form 

v=(aw(k)/akj, 

(4) 

(5a) 

(5b) 

(6) 

where the bar denotes averaging with respect to k. If 
we are dealing with a quasi-monochromatic packet (the 
effective spread l~kl is very small in comparison with 
the average value of the wave number ko), then according 
to Eq. (6) 

dR ow(k,) dw(k,) 
-=-~=~-n 

dt ok, dk, 
(7) 

where n is a unit vector in the direction of ko-

By definition, the quantity dW(ko)/dko is nothing other 
than the group velocity. Thus, the group velocity coin­
cides with the velocity of motion of the center of the 
quasi-monochromatic packet. It is obvious that formulas 
(5) are valid even when the spreading of the packet is 
taken into account. 2 ) 

If the quantum mechanical state of particle A is des­
cribed by a superposition of states with definite momen­
tum p = 11k and energy E = 11w, then in the coordinate 
representation a given particle corresponds to the proiJa-
Copyright © 1975 American Institute of Physics 655 



bility packet 1J; (r, t), which is defined according to Eq. 
(1). Here the function 1J;(r, t) is proportional to the am­
plitude of the probability to detect particle A at the in­
stant of time t by a detector located at the point r. 3) 

In the case of the motion of A particles in the macro­
scopic medium, which is constructed out of B particles 
at rest (we assume that if the B particles exist, then in 
principle such a medium can be realized), the relation 
between the momentum 1ik and the energy nw has the 
form 

k=xn(x), (8) 

where nK = c-Iri[w2 - (mc2/n)2]112 is the momentum of 
particle A in vacuum, m is the mass of particle A, c is 
the velocity of light in vacuum, and n(K) is the index of 
refraction. For sufficiently small densities N of the 
B particles, the index of refraction is related to the 
coherent "forward" scattering amplitude a(K) (for the 
elastic scattering of particle A by particle B in the 
laboratory coordinate system) by the well-known rela­
tion[i,2] 

n(x)=H2nN a(~) . 
K 

(9) 

In the general case a(K) denotes the scattering ampli­
tude at zero angle without any change of the internal 
quantum numbers of the two particles A and B.4) 

It is Significant that formula (9) is valid for arbitrary 
values of K, provided that the index of refraction does 
not differ very much from unity. In what follows we 
shall regard the density N as a subsidiary parameter. 
One can always choose N to be small enough so that the 
utilization of formula (9) will be valid. Here 

Rea(x) 
Rek=x+2nN--, 

x 

1m k=2nN 1m a(x) = Na(x) 
x 2' 

(10) 

where a(K) is the total cross section for the interaction 
of particles A and B. 

If the thickness of the layer, consisting of B particles, 
is small in comparison with the average absorption 
length Lo = I/Na(K) and if 1m a(K) « IRe a(K)I, one can 
neglect the imaginary part of the wave number k, thus 
assuming the medium to be transparent. In this connec­
tion the group velocity (the velocity of motion of the 
center of the quasi-monochromatic packet in the med­
ium) is, according to formula (7), given by 

_ dCiJ (k) dCiJ (x) / d(Re k) 
v----=-- ---=v [H2nN9I!]-' 

d(Rek) dx dx' , 
(11) 

where Vo = KC 2/W(K) is the classical velo<1ity of particle 
A; here and below we shall use the following notation in 
order to simplify writing down the formulas: 

9I!=~( Rea(x) ). 
dx x 

(12) 

For massless particles we have 

v=c (1 +2nN9I!) -''''c [1-2nN9I!]. (13) 

In the absence of attenuation (actually, for very small 
cross sections and correspondingly large values of the 
absorption length Lo) the group velocity of the packet in 
the dispersive medium must coincide with the velocity 
of the signaf s propagation and, according to the princi­
pIe of relativistic cauSalit~ cannot exceed the velocity 
of light in vacuum (see[3,4 and also Sec. 3). From the 
inequality v ::0 c and allowing for (13), we obtain the fol-
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lowing restriction on the coherent "forward" scattering 
amplitude for particles with zero rest mass: 

d (Rea(X) ) .-. 
- --- ;;;.0. 
dx x (14) 

The superscript on the left-hand side of Eq. (14) indi­
cates that generally this inequality is valid if the total 
cross section a(K ') = 41TK' - 1 1m a(K ') is very small in the 
neighborhood K - t;.K < K' < K + t;.K. In the uitrarelativis­
tic limit one can also write down this same relation in 
the case when the mass of particle A isn't equal to zero. 

