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The propagation of time-stationary light beams in media exhibiting Kerr nonlinearity is discussed 
with the "attenuation" of the nonlinearity in strong fields taken into account. It is found that light 
beams of supercritical intensity propagating in such media develop a multifocus structure arises in the 
case of a medium exhibiting both attenuation of the Kerr nonlinearity and nonlinear absorption. The 
multifocus structure obtained for a medium exhibiting attenuation of the Kerr nonlinearity but no 
absorption is compared with that obtained for a medium exhibiting nonlinear absorption but no 
attenuation of the Kerr nonlinearity. 

Some time ago(1] we predicted that a time stationary 
light beam in a medium having Kerr nonlinearity would 
exhibit a multifocus structure. Subsequently[21, we ad­
vanced the hypothesis that diverse effects such as 
multiphoton absorption, various types of induced scatter­
ing, breakdown, etc., which can actually arise at the 
focal points of a multifocus structure, cannot change the 
picture in a qualitative way, but can only affect some of 
its quantitative characteristics (the sizes and relative 
positions of the focal regions and the energy density 
that can actually be achieved in them). Later [3], we 
made numerical calculations of the propagation of a light 
beam in which two- and three-photon absorption and 
Raman scattering were taken into account; these cal­
culations showed that a multifocus structure can arise 
even when these effects are present. At that time we also 
investigated the structure of the focal regions them­
selves under these conditions. [3] From a formal point of 
view, to take the above factors into account one need 
only introduce an intensity dependent imaginary part of 
the refractive index, in addition to the real part that 
describes the Kerr nonlinearity; and in this way one also 
takes into account such deviations of the nonlinearity of 
the medium from the Kerr type as are associated with 
the presence of an imaginary part of the refractive index. 

The literature also reveals considerable interest in 
the case in which the deviation of the nonlinearity of the 
medium from the Kerr type in strong fields is assoc­
iated with a change in the real part of the refractive 
index itself. For example, Akhmanov, Sukhorukov, and 
Khokhlov [4] phenomenologically introduced an "attenua­
tion" of the Kerr nonlinearity in strong fields. Brewer, 
Lifshitz, Garmire, Chiao, and Townes[5] have made a de­
tailed study of the attenuation of the Kerr nonlinearity 
that, in the case of the orientation mechanism of the 
Kerr effect, is associated with the alignment of an ap­
preciable fraction of the molecules in the direction of 
the electric field. Further, Yablonovitch and Bloem­
bergen [6] have recently discussed the possible weakening 
(compensation) of the Kerr nonlinearity as a result of 
the increase in the free electron concentration in the 
focal regions just prior to breakdown. Although certain 
experimental results have not yet been successfully ex­
plained in terms of these ideas (for example, the lack 
of any dependence of the diameters of the focal regions 
on the duration and intensity of the incident light pulse 
under ordinary conditions), it may still be necessary to 
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take the electron avalanche into account in certain cases, 
since conditions are known from experiment in which 
breakdown takes place in the focal regions. [7] 

Here we consider the propagation of Ught beams in 
media in which the deviation of the nonlinearity from 
the Kerr type (in intense light fields) is associated with 
a change in the real part of the refractive index. For 
definiteness, we write the refractive index n in the form 

'l,n,n,IEI' 
n=no+ 1+IEI'/IE.I" 

(1) 

where E is the complex amplitude of the electric field 
strength' ). With 1/1 Exl 2 = 0, expression (1) describes 
the Kerr nonlinearity of the medium, while with 
1/1 Exl2 oj 0 it takes into account attenuation (and in the 
limit IEI2» IExI2, complete "saturation") of the Kerr 
nonlinearity. In what follows we shall consider the prop­
agation of both parallel and focused beams incident on 
the medium, and in addition, we shall take into account 
the effect of two- and three-photon absorption on the 
propagation of focused beams in a medium with Kerr 
nonlinearity. 

