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The excitation and propagation of acoustic perturbations under the action of electrostriction forces 
and heating of the substance during uniform supersonic motion of light foci of a multifocus structure 
are investigated theoretically. Expressions for the density variation are obtained and the distributions 
of the density and of the sound energy in the medium are investigated on their basis. It is shown, 
in particular, that for the two indicated perturbation mechanisms in the medium the energy 
distributions in the produced sound cone are very different. Conditions for which variation of the 
density of matter in the focal region is close to quasistatic are established for the case of 
electrostriction. It is found that in both cases an anomalous variation of the density in the focal 
region occurs when the focus velocity is close to that of sound. The contribution of heating and 
striction to nonlinear polarization of the medium under the conditions considered is estimated. 

Most papers on the propagation of intense light beams 
in material media consider the Kerr (or a near-Kerr) 
nonlinearity of the medium, (see the review[l]). Such 
processes as heating and electrostriction do not make 
an appreciable contribution to the nonlinearity of the 
medium at the usual parameters of the light beams, with 
corresponding pulse durations T ::. 10-8 sec. However, 
upon formation of a multifocus structure of the light 
beam ,l2] the relative contribution of these processes to 
the total nonlinearity can increase considerably, due to 
the nonlinear (and large) light absorption in the focal 
regions of the multifocus structure, and as a conse­
quence of sufficiently small value of the diameters of 
these regions. In particular, according toll], the heating 
of the medium in the focal regions can in some cases 
lead to the disappearance of the multifocus structure 
that was originally formed, and, by the same token, 
significantly affect the character of beam propagation 
in the medium. Electrostriction can also make a sig­
nificant contribution to the nonlinearity in solid dielec­
trics for pulse lengths T;S 10-7 sec (seeP]). Both of 
these forms of nonlinearity are directly connected with 
the redistribution of the density of the medium by means 
of sound perturbations in the medium. The present 
paper is devoted to theoretical investigation of the 
density perturbations of the medium under the influence 
of heating and electrostriction in the focal regions of a 
multifocus light-beam structure. For pulse lengths 
T :s 10-7_10-8 sec in previously focused beams, typical 
values of the velocities of the focuses of the multifocus 
structure amount to vph - 107_10 8 cm-sec- l. For 
parallel incident beams and pulse lengths T ::s 10-8 sec, 
the values of Vcp can be greater than or of the order of 
109 cm-sec-lp] Thus, perturbations in the density of 
the medium take place under the action of sources mov­
ing with supersonic speed. 

We now consider the formation and propagation of a 
sound wave arising as a result of heating and strictive 
compression for uniform motion of the focus with super­
sonic speed in an unbounded medium, assuming that the 
field in the focal region is given in this case. The equa­
tion for the departure of the density p in the sound field 
from its equilibrium value po in a light field has, in the 
hydrodynamic approximation, the form 

a'p._Ll[v'p+r~]= __ 1_(~) poLlIEI'+(~) LlS, (1) 
at' at 8:Jt ap T as p 

where v is the sound velocity in the medium, r the 
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damping coefficient for sound, S the perturbation of the 
entropy of the medium, E the complex amplitude of os­
cillation of the field. We shall assume that the heating 
of the medium, and therefore the change in the entropy, 
take place due to the multi photon absorption of arbi­
trary order n. Then, neglecting the thermal conduc-
ti vity, we can write for the change in the entropy per 
unit mass l) 

as IEl'n 
PoT0""Ot= 1]n~. (2) 

Here To is the equilibrium value of the temperature of 
the medium and 1/n \ E \ 2n / 87T is the energy diSSipated 
in the medium per unit time for n-photon absorption. 

For calculation of the basic features of the con­
sidered process, we approximate the intensity distribu­
tion in the focal region in the following way: 

lEI ' go, (4 rJ..') 1 
=(Q 0 exp - - , ' 

dpl. 1+4(z+Vph t )'llph 
(3) 

where r 1 = fX.Z+Y2. The expression that has been 
written down corresponds to the equilibrium (supersonic 
for vph > v) motion of the focus along the z axis. 