According to its derivation, inequality (14) has a 
limited character. The quantity R may even assume 
negative values for large scattering cross sections. In 
particular, one always has R < 0 in the neighborhood of 
a resonance peak. One can, however, anticipate that 
these negative values are bounded in absolute value, 
where the corresponding upper limit is proportional to 
the total scattering cross section a(K). We shall con­
sider this question in more detail in the next section. 

3. THE MACROCAUSALITY CONDITIONS FOR 
MASSLESS PARTICLES 

Let us consider the motion of particles with zero 
rest mass in a macroscopic medium from the viewpoint 
of the principle of relativistic causality. Let the initial 
longitudinal length of the packet, corresponding to this 
particle (the uncertainty of the coordinate along the 
direction of motion), be equal to t;.z. According to the 
uncertainty r~lation, t;.z = (Z2 - (z)2)112 ;;::; 1/ t;.k, where 
nt;.k = (P2 - (p )2) 112 is the uncertainty in the particle's 
momentum. In the present case the time required for 
the signal to propagate over the distance L is equal to 
the difference between the instants corresponding to the 
detection and the creation of the particle, and on the 
average this time interval is equal to L/v, where v is 
the velocity of the center of the packet (the group veloc­
ity). However, in principle the indicated time interval 
can only be determined to within an accuracy 

[ ( Llz ). ( LLlv ) '] 'I. Llt-a - + - , 
v '. v3 

which is dictated by the uncertainty relation. Here t;. v 
~ Id2w(k)/~It;.k is the uncertainty in the particle's 
velocity and ex is a positive constant of the order of 
unity; the second term in the expression for t;.t corre­
sponds to the spreading of the packet during its motion 
in the dispersive medium. According to the principle of 
causality, the quantity T = (Liv) - (L/c), having the 
meaning of the time delay associated with the motion of 
the packet in the medium in comparison with the time of 
flight of a massless particle in vacuum, must satisfy the 
inequality T > -t;.t. With this taken into consideration, 
the macrocausality condition can be written in the form 

v~c <a [ ( t ) '+ ( Ll; ) '] 'h 

If we consider quaSi-monochromatic packets for 
which 

!!.. _I d'CiJ (k) 1 !lk / 1 dCiJ (k) 1« 1 !.::!:.. 1 
v dk' . dk v' 

(15) 

the term (t;.V/V)2 appearing on the right-hand side of 
inequality (15), which is related to the packet's spread­
ing, can be dropped. For completely transparent media 
the ratio t;.z/L can be arbitrarily small, and the result 
V::o c follows from (15).5) 
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The course of the discussions cited above isn't 
changed even in the presence of absorption if we con­
sider ,the distances L to be small in comparison with the 
absorption length Lo. The inequality (15) is valid in any 
case, provided that ~z « L « 1/Na(K). At the same 
time, if L» 1/Na(K), the probability that the particle 
will pass through the layer of matter becomes expo­
nentially small, and it is no longer correct to asso-
ciate the transmission of some kind of physical signal 
with the propagation of the probability packet. Ac­
cordingly, we shall assume that in formula (15) the quan': 
tity L ~ 1/Na(K)/3, where /3 ~ 1, and the quantity ~z 
~ 1/~K, where ~K is the uncertainty in the wave number. 
Substituting formula (13) for the group velocity into (15), 
we obtain the inequality 

9'l>-'1o(x)/t.x, (16) 

where TJ = a/3/2rr > 0;6) this inequality goes over into the 
relation (14) if we formally set a(K) = O. The quantity 
~K, of course, takes different values for different 
packets. It is clear, however, that the relation between 

, the real and imaginary parts of the scattering amplitude 
can be formulated independently of the type of packets 
under consideration. It is clear that a certain charac­
teristic interval ~K 0 of wave numbers in the neighbor­
hood of K must play the role of the maximum value of the 
quantity ~K in inequality (16); in this interval the real 
and imaginary parts of the scattering amplitude and 
their derivatives do not change. in order of magnitude­
provided that this interval is smaller than K. If the indi­
cated interval exceeds K, one must assume ~K 0 ~ K. 7) 

Having introduced the notation ~Ko = K/y, let us re­
write (16) in the form 

9'l>-Co(x)/x, 

where C = TJY > 0 is a dimensionless finite number. 
The approach discussed here doesn't permit us to 
specifically indicate the lower limit of the possible 
values of the ratio 9'l K/a(K). 