Let us consider the propagation of an axially symmetric 
light beam in a medium whose refractive index is given 
by (1). Then in cylindrical coordinates, the parabolic 
equation for the complex amplitude E has the form 

iJ'E 1 iJE f)E n,IEI'E 
~~ + ~_ +2ik- H' =0 (2) 

dr' I' ar az 1+IEI'/IExl' • 

in which k = 21T /A, where A = 21Tc/wno is the wavelength of 
the light in the medium, w being the frequency of the light 
wave. We write the boundary condition at z = 0 in the 
form 

E I ,~o=E, exp (~r'/2a'). 

this corresponds to a parallel Gaussian beam with the 
intensity concentrated in a cylinder of mean radius a 
incident from the region z < 0 onto the boundary2) at 

(3) 

z = O. Introducing the dimensionless variable X = E/Eo, 
we obtain the following equation for X: 

a'x 1 ax ax N'IXI'X 
-~+~-+2iN- + -~- ,~o 
aI',' 1', aI', az, 1+~IXI' 

(4) 

with the boundary condition 
XI ,,~o=exp (~I;'r,'). (5) 

Equation (4) with the boundary condition (5) was solved 
numerically with a BESM - 6 computer, using an im-
plicit difference scheme similar to the one employed in [1]. 
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As an example, we present the solution to this problem 
for N = 6, which corresponds to an incident beam power 
Po equal to ten times the critical value P::~, and for 
(3 = 0.01, which corresponds to a value of about 1/30 (see 
below) for the ratio of the diameters of the focal regions 
to the diameter of the incident beam (under typical ex­
perimental conditions, this ratio ranges from about 
1/100 to 1/30). This solution is presented in Fig. 1 as a 
family of curves giving IXl 2 as a function of ZI for var­
ious values of rl (rl = k/1S, with k = 0, 1, ... ,9). Each 
curve has been drawn to its own scale, th e several scales 
being so chosen as to reveal the over-all pattern most 
clearly. The lowest curve corresponds to rl = 0, i.e., 
it shows the axial intensity. We see that the axial inten­
sity, as a function of ZI, has a number of sharp peaks, 
which correspond to a series of separate focal regions 
on the beam axis. The curves for rl f 0 reflect the pro­
cess by which the foci are formed and the process by 
which the waves continue their propagation after passing 
through a focus (these processes are indicated sche­
matically on Fig. 1 by dashed lines). We see that the 
waves that have passed through a focus leave the region 
of the initial beam on nearly straight trajectories. 

We can judge the structure of the focal regions from 
the behavior of Ixl 2 as a function of rl in the sections 
Zl = zft> zf2' zrs, ... , where zfm is the coordinate of the 
point at which Ixl 2 reaches its maximum in the m-th 
focal region (we shall denote the value of Ixl 2 at the 
center of the focal region, i.e., at the point ZI = zfm, 
rl = 0, by IXfmI2). The Ixl 2 versus rl curves for the 
first three foci are presented in Fig. 2. These curves 
show that the ratio of the diameter of a focal region to 
the diameter of the initial beam is of the order of 1/30 
for this example. On calculating the power Pfm flowin~ 
through the individual focal regions much as we did in 31, 
we obtained the following results: 

PJI',,,1.8Pc;O, Pf2,,"2.4P~:), Pf3,,"2.5Pc~), Pf4,,"2.1P~:), Pf5,,"1.2Pc~o. 

Since Po ~ lOP ~i, it is evident that only part of the 
initial beam power Po flows through anyone of the focal 
regions; the rest of the power is carried by the part of 
the beam that bypasses the focal region in question and 
later forms the subsequent foci. Qualitatively, there­
fore, the present solution represents the multifocus 
structure predicted in [II. We note that the inequality 
IEfm 12/IEx I2 == IXfml2 > 1 is satisfied for all the foci 
examined; this means that on approaching any of the 
foci, the intensity at the beam axis continues to increase 
until appreciable deviations from the weak-field Kerr 
nonlinearity of the medium have arisen3). 