Equations (1)-(3) form a closed system, which de­
scribes the process of sound propagation in an unbounded 
medium. For solution of the given equations, we make a 
Fourier transformation of the Quantities in z and t that 
appear in them. We then get the following equation for 
the corresponding Fourier transform p of the departure 
of the density from equilibrium in the two remaining 
variables x, y: 

(-v'+ik,f) Ll""p+ (k,'v'-k,'-ik,k,'r) p=lll(x, y), (4) 

where 

III (,x, y) = { Yp(1) feo' (Ll •• -k.') exp ( -4 ~::) exp ( - It I k, I ) 

+ ki Yp~') feo'n (!1",,-k.') exp (-4 nr.L',) 
, dph (5) 

x (-1) n_1 [ dn- I exp (-p(phl k,1/2) ] } 2 

(n-1)! dpn 1 (Hp)n '_I:Jt Iphll(k,-k,Vph); 

(1) 1 ( ae ) Yp =---, - po, 
8:Jt ap T 

y(2) _( ap) 1]n 
pn - as p 8npoTo . 

Equation (4) is an inhomogeneous equation of second 
order. The Green's function G(x, y) of this equation 
depends on kt, kz as parameters. We can establish the 
fact that in the case of a vanishingly small damping 
r - 0 (to which we shall restrict ourselves in what 
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follows) G(x, y) is represented in the form 

G(x,y)= 
(6) 

(here the roots are taken in the arithmetic sense.) The 
solution of (4) is obtained by convolution of q,(x, y) with 
the Green's function (6): 

p= SSG (x-x', y-y')ID(x', y')dx' dy'. (7 ) 

The calculation of (6) and the subsequent inverse Four­
ier transformation in z, t under the conditions 

r .L»dph" (8) 
lph/dph j:(vph'/v'-1) 'I. (for striction), 

lph/dph»n- ' (vph'iv'-1) 'I, (for n-photon absorption) (9) 

are given in the Appendix. The final expression for P 
(including thermal and striction parts) has the form 

P=_ y(i)/!l' lph,dph'vph; {~[Q]_ }+~ Y(')/!l,n. 
n p a 4v' m &lph' P-I, (n-1)! n ,n a 

l h~h'V h [dn -
, 

{ 1 a }] P--'-P Re __ _____ Q 
8v'n dpn-. p{1+p)' alph P_.' 

(10) 

where 
1 [2i-] Q= , [HA']-'I. 1--ln(AH'HA') • 

r.L (Vph'/v'-1) I. n 

A--= plph/2+ i (Z+Vpht ) 
r.L(vph'lv'-1) 'I, • 

(11) 

Here the branch of the square root is fixed by the condi­
tion ~ 1 = 1 and the cut of the plane of complex values of 
1 + r2 is made along the negative real semiaxis. 

We note immediately that, although the above equa­
tion formally describes the density perturbation through­
out the space, it guarantees the correct value for p only 
in the region variables z, t, r1 that satisfy the inequality 

(12) 

inasmuch as the integrands in (20) oscillate rapidly out­
side this region over the interval of integration, and 
require more exact description. At the same time, the 
quantity p takes on maximum values (imn) in the 
region of (12), because of the smoothness of the inte­
grand functions. We also note that as vph - v, as is 
not difficult to see from (10), (11), p - 00 and, conse­
quently, the initial, linearized equation (1) becomes in­
applicable. PhYSically, such a divergence can mean, for 
example, the formation of a shock. Thus, the solution of 
(10), (11) is valid only for not too small a value of Vph/V 
- 1, which limitation we shall assume satisfied in the 
following. 

We now consider the properties of the resultant solu­
tion. It follows from (10), (11) that the density pertur­
bation differs from zero at all points in space. This is 
evidently associated with the fact that the electromag­
netic field is itself distributed over the entire space. At 
the same time, according to (3), the major fraction of 
the electromagnetic energy is concentrated within the 
focal region, as a consequence of which there is a 
sharply expressed sound cone behind the moving focus 
in the perturbation distribution. 