(17) 

4. THE SIGN OF THE SCATTERING AMPLITUDE FOR 
MASSLESS PARTICLES AT ZERO ENERGY 

According to (17), if 

xl9'll/o(x»C, (18) 

then inequality (14) must certainly be satisfied, that is, 
9'l > 0 (see EcJ.. (12) for the definition of the symbol 9'l). 
This enables us to reach a definite conclusion about the 
sign of the real part of the scattering amplitude at zero 
energy. In fact, let the cross section a(K) remain finite 
or else behave like K-q as K - 0, where 0 < q < 1. It 
follows from the optical theorem that in this case 
1m a(O) = O. It is clear that if Re a(O) f. 0, then 

lim x 19'11 /0 (x) =00. 

At the same time the quantity C is a finite number (for 
values of K close to zero, we find y = K/~Ko ~ 1 and 
C = TJ Y ~ 1). Therefore, for sufficiently small values 
of K the quantity R must be positive. In other words, 
relation (14), which follows from the fact that the group 
velocity in a transparent medium is bounded, is valid at 
energies close to zero. Hence follows the result 

Rea(O)~O. (19) 

We see that an important result follows from the 
principle of causality: the real part of the amplitude for 
the "forward" scattering of a particle with zero rest 
mass by any other particle cannot be positive, provided 
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that the imaginary part of the scattering amplitude tends 
to zero as K _ 0. 8 ) 

As is well-known, in the low-frequency limit the 
amplitude for the "forward" scattering of a photon (with­
out any change in its polarization) by any particle is 
equal to (-e2/mc2), where e is the particle charge and m 
is its mass. [9J In connection with what has been said, it 
becomes clear that the negative sign of the Thomson 
amplitude is not accidental; a positive sign of the ampli­
tude would contradict the princ!ple of causality. From 
our point of view, the inequality (19) must automatically 
be satisfied in any internally consistent dynamical theory 
of massless particles (independently of its specific 
structure), provided that 

lim 1m a(x) =0 
HO Rea(x) 

For example, the amplitudes for the scattering of neu­
trino and antineutrino by an electron vanish as K - 0 
within the framework of the universal theory of the weak 
interactions. As one can easily show in scalar and 
pseudo scalar theories with direct coupling (character­
ized ~y the interaction Lagrangians Lsc = gcp/PI/i and Lps 
= gcpl/iysl/i), the amplitudes for the zero-energy scatter­
ing of massless bosons at an angle 8 are equal, respec­
tively, to a sc (0, 8) = - (g2/mc2) cos 8 and aps(O, 8) 
= -g2/mc2, which again agrees with (19). 

Let us emphasize that we are everywhere talking 
about physical states B, which in principle can be real­
ized in nature. By definition such states should be stable 
with respect to the creation of quanta A with zero mo­
mentum (the vacuum remains stable in the external field 
created by a physical particle). The indicated stability 
obviously also exists for a medium composed of B par­
ticles-in any event for sufficiently small densities N. 
The result (19) indicates that no physical, stable states 
B exist which would correspond to a positive scattering 
amplitude for massless particles at zero energy; . other­
wise the group velocity in a medium consisting of such 
particles would exceed the velocity of light in vacuum. 
It is significant that this conclusion follows from the 
principle of causality and is not related to specific field­
theory concepts. 

From the point of view of field theory, the positive 
amplitude may be the "bare" amplitude, but not the re­
normalized physical amplitude. One can verify this for 
the example of the interaction of a massless scalar par­
ticle A with a particle B whose mass is not zero. One 
can easily see that if a(O) > 0 (we omit the symbol indi­
cating the real part of the amplitude, since it is under­
stood that 1m a(O) = 0), the "bare" one-particle state B 
is unstable: in the field B' corresponding to an effective 
attraction, an infinite number of quanta Awith zero mo­
menta are created, and their total energy is negative 
and tends to (- 00). Stability is reestablished if a non­
linear interaction of the type V = (1/4)AA4 is considered. 
In this connection the renormalized physical state 
B' = B + condensate A appears (cf. [10J ). It is clear that 
the renormalized physical amplitude can only be nega­
tive (or vanish in the limiting case); otherwise the state 
B' would again turn out to be unstable. In the theory of 
massless scalar particles with the additional interaction 
Hamiltonian V = (1/4) AA 4, one can show that the renorm­
alized physical amplitude associated with the "bare" 
amplitude a(O) > 0 is equal to (-2a(0)) to within terms 
of order A. 9) The detailed discussion of this question 
falls outside the scope of the present article. 
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5. THE CASE OF NONVANISHING REST MASS 