A quantitative comparison of the multifocus structure 
obtained with allowance for the attenuation of the Kerr 
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FIG. I. A family of curves (drawn to different scales) showing the de­

pendence on the longitudinal coordinate z, of the intensity ( 1 X 12) of a 
beam at various distances r from the axis propagating in a Kerr medium 
for the case of an initially parallel beam (Le., a beam that is parallel on 
entering the medium) and attenuation of the nonlinearity of the medium 
in strong fields. The numbers at the curves give the values of k = 18r/a, 
where a is the diameter of the beam on entering the medium. 
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nonlinearity of the medium in the absence of absorption 
with the structure obtained in the opposite case (i.e., 
with allowance for the nonlinear absorption by the med­
ium in the absence of attenuation of the Kerr nonlinearity) 
would be of interest. First, we note that in the second 
case, according to[31, the power Pfm flowing through any 
of the focal regions is ~ (2/3)P6't, i.e., it is smaller 
than the values given above for the first case. There 
are also quantitative differences between the two cases 
in the longitudinal structure of the focal regions. Ac­
cording to the bottom curve on Fig. 1, the Zl dependence 
of IXl 2 in the vicinity of any of the foci is more sym­
metric about the corresponding focal point ZI = zfm than 
in the case of nonlinear absorption (see[31). To show the 
behavior of the field off the axis, we present in Fig. 3 
(which is to be compared with Fig. 1) a family of curves 
showing the ZI dependence of Ixl 2 for the values rl = k/1S 
(k = 1, 2, ... ,9) for the case of three-photon absorption 
in a medium having Kerr nonlinearity. The curves were 
calculated for the case in which Po/P bi ::,j 10 and the 
ratio of the diameters of the focal regions to the 
diameter of the initial beam is approximately 1/60 (in 
the notation of[3l, this corresponds to the parameter 
values N = 6 and Ji.4 = 0.05). The dashed curves on Fig. 
3, like those on Fig. 1, indicate schematically the pro­
cesses by which the foci are formed and the annular 
waves leave them. It will be seen that there are quan­
titative differences between the two cases being com­
pared as regards the relative positions of the foci on the 
beam axis and the interference of the waves that have 
passed through a focus with the "fresh" parts of the 
beam (i.e., the parts that have bypassed the foci). 

Let us consider briefly the case in which nonlinear 
absorption and attenuation of the Kerr nonlinearity are 
both taken into account. Limiting ourselves for definite­
ness to the model defined by Eq. (1) as supplemented 
with two- and three-photon absorption, we obtain the 
following expression for the refractive index: 

'!,non,IEI' 1 ,. , . , 
n=no+ HIEI'!IE%I' +--zno[(n, +lm,) lEI + (n,+lm.) lEI ), 

where m2 and m4 are real coefficients that specify the 
two- and three-photon absorption, respectively, while 
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FIG. 2. Radial distribution of the intensity in the central cross sections 
of the first three focal regions for the case depicted in Fig. I (r, = ria). 
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FIG. 3. The same as Fig. I but for the case of three-photon absorption 
by the medium. 
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the coefficients n~ and n4 specify the changes in the real 
part of the refractive index associated with these types 
of absorption. Since the energy levels are usually sub­
stantially broadened in liquids and solids, we must have 
In~1 < m2 and In41 < m4 in Eq. (6). As was shown in(3), 
when 1/1Ex l2 = n~ = n4 = m2 = 0, we have m41Efmr 
s 0.15n2, where the IEfml2 are the values of lEI at the 
centers of the focal regions. Further, when 1/1 Exl2 
= n~ = n4 = m4 = 0, a well developed multifocus structure 
arises if m2 s 0.15n2' Therefore, we can approximate 
Eq. (6) (when IEfml2 <<- IEx I2, for example) by the 
equation 

n=n.+ i;~~~'(~~~~:~:'~~') ++n.(m,IEI'+m,IEI'), (7) 

in which In:fl < 0.15n2 and In41/n2 < 0.15/IEfmI2. 