702 SOy. Phys.·JETP, Vol. 38, No.4, April 197~ 

For convenience, we introduce the variables 

e= arctg __ r.L_ 
Z+Vpht ' 

of a spherical set of coordinates with origin at the cen­
ter of the moving focus and consider separately the per­
turbations due to thermal heating and to striction. As is 
seen from (10), (11), p, as a function of (J, has a sharp 
peak in both cases in the region2) (J "" (Jac, where (Jac 
"" arc cot (Vph / v2 - 1)1/2, as was to be expected. The 
maximum value of p in this range of angles depends on 
r and is given by the following expressions: 

p""_~ Y!~ /!lo'n Iphdph~Vph 1 
n 8v' l~j,(Z+VPht) 'I, 

(13) 

for thermal heating, and 
_ y(i) '" , lphdpifvpff 

p--n , "'a "':-::":--':-~:~,:-:--,----:~ 
4v' lp~'(Z+Vpht)'/" 

(13' ) 

for striction. The characteristic radius of the decrease 
in the density ~r 1 in a cross section, perpendicular to 
the z axis, is constant along the generatrix of the cone 
and is equal in order of magnitude t0 3) 

A ~_l"-Ph_...,, 
LlrJ.,"" ,-

(Vph'/v'-1) 'I, 
(14) 

It also follows from (13), (13') that the greatest en­
ergy density Eac of the sound wave is reached in the 
region defined by the expression (12), i.e., near (Jac, 
while in the case of thermal heating Eac falls off with 
the distance z + vqJt from the focus as 1/( z + vpht), 
and in the case of striction as 1/(z + vpht)s. Thus, in 
the first case the energy of the sound perturbation in 
the medium grows linearly with increase in the distance 
z + vpht from the focus, while in the second the total 
energy is concentrated in the focal region. 

The results given above describe the picture of the 
propagation of a sound wave at large distances (see (8» 
from the region of the light focus. We now investigate 
the departure of the density inside the focal region, and 
for simplicity consider the perturbation on the axis of 
the focus (r 1 = 0), where it evidently assumes its maxi­
mum values. Upon satisfaction of the condition (9) for 
r 1 = 0, the Hankel function H\/) (x) in the integral (20) 
can be replaced by its expansion for x - 0, with ac­
curacy up to terms of order X4 In x. Then we find for 
the departure of the density PT due to heating, at arbi­
trary z + vqJt (r1 = 0), 

_ y,~') 'n lph [ 2(Z+VPht)] y;:) 'n 
PT----/!lO -- 2arctg---+n +--/!lo . 

n 8VphV' lph n 

dph'lphI { 1 [c 2+21 4 (lpw2+ i (Z+Vpht ) )]} 
X 8V'Vph m [lpw2+ i (z+vpht )]' - n d ph(Vph'/V'-1)'" ' (15) 

y(') d 'l 
+ -"-/!lo'" ph ph Re . 

n 4V'V ph [lph/2+i(z+Vpht)]' 

As is not difficult to see, the term ~ln[2lph/dph(Vph/V2 
- 1)1/2], which corresponds to the logarithmic term of 
the expansion of the Hankel function, diverges as Vph 
- v. Thus, this term is greatest for a velocity of the 
focus close to the sound velocity and determines the 
anomalous increase (in absolute value) of the density at 
the edges of the focal region; here the distribution of 
P T is antisymmetric relative to the center of the focus. 
If the velocity of the focus is appreciably greater than 
the sound velocity, the first term in (15) is determina­
ti ve. Accordingly, the value of the denSity departure 
PT changes monotonically from zero to the limiting 
(as z + vpht - + 00) value 
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2 1 y('l IS 'nl /8 ' px=- n--; pn 0 ph VphV. 

The last term in (15) determines only a small correc­
tion to the terms considered and, as follows from (13), 
(13'), a sound cone develops in the same order of small­
ness as this term. 

In the case of striction, calculation of the integral 
(20) with use of a similar expansion of the Hankel func­
tion leads to the following expression for the density 
perturbation Pstr: 

(16) 

The first term 

stat_( ae ) lEI' 
Pstr- ap x po 8nv' 

determines the "static" (vanishing in the limit 
dphVph/ZphV - 0) striction change in the density. 
Thanks to the symmetric distribution of the light inten­
sity (with respect to z + vpht), P~t~t also turns out to be 

symmetric in this variable in the focal region (relative 
to its center). The dynamic part of the perturbation, 
which is associated with the movement of the focus, is 

the sum of the two terms p~r~.s and P~rta' The first 
term pdyn is symmetric in z + vpht relative to the str.s 
center of the focus and has the form 

dyn _ y (1) IS ' lphdph Vph 
Pstr .• - p 0 32;;'-' 

x 2Re { 1 [3_C_In4-"(7-1p:;..W,.-2+-:-i(--:Z+,.-V...!.p""I.t.;-;»]} 
[lpw2+i(z+/JpJll)]' dph(Vp~/v'-1)"" 