One can also apply the method expounded above to the 
case when the mass is not equal to zero. Since the en­
tire investigation pertains to a rarefied medium for 
which Nla(K)I/K2 « 1, the macrocausality condition (15) 
does not impose any restrictions on the behavior of the 
"forward" scattering amplitude for K :::; mc/n. In par­
ticular, in contrast to (19) the sign of Re a(O) can be 
arbitrary. As one can easily see, in the ultrarelativistic 
limit (K »mc/n) the restrictions on the ''forward'' 
scattering amplitude reduce to the inequalities (14) and 
(16). In this connection if the amplitude does not oscil­
late, one can assume that y = K/ ilK ~ 1. Hence follows 
the asymptotic inequality 

xtll/a(x»-C, 

where C is a positive constant of the order of unity 
whose value does not depend on the energy. 

(20) 

In connection with the inequality (20), it is interesting 
to discuss the situation which arises when the Pomeran­
chuk theorem is violated. It is known that if asymptotic 
equality of the total scattering cross sections for parti­
cles b and antiparticles b does not hold, i.e., 0(00) = 0b 
~ a(oo) = '1), then it follows directly from the analytic 
properties of the amplitude and from the requirements 
of crossing symmetry (see, for example, Chap. 8 Of[llJ) 
that 

a' 
Re a. (x)=-Re ab(x)=- Zit'x In x, (21) 

as K - 00, where 0' = (1;2)(0(00) - a(oo)). We note that in 
the present case the ratio Im a(K)/Re a(K) asymptotically 
tends to zero for both particles and antiparticles. 
Therefore, at first glance one can neglect absorption 
and use relation (14). It is obvious that one of the ampli­
tudes (21) does not satisfy this inequality: in the limit 
of very large energies the group velocity (11) for b par­
ticles with 0' > ° or for b antiparticles with 0' < 0 ex­
ceeds the velocity of light in vacuum 
(v - c(1 + Nlo'II1TK)). This result suggests that violation 
of the Pomeranchuk theorem contradicts the principle of 
causality. This conclusion would actually be valid if the 
use of the macrocausality condition (15) were valid up 
to distances L many times exceeding the average ab­
sorption length Lo = l/NO(K). But for L »Lo the analy­
sis of signal transmission with the aid of a wave packet 
apparently loses its meaning (see section 3). One can 
easily see that the amplitudes (21) satisfy inequality (20) 
which is weaker than (14): as K - 00 we find 

1 10'1 1 
xtllla(x)-+±~·--;;'-'--. 

2n' 0(00) 4n' 

Thus, the question of a possible connection between 
asymptotic equality of the total cross sections for the 
scattering of particles and antiparticles and the principle 
of causality still remains open. 

6. MACROCAUSALITY CONDITIONS AND 
DISPERSION RELATIONS 

Let us show that the restrictions (14) and (16) are in 
agreement with the dispersion relations for the ampli­
tudes describing the "forward" scattering of a photon by 
an arbitrary particle, where these dispersion relations 
have the form 

x' S- a.(y) x' S- a_,(y) 
Rea,(x)=Rea,(O)+xRea,'(O)+ 4n'P y(y-x) dy+ 4n' y(y+x) dy. 

, , 
(22) 
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Here 0A (y) is the total cross section for the scattering 
of a photon with helicity A by a target with a given polar­
ization at an energy reK (A = ± 1); Re a+l(O) = Re a-l(O) 
= -e2/mc2 is a subtraction constant which is equal to the 
Thomson amplitude; Re a~l(O) = -Re a~l(O) is a second 
subtraction constant which is proportiona.l to the square 
of the anomalous magnetic moment of the scatterer. [9J 

H we formally set 0A(K) = 0, the integrand in the third 
term of formula (22) will not have a singularity at y = K. 