Thus, to take into account the corrections n2 and n4 
in (7) we need merely make the follOwing substitutions 
in (6): n2 - n2 + n2 and 1/1Ex l 2 - 1/1Ex l2 - n4/n2; more­
over, the inequality IEfmI2« IEx l2 is still valid for new 
value of I Ex12. From this it is evident (see footnote 3) 
that the correction to the real part of the refractive 
index due to three-photon absorption can lead only to 
small quantitative changes in the beam propagation 
pattern. As to the correction to the real part of the re­
fractive index due to two-photon absorption, according 
to (7) it c3.l\ lead only to a redefinition of the critical 
values P~Z::) of the beam power and in this sense cannot 
change the propagation pattern under consideration even 
quantitatively (that is why these corrections were not 
taken into account in [3). We made direct numerical 
calculations taking the corrections for three-photon ab­
sorption into account, and these calculations showed that 
the changes in the beam propagation pattern due to these 
corrections are indeed purely quantitative and, more­
over, are small; for example, when In41 s m4, the 
diameters of the focal regions are seldom changed by 
more than 15%. We also note that these numerical 
examples confirm the conclusion, which is evident from 
what has been said above, that the propagation pattern 
for a light beam in a medium having Kerr nonlinearity 
also has a multifocus structure when nonlinear absorp­
tion and attenuation of the Kerr nonlinearity in strong 
fields are both taken into account. 

Now let us consider a focused Gaussian beam in­
cident on the boundary z = 0 of a nonlinear medium. For 
such a beam the boundary condition takes the form 

( r' ikr') 
EI.=.=Eo,exp .-U-2R . (8) 

Here a is the radius of the beam as it enters the non­
linear medium, and R is the axial (z) coordinate of the 
focal point that the beam would reach in the medium if 
there were no nonlinearity. We have previously pub­
lished the solution to this problem for the case of a 
medium having Kerr nonlinearity and negligible ab­
sorption ell]; this solution shows that a focused beam also 
acquires a multifocus structure. Here we present the 
solution to this problem for the case of a medium having 
two- and three-photon absorption and attenuation of the 
Kerr nonlinearity, i.e., for a medium having the re­
fractive index (6) (for Simplicity we set n2 = n4 = 0 at 
once). IntrodUCing the dimensionless quantities 

EN -- ka' r 
X=--, N=Eo'ln,(ka)', v=-R' r,=--, 

Eo v a 
Z ,,2 _ mzv2 

~'=R' ~= IE.I'n,(ka)" fL'=--;;;:-, 
m.:v" 

fl,= n,'(ka)' 

we obtain the follOwing equation for X: 
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{J'X 1 {JX {JX (V'IXI' ) --+--+2iv-+ ---I-+ifl,IXI'+iP"IXI' X=O 
{Jr,' r, {Jr, {Jz, i+~IX ' (9) 

with the boundary condition 

XI,,=.= ~ exp [-+(1+iv)r,,]. (10) 

Let us first consider the case of two-photon absorp­
tion (~ = fJ.4 = 0, J1.2 '" 0). As an example, the solution to 
(9) under the boundary condition (10) for N = 3, II = 4, 
and ~2 = 0.45 is presented in Fig. 4 as a family of curves 
shOwing IxI 2 as a function of Zl for the values r1 = k/18 
(k = 1, 2, ''', 9). In this example there is evidently just 
one definite focus, which lies in the region Zl < 1 (i.e., 
in the region z < R). The quantity F == 112IxI 2/N2 has the 
value F1 ~ 3000a at the center of this focal region. There 
is no corresponding focus in the region Zl > 1; there 
the beam simply diverges, exhibiting no noticeable 
features. This result differs from the conclusion drawn 
in[12] that each focus in the region 0.5R < z < R has a 
corresponding focus in the region z > R. The error in (12) 
was explained in (13]: the solution found in (12) is discon­
tinuous on the plane z = R. According to[ll), subsequent 
foci of the multifocus structure will appear only when 
the initial power in the beam (or, what amounts to the 
same thing, N) is increased (the incipient formation of 
a second focus can be seen in Fig. 4; this focus also lies 
in the region Zl < 1). 

