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An exact solutio~ is obtained to the problem of the conversion of an electromagnetic wave into an 
acoustic wave in a metal located in a magnetic field H parallel to the metal surface. It is shown 
that the sound amplitude is an oscillating function of H -I, the oscillations being due to the 
deformation mechanism of the electron-lattice interaction. The period and phase of the oscillations do 
not depend on the nature of electron reflection from the boundary of the sample. The oscillation 
amplitude in the case of specular reflection of the electrons from the surface is (q Do )1/2 » I times 
smaller than the oscillation amplitude in the case of diffuse scattering (q is the acoustic wave vector 
and Do is the maximum electron-orbit diameter). 

1. The electromagnetic excitation of sound in metals 
in the absence of a magnetic field has been experimentally 
and theoretically well investigated. The excitation in the 
presence of a constant magnetic field H has been in­
vestigated mainly for the case when the vector H is 
parallel to the direction of propa~ation of the wave[1-31. 
Wallace, Gaerttner, and Maxfield 21 found that in potas­
sium single crystals at low temperatures the amplitude 
u of the excited transverse wave nonmonotonically de­
pends on H in the region of field intensities where 
qR - 1 (R is the cyclotron electron radius and q is 
the acoustic wave vector). A theoretical explanation 
of this effect for the alkaline metals is given in [41, 
and consists in the following. The generation of sound 
by an electromagnetic wave incident on the surface of a 
metal is due to forces exerted by the conduction elec­
trons on the lattice. In a magnetic field there arise the 
competing forces: the Lorentz force and the deforma­
tion force connected with the interaction of the electrons 
with the acoustic vibrations. Allowance for only the 
Lorentz force leads to the linear dependence of the wave 
amplitude on the magnetic field H; the displacement vec­
tor U is then perpendicular to the external electric field 
Eo. Such a picture obtains only in the region of strong 
magnetic fields when qR« 1. In weaker fields the de­
formation force is comparable to the Lorentz force and 
is described by a nonmonotonic function of H that at­
tains its extremum values in the vicinity of qR - 1. Ow­
ing to the deformation mechanism of the electron-lattice 
interaction, waves of both polarizations-along and per­
pendicular to the vector Eo-are excited. 

The electromagnetic excitation of sound in a mag­
netic field parallel to the sample surface has been ex­
perimentally investigated by Gaerttner and Maxfield[51. 
In this geometry, there is observed an oscillating de­
pendence of the amplitude of the transverse sound on 
H in the region of magnetic field intensities where the 
inequalities 

Q<qv, qR::bl 

(1.1) 

(1.2) 

are fulfilled (w is the frequency of the external wave, 
v is the electron-scatterer collision rate, and v and n 
are the velocity and cyclotron frequency of the electrons). 
As in the case of geometrical resonance in sound ab­
sorption, the period of the oscillations is inversely pro­
portional to the magnitude H of the field. This effect is 
qualitatively explained in Babkin and Kravchenko's 
paper [61. It is of interest to solve the exact problem of 
the conversion of an electromagnetic wave into an acous­
tic wave with allowance for the nature of electron scat­
tering by the metal surface. 
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Because of the high electrical conductivity, an elec­
tromagnetic wave in a metal is localized near a surface 
layer of thickness o. In a magnetic field, the periodic 
motion of the electrons and their resonant interaction 
with the wave in the skin layer lead to an anomalous 
penetration [71. In the low-frequency region (1.1), when 
the magnetic field is parallel to the surface, the ampli­
tude of the bursts is small and their partiCipation in the 
sound excitation is unimportant. The skin effect can be 
regarded as the result of the propagation in the metal of 
a large number of plane waves with different wave num­
bers k (.:lk- 0-1). The conversion by electrons of an 
electromagnetic wave into an acoustic wave occurs only 
for that harmonic whose wave vector satisfies the dis­
persion relation k = wi s == q (s is the speed of sound). In 
the linear approximation, the amplitude of the excited 
acoustic wave is proportional to the amplitude of the in­
cident electromagnetic wave. The conversion coefficient 
depends in a complicated manner on the magnetic field. 
If the excitation occurs through the induction mechanism, 
then the conversion coefficient is described by a mono­
tonic function of H. The oscillations in the amplitude of 
the sound are connected with the deformation force, 
which is the oscillating function qDo(H) (Do is the max­
imum electron-orbit diameter). Like the field bursts, 
they are due to the resonant interaction with the wave of 
the distinct group of electrons which move almost paral­
lel to the surface and belong to the extremum cross sec­
tions of the Fermi surface. 