In this case one can differentiate the integral (which is 
defined in the sense of a principal value) with respect to 
the parameter K like an ordinary integral, [12J and in the 
approximation under consideration we obtain 

..'!-.( Rea,(x) ) (.-.) =_ Rea,(O) +_1_[pS-a,(y)dY +S-a_,(Y)dy ]. 
dx x x' 4n' (y-)(:) , (y+x)' 

• • (23) 

Since o(y) > 0 and Re aA(O):::s 0, the right-hand side of 
Eq. (23) is an intrinsically positive quantity. Thus, if 
one can neglect the total scattering cross section at a 
given energy, then the photon dispersion :relations lead 
directly to the inequality (14). 

The exact formula for the derivative 

til, ... ~ ( Re a, (x) ) 
dx x 

(compare with the notation introduced in (12)), with the 
identity 

'+6'" dy 
P S -=0 y-x 

x-AKa 

taken into account, takes the form 
til, Rea.(O) +_1_ °r"'a'(Y)dY_ 

x' 4,,' 0 (y-x)' 

+_1_ S- ~dy+_l-S- a_,(y)_dy (24) 
4n' (y-x)' 4n' (y+x)' 

x+.6.Ko 0 

1 o+S'" lJ,(y)-a,(x)-(y-x)da,(x)ldx > a,(x) +- l.y----, 
4n' (y-x)' 2n'~xo 

x-AKo 

where IlKo is any interval which satisfies the condition 
O:::s ilK o:::s K. The fourth integral in formula (24) can be 
represented in the form IlKod20(~)/d~2, where K - t1Ko 
:::s ~ :::s K + t1Ko. For sufficiently small values of IlKo, the 
quantity 

and it follows from Eq. (24) that 

tIl> __ 1_ a(x) (1+0 (I d'a(6) 1 Llx.'/cJ(x) )), (25) 
2n' Llx. ~2 

which agrees with (16) (here TJ ~ 1/21T2). We also note 
the integral inequality 

>_1-S'" a,(y)-o,(x)-(y-x)do.(x)ldx. d _ adx) (26) 
til, 4' ()' y z,,' 'I n 0 .Y-'X. ')(. I 

which becomes obvious if one substitutes ilK 0 = K into 
Eq. (24). 

For arbitrary particles with zero mass and spin s, 
one should replace O-A(y) bya_.ASY) in the dispersion 
relations (22) and in formulas (23) and (24), where a is 
the total cross section for the scattering of the antipar­
ticle and A = ± s. We note that if one starts from the dis­
persion relations with a single subtraction: 

x s-a.(Y) x J'~1}-'(Y) 
Rea.(x)=Rea.(O)+'-4 ,P --dY--4 2 -+-dy, 

" y-x n y x 
• 0 

(27) 
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formulas (23) and (24) for the quantities Ill).. do not under­
go any changes. 

As shown in Sec. 4, for a finite cross section aJl. (0) 
the subtraction constant Re aJl. (0) must be negative or 
else equal to zero. Let us emphasize that, for Re aJl. (0) 
> 0, the dispersion relations (22) and (27) do not satisfy 
the macrocausality condition (16) for sufficiently small 
values of K. Thus, the mere analyticity of the scattering 
amplitudes in general still doesn't imply that the theory 
is automatically causal. 

It is interesting that the requirement Re aJl. (0) :'0: 0 im­
poses a prohibition on the dispersion relations without 
subtractions. In actual fact, the opposite inequality 
(see[13], Chap. 10, Sec. 1) follows from the correspond­
ing dispersion relations which are valid provided that 
lim laJl.(K)1 = 0: 

K-oo 
1 ~ 

Rea,(O)="'"4n' J (cr,(y)+I}_,(y»dy>O. 
o 

This means that in a causal theory the "forward" scat­
tering amplitude, which is analytic in the energy, for a 
massless particle must satisfy the asymptotic relation 

lim la,(x) 1+0. (28) 

7. CONCLUDING REMARKS 
The inequalities (14), (16), (19), and (20), which im­

pose definite restrictions on the behavior of the 
"forward" scattering amplitude have been derived above 
on the basis of the principle of macrocausality. On the 
whole these restrictions turn out to be substantially 
weaker than those which follow from analyticity and 
crossing symmetry. But at the same time they are even 
more general, since any internally consistent theory, in 
particular, a nonlocal theory, must be compatible with 
the requirement of macrocausality. 