Now let us consider the case of three-photon absorp­
tion (j3 = }J.2 = 0, J1.4 '" 0). As an example we present the 
solution for N = 4, II = 1, and fJ.4 = 3 X 10-4 in Fig. 5, 
which shows the IXI 2 versus Zl curves for r1 = k/18 
(k = 1, 2, ... ,9). In this case the multifocus structure 
has two definite foci. The quantity F has the values 
F, ~ 62 and F2 ~ 23 at the centers of the focal regions. 

Finally, let us consider the case in which the Kerr 
nonlinearity of the medium is attenuated in strong fields 
(iJ.2 = /J.4 = 0, ~ '" 0). A family of curves showing IXI 2 as 
a function of Zl at r1 = k/6 (k = 0,1, ... ,9) for the case 
N = 3.5, II = 1, and ~ = 2 X 10-3 is presented in Fig. 6. 
There are four definite focal regions, at the centers of 
which F has the values F1 ~ 71, F2 ~ 77, F3 ~ 49, and 
F4 ~ 30. 

Thus, the results obtained above show that a light 
beam propagating in a medium having Kerr nonlinearity 
develops a multifocus structure even in the presence 
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FIG. 4. The same as Fig. I but for the case of an initially convergent 
beam and two-photon absorption by the medium. 

FIG. 5, The same as Fig. I but for 
the case of an initially convergent beam 
and three-photon absorption by the 
medium. 
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FIG. 6. The same as Fig. I but for the case of an initially convergent 

beam and attenuation of the ponlinearity of the medium. In this figure 
the numbers at the curves give the values of k = 6r/a. 

of diverse processes that may take place in the focal 
regions, regardless of whether these processes affect 
the imaginary part of the refractive index of the medium, 
or its real part. 

I)The refractive index has been written in a similar form before, e.g., in 
[8-10], and 1 Ex 1 has been assumed to be the characteristic saturation 
field of the orientational Kerr effect. It has been shown [3], however, 
that in that case one must ordinarily use Maxwell's equations directly, 
without transforming to the parabolic equation, and this was not taken 
into account in [8 -10]. Since we use the parabolic equation in our cal­
culations, we regard 1 Ex 1 as a formal parameter, which is generally 
somewhat smaller than the characteristic saturation field of the orienta­
tional Kerr effect. Hence, in the subsequent discussions based on (1) we 
are attempting only to obtain a model d'escription of those cases in 
which the attenuation of the Kerr nonlinearity is appreciable when the 
diameters of the focal regions are somewhat larger than the wavelength 
of the light (the parabolic equation is applicable under those conditions), 
disregarding the question of whether such cases can be realized (the 
other studies in which the parabolic equation was used [&-10] do not 
touch upon this question either). 

2)We note that a similar problem has been treated in [&-10]; however, the 
results of numerical calculations presented in those papers, although 
they are consistent with the beam propagation pattern predicted in [I], 
are not complete enough to permit any definite conclusion to be dra wn 
concerning the beam propagation process as a whole. 

3)This result is in conformity with the results obtained in [8-10]. It is also 
evident from this that if the energy density at the focus is so limited by 
some other mechanism that 1 Efm 124; 1 Ex 12, the effect of the attenu-
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ation of the Kerr nonlinearity on the propagation of the beam in the 
medium will be quite negligible. 
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