2. The complete system of equations describing the 
propagation of electromagnetic and acoustic waves in a 
metal consists of the Maxwell equations, the linearized 
kinetic equation for conduction electrons, and the equa­
tions for the lattice vibrations: 

i1'E(z) 4niCil . a;z= ----;;>1 (z), (2.1) 

ax ax { 1.} 
(v-iCil)X+V,-+Q-a" "=e E(z)+-[uH] v+A.,(p)u,.(z)-g(p,z), 

az 't c (2.2)* 

a'UI {} 
pii.=I..'ul az' + f;{z) + a;-tp,(z). (2.3) 

We choose the system of coordinates such that the z 
axis is directed along the normal to the surface of the 
metal, which fills the halfspace z >0; the vector q is 
parallel to the z axis, and the vector H to the x axis. 
We introduce the following notation: E(z) is the elec­
trical field in the metal; Hz) is the current density, 
which is determined by the nonequilibrium correction to 
the distribution function X: 

j.(o)= (2!~~ J mdp.t d'tv.(1:h(p,z), ;,=0; (2.4) 

where T is the dimensionless time of motion of an 
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electron along its orbit in the magnetic field; e and m 
are the electron charge and mass; v and P are the 
electron velocity and momentum (in a magnetic field 
they are related by the equation of motion dp/ dt 
=ec-1[vxH]); Aik(P)=Aik(-P) is the deformation poten­
tial; p is the density of the metal; Aiklm is the elas­
ticity tensor; fi(Z) is the induction force: 

1 
f<{z) = -liB],; (2.5) 

c 

a<pi(z)/az is the deformation force: 

(2.12) 

Uind=Cq"~:,,Il.f dzj,,(z)cos g,z. (2.13) 
o 

These integrals can be evaluated asymptotically exactly 
for the cases of diffuse (p = 0) and specular (p = 1) re­
flection of electrons from the surface. 

3. To solve the kinetic equation, it is convenient to 
introduce the functions 

'V(z, p)=x(z, p)-x(z, -p), cD(z, p)=x(z, p)+x(z, -pl. 
() ) a 2 S d rh d () () (2.6) 

a;-<P'(z =Tz (2nh)' m Px'j' ,A" p X p,z . It follows from the parity properties of the velocity, 

The boundary conditions for Eqs. (2.1) and (2.3) are energy, and defo7m~tion pote~tial as functions o~ p that 
the conditions of continuity of the tangential components t?e curr.ent densIty ~s determI.ned by an odd-~anty func-
of the alternating electric and magnetic fields and the bon, .whI~e t~e funcb~n <Pi(Z) IS the even-panty part of 
vanishing of the potentials at the free boundary z = O. They the dIstrIbutIOn functIOn X: 

are described by the relation j.(z)= (2:11)' SmdPxtd'tV.(p)'V(z,p), 

"""au, (0) laz+<p;(O) =0. (2.7) 
(3.1) 

The electromagnetic field tends to zero at large dis­
tances (z - 00). The boundary conditions for the kinetic 
equation are determined by the nature of electron re­
flection from the surface: 

O<:;p<:;t, (2.8) 

where p is the specularity coefficient. The role of 
the boundary condition involving r is played by the 
periodicity of X in r with the period 8=m-1aS/aE (S is 
the area of the intersection of the surface E(p) = const 
with the plane Px= const): X(r+ 8) =X(r). 

In the expression for the change g(p, z) in the en­
ergy, only the term containing the electric field should 
be retained (i.e., g = ev . E(z)). The remaining terms 
lead to small corrections proportional to (m7M)1/2 (M is 
the ion mass) and describing the electronic renormali­
zation of the velocity and damping of the sound. In such 
an apprOXimation, the solution of the problem is carried 
out in two stages: the computation of the distribution of 
the electromagnetic field in the metal with the prescribed 
law of electron reflection from the boundary and the so­
lution of the vibrational equations (2.3), in which the 
forces are functionals of the field E(z). Furthermore, 
we can consider the excitation of waves of the same po­
larization. For the longitudinal wave Eq. (2.3) has the 
form 

d'u, _I [ d ] 
dz'+q,'u,=-""" t,(z)+a;-<p,(z) , (2.9) 

while for the transverse wave 

(2.10) 

Here qi = (pw2 Ai~Z/12 is the wave vector of the excited 
acoustic wave. 

Deep inside the metal (Le., as z - 00) only waves 
running from the boundary z = 0 exist. We are interested 
in the value of the function u(z) at the sample surface 
z = d. If the thickness d is considerably greater than the 
sound-attenuation distance and the other parameters • 
which have the dimenSionality of length, then the prob­
lem reduces to that of computing the amplitude: 
lim Ui(Z)=Ui exp(iqiZ). From Eqs. (2.9) and (2.10) we 
z- 00 

find 

<p,(z) = (2nli)-' S m dpx t d't A.,(p) cD (p,z). (3.2) 

The functions lJ1(z, p) and <i>(z, p) satisfy the following 
equations: 

a''V I{)z'-L''V =-2L(glv,), 

1:",V,-' {V-iooHl a: }. 
The boundary condition (2.8) reduces to the form 

(3.3) 

(3.4) 

a 'I' (0, v) = (t-p') -li,(sgn v,[ (Hp') 'V (0, px, v,) -2p'V (0, p., -v,) p. 
{)z 

In finding the function lJ1(z, p) in the case of the 
quadratic isotropic dispersion law, we used the method 
developed in Kaner's paper [8J. The generalization to 
the case of an arbitrary energy spectrum does not con­
tain any fundamental changes. Let us give the results, 
noting that the equations for the functions EQ!(z) and 
lJ1(z) allow us to continue the functions in an even man­
ner into the region z < 0 and to use the Fourier cosine 
transform: 

lfj,(k) =2 S dzE,(z)coskz. 
o 

The solutions for the functions >l1(z, p) and <i>(z, p) are 
of the form 

Here 'Y = (v- iw)/n and X( r) is the root of the equation 
"(t) 

S v,d't,=O; 't-8<t.('t)<'t, t.[t.('t)]='t-8. 