It is significant that the indicated inequalities contain 
a certain amount of additional information about the 
properties of the scattering amplitudes. This is appar­
ently due to the fact that the coherence effect, due to the 
interference of the incident and scattered waves, is in­
vestigated in the macroscopic approach; this effect 
doesn't appear in the usual analysis of scattered waves, 
corresponding to an elementary event involving the in­
teraction of two given particles (see, for example, [llJ, 
Chap. 4). 

Let us say a few words about formula (9) for the index 
of refraction, which is used in the present article. For 
arbitrary values of the parameter NJI. 3 (A = 21T/K), the 
mechanism leading to the formation of a coherent wave 
in the medium consists in the interference of the incident 
wave with the secondary waves which are scattered in a 
"forward" direction without momentum transfer by all 
the particles in the medium. This implies the universal 
nature of formula (9) in the approximation which is 
linear in the "forward" scattering amplitude, which is 
verified by direct calculations within the framework of 
scattering theory (see [1,2] and Chap. 11 of[13J ).10) 
Therefore, there is every reason to assume that the ap­
plication of relation (9) and formulas (11) and (13), 
which are related to it, to the problem of causality is 
completely justified. 

In conclusion the author expresses his deep gratitude 
to B. N. Valuev, D. A. Kirzhnits, V. I. Ogievetskil, M. I. 
Podgoretskil, and Ya. A. Smorodinskil for a discussion 
of a number of questions and for helpful remarks. The 
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I)Let us emphasize that the topic of discussion is ordinary particles 
with mass m ;;;. 0; our investigation is not applicable to the hypo­
thetical tachyons,!,] which possess a space-like 4-momentum in 
vacuum (corresponding to an imaginary mass). 

2) A similar treatment of the group velocity was considered earlier by 
Vainshteinl6] within the framework of classical electrodynamics. 

3)We note that it is theoretically impossible to localize a photon or 
any other partiCle with zero rest mass without absorption in a spatial 
region having linear dimensions smaller than the wavelength. 17] In 
this case 1 ",(r, t)1 2 determines the relative probability of detecting 
the absorption of particle A by the heavy particle which is located 
at the point r. 

4)In particular, if the spin structur~ of the "forward" scattering ampli­
tud is described by the matrix A(K) in the spin sPilce of the two parti­
cles, then the eigenvalues of the matrix ii(K) = TrBA(K)pB play the 
role of :i(K) in formula (9) where pB is the spin density matrix for 
particle B (see, for example,IS]). 

s)It is well-known that it is impossible to defme a probability packet 
with a sharp space-time front by using positive-energy states, which 
hinders the unambiguous formulation of the concept of a signal in 
quantum theory. We assume that the dimensions of the packet are 
are determined by finite fluctuations of the coordinates, and we 
neglect the probability of detecting the exponentially small tail of 
the packet. Such an approach to the investigation of macrocausality 
conditions satisfies the correspondnec principle with classical theory. 

6)Here we start from the relation (v- c)/c < allz/Lmax, neglecting 
(in accordance with what was said earlier) the term (lIV/V)2 -
(21TN.:;lKd9'1/dK)2 in expression (15). 

7)In the case ofresonance scattering .:;lKo - r, where r is the width 
of the resonance peak. 

·)In the present case the fact that formula (13) for the group velocity 
immediately becomes incorrect when K = 0 is of no significance in 
view of the continuity of the amplitude a(K) and in connection with 
the arbitrariness in the choice of the parameter N. 

9)In the case of bosons with mass, the role of the interaction V = 
(1/4 );\A 4 has been discussed in detail in the articles by Migdal. PO] 
According tol 10] , if rnA * 0 and a(O) > 0, the medium consisting of 
B particles will be stable for densities N below a certain critical value 
No, but for N > 0 it becomes unstable with respect to the creation 
of A particles with zero momentum. An interaction of the type V = 
(1/4 );\A4 leads to the elimination of the instability; in this connec­
tion a boson condensate of the A particles is formed in the medium. 
If rnA"" 0 and a(O) > 0, the medium is unstable for arbitrarily small 
densities N (formally No ..,. 0 in this case). Let us emphasize, however, 
that for zero rest mass the given instability of the medium is, as 
indicated above, simply related to the instability of the particles 
themselves. 

IO)Pormula (9) lies at the foundation of the theory of the coherent 
regeneration of short-lived neutral K mesons at high energies. I 14] 

See, for example, IS, 15] for a discussion of other interference pheno­
mena in elementary particle physics which are related to the concept 
of the index of refraction. 
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