(17) 

It then follows that, as in the case of thermal heating, 
an anomalous increase occurs in the density Pstr at a 
velocity of the focus close to the sound velocity. How­
ever, in contrast to PT, this increase is concentrated 
at the very center of the focal region. Here the term 
p~r~ is large in comparison with the static perturbation 

p~~t. In the case of a significant excess of the velocity 

of the focus over the sound velocity, the principal con­
tribution to Pstr is made by the first term p~I~t. The 
last term pdtyn determines the antisymmetric part of s r.a 
the strictive perturbation of the density, and makes a 
small correction to the first two terms: 

dyn __ y (I',., ,lphdph'VphI' 1 
Pstr.&- .1t p COo --- m • 

16v' [lph/2+i(z+UPht) l' 
(18) 

As is seen, the sound cone ~see (13)) has the same order 
of smallness as the term psf~.a' 

We note that the anomalous change in the density p 
in the focal region for vph - v that has been consid­
ered above takes place without restriction as to its 
absolute value within the framework of the approxima­
tions used for both forms of the perturbations. In this 
connection, we direct attention to the possibility of 
fractures in solids on passage of the velocity of the focus 
through the sound velocity. We also note that a similar 
anomalous increase can also develop in the self-con­
sistent propagation of light in a medium with a strictive 
nonlinearity. 

Expressions (15), (16) allow us to estimate the con­
tribution of thermal heating and striction to the non­
linear polarization of the material in the focal regions, 
and thus establish the limits of applicability of the 
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theory of propagation of light beams in a medium with­
out account of the reciprocal effect of the given mecha­
nisms on the field distribution of the beam. According 
to (15), for an appreciable excess of the velOCity of the 
focus over the sound velocity, the maximum value of 
the increment to the dielectric permittivity of the 
material Enz '" (a d ap)s p in the case of thermal heating 
can be conveniently written in the form 

Enl x", (~) (~) _1_~_1_lSo' (19) 
ap s as p PoTo32vphV' non ' 

where 

characterizes the relative fraction of the light power 
transformed into thermal power over the length of the 
focus, c/no is the light velocity in the medium. Under 
the usual conditions, for Single-photon absorption at a 
focus length Zph ~ 10-1 cm, K has a value of the order 
of 10- 3 inliquids. Then, for EJz at the values v "" 3 
X 10 5 cm/sec that are typical tor liquids, 

( aE ) ( ap ) 1 - po'" 1 - --"'2 
op s ' as p PoTo ' 

and values of vep ~ 107 cm-sec-\ we obtain EJ; ~ 2 
X 10-11 IS~. Thus we see that for velocities v h :s 107 

cm-sec-\ the quantity E~ can be comparabfe with the 

Kerr nonlinearity (E~err ~ 10- 11_10- 12 IS~). With in­

crease in the intensity of the light beam, E~ can in­
crease due to multiphoton processes and make a signif­
icant contribution to the total nonlinear polarization of 
the medium for higher values of the velocities of motion 
of the focus. 

In the stricti on case, the nonlinear increment is 

st, ( aE) (ae) lEI' Enl'" - - po--,"" to-"IEI' ap s ap x 8nu 

and thus usually E~frr » E~r for liquids. In solids, 

where E~err, is usually much smaller than in liquids, 
the striction increment E~r can have a Significant ef­

fect on the total nonlinear polarization of the material. 

In conclusion, we make a few remarks concerning 
the propagation of light in media with a striction non­
linearity. As follows from (16)- (18), we can neglect 
the dynamic terms for dcpvcp/Zcpv « 1, and assume 

stat (ae) lEI' 
Pstr=Pstr= ap T PO 8:rw" 

In this case, the form of the nonlinearity of the medium 
in the vicinity of the focus 

enl=(~) (!..::...) po~ 
Jp s Jp x 8nv 

is identical with the form of the usual Kerr nonlinearity. 
It was shown in[2,6] that the propagation of a light beam 
in a medium with a Kerr nonlinearity is accompanied 
by a significant change in its initial transverse distri­
bution, with development of multifocus structure at 
supercritical power in the beam. This circumstance, 
however, was not taken into account in the work of 
Ke rr, [3] whe re it was ass umed that the light beam 
keeps its initial Gaussian form during propagation in 
the nonlinear medium considered. 

The authors thank A. M. Prokhorov for interest in 
the work. 
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APPENDIX 

The expression (7), which was written down with 
account of (5) and (6) and the subsequent Fourier trans­
formation mentioned in the text, has the form 

_ i (I) 2 sOO {lPh. } 
p- 16v'Yp ~olPh exp' -Zik,i-lk,(z+Vpht ) 

OOs's" (I) ( (V h' ) 'f, 4r " x Ho k, --¥-,-1 Ir-L-r.c'I)exp'(-~\ 
00 v dph 7 

x - _-L __ 1 -k' r' dr' dmdk +_-__ ~ y(2)., 2n [ 16 (4r'2 (1)n l-
2 ~ z..L.l.. 't' l - pn (!) 0 

. dph dph ' )] (n-1)! 16vph: V' (20) 

x j exp{-ik,(z+Vpht)) dn - ' [eXP(-Plph lk,I/2)] 
_~ k, dpn-, (1+p)n p_1 

GO 2:n; z 1/ 

X S S Ho(l) (k' (~Ph. ~1 ) 'I'-L -'-L'I) exp ( -4n r-L\) 
o 0 v dph 

[ 1Sn(4r "n ) ] x d-' ---f-.:--1 -k.' r-L'dr/dcpdk,. 
ph ph 

Here the contour of integration over kz lies on the real 
axis, and on transition through the point kz = 0 passes 
into the upper half-plane of complex kz . It is not diffi­
cul( to see that the second integral in (20) is obtained 
from the first by replacing dph by dph/n and lph by plph 
with subsequent integration over PlpW2. We therefore 
consider the first term, which corresponds to strictive 
compression, Pstr' 

For calculation of the integral over r~, cp, we use 
the addition theorem for cylindrical functions (see, for 
example, [7]): 

H: ' ) (Mlr-L-r-L'I) =10 (Mr-L') H:!) (Mr-L) 

+2 t 1.(Mr-L')H~1) (Mr-L) cos kcp, r-L>r-L' 
A=1 

(21) 

(for rl < ri, the arguments are exchanged). Inasmuch 
as the principal contribution to the integral over ri in 
(20) is made by the region r~ :s dph' then, for r » dph' 
we can assume r 1 > ri. Then, substituting the expan­
sion (21) in (20) and integrating over r1. cp (here the 
terms with cos kcp vanish), we obtain 

(22) 

{ lph . t {dPh' (VPh' )}] x exp --lk,l-ik,(z+Vpht)' exp -- k.' - -1 dk,. 
2 10 ' v' 

The last integral is easily computed for the condition 
(9), in which we can set 
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exp {-k"dph2 ( v:;' -1) / 16} = 1. 

in the integrand. As a result of the corresponding cal­
culations, we find 

, =-l't y") ~ 2!Pt{lph'vplir [~Q] 
Pstr p 0 4v' m {}lPh' ' (23) 

where 

[ (
V h' ) ( I ph ) '] ":'f. 

Q= r-e' ~2 -1 + "2 +i(z+vphl ) 
(24) 

x {1- ~ln [IPh/2+i(Z+VPht) + (1 + (lph/2+i(z+Vpht» ') 'f.,]} 
l't r -L (Vph2/V'-1) 'I. r-L' (vph'/v'-1) . 

I)The validity of such an approximation will be seen below from the solu­
tion that is obtained. 

2)We note that such a distribution of the density perturbations cor­
responds to a sound come, which is well known in hydrodynamics (see, 
for example, [5), and to the distribution of the electromagnetic field 
in Cerenkov radiation in electrodynamics. The specifics of the case con­
sidered here lie in the fact that the source of the perturbations is'dis­
tributed in space and its supersonic motion is generally not accompanied 
by the formation of a shock wave in this case. 

3llt foIlows from (14) and (9) that the minimum value of ~lis of the 
order of dph. For trpical media and laser pulse lengths T:S 10-8 sec" 
the condition Vphdph/1ph X> I (X is the coefficient of temperature con­
ductivity) is satisfied with a reserve of several orders of magnitude, and' 
consequently, the above neglect of thermal conductivity is valid, 
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