U,=U, def+Uind, U,=U, def, (2.11) The first terms in the curly brackets in (3.5) and (3.6) 
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are the result for the infinite metal. The second terms 
are connected with the presence of the boundary. For 
simplicity, the case of a convex simply-connected Fermi 
surface is considered. The generalization to a more 
complicated surface presents no difficulty. Substituting 
the expressions (3.5) and (3.6) into the formulas (2.12) 
and (2.13), we obtain after some simple transformations 
the expressions 

U ind=-2icH[41tCllA.,,,,q ]-'Ev' (0), (3.7) 

(3.8) 

In the frequency and magnetic-field regions (1.1) and 
(1.2) under consideration, the skin depth /) is consider­
ably smaller than the wavelength A of the sound. There­
fore, in the expression for Uind we have neglected the 
terms q2 ~ y(q) _q2/)2Ey(0)« EY(O). The amplitude Uind 
is a linear function of the magnetic field H, and is not 
sensitive to the nature of electron reflection from the 
boundary. 

According to the condition for resonant interaction, 
the generation of sound is due to the component of the 
electromagnetic field with the wave vector k=q. The 
Fourier component ~ a(k) of the field is the solution of 
the Maxwell equation (2.1) in the Fourier representation. 
The current density ja(k) is related to the field ~ a(k) 
by the following formula: 

• { (0) J- dk. (I) } 1.(k)= O.p (k)~,(k)- T~p(k.)o., (k,k.) . 
• 0 • 

(3.9) 

The tensor Ki/3(q) resulting from the distribution func­
tion of the infinite metal is of the form 

2e f mdp.,f, 
Kip(q)= (21t1l)' J -g-'j' d.A,,(.,pz) 

xj d •• v,( •. )exp[l(',-') lSin[~ ] V,d"]' 
(3.10) 

where a~~(k) is the Fourier transform of the conduc­
tivity operator of the infinite metal: 

k " 
XexP[l(-t·.-.)]cos[ Q f V,d.,]. 

(3.11) 

The form of the functions a~~(k, k1) and Qi/3(k, k1) 
depends on the nature of electron reflection from the 
boundary. Let us consider the two limiting cases: 
a) p = 0, when all the electrons are diffusely scattered 
by the surface, and b) p = 1, when all the electrons are 
s~cularlY reflected from the surface. The tensor 
a~~(k, k1) can be written in the form of integrals: 

(I) smdPz,f, S' k.lv.( •• ) I [kJ" ] 
O.P (k,k.)= -g-'j'd.v.(.)e-" __ d •• -~cos Q, v.d., 

(3.12) 

(l)(kk)_smdPz,f,d k.lv.(.)I J- d -,(.-,) () 
O.P " -. -g- 'j''; 1t~~ , Y e v. Y 

(3.13) 
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Similar expressions can be derived for Qi/3(q, k1). We 
are interested in the values of the integrals (3.10)-(3.13) 
in the magnetic-field region (1.1)-(1.2). In the case of 
low frequencies (w.$ v), the criterion (1.1) corresponds 
to the situation in which the electrons have time to com­
plete at least a few revolutions between collisions. The 
condition (1.2) allows us to use the stationary-phase 
method when evaluating the integrals over T and T1• 

The stationary-phase points are determined by the 
equality 

v.( ';=T).) =0 (fL=1. 2), P.( T).) ""'P. m'n(Pz), P.( T),) ""'P. mu(P.). 

The dominant contribution to the interaction with the 
wave is made by the electrons which move parallel to 
the surface. The integration over Px separates out the 
electrons with the maximum orbit diameters Do (D(Px) 
=(c/eH)[Pymax(Px)-Pymin(Px)]). The electrons of the 
neighboring nonextreme orbits experience the effect of 
the different phases, and their contributions cancel each 
other out. 

In order not to encumber the exposition, let us give 
the results of the computations only for the functions 
a~~(q) and Ki/3(q): 

(0) A., B., sin(qDo+ll) 0., (q)=-+ ( D )'" ' (3.14) 
q q q 0 

( ) _ M" cos (qDo+ll) 
Ki' q -q- (qDo)-'" -. (3.15) 

The tensors Aa/3, Ba/3 and Mij3, which depend on 
the specific form of the dispersion law €(p) , are de­
scribed by the following formulas: 

_ 2e' J m dp. ~v -..:.. (:..cT)c::.').:.:v,~( T)...:::.::..) 
A(l.~=-- -- - , 

(21t1l) 3 1 lv, (T).) I 
,,_t,2 

, .... 
2e 

Mi' = (21t1l)3 (3.16) 

,,.. 
lls; 1/41t sgn D" (pz <x,), 

The conductivity tensor a~~(q) is a sum of two terms, 
the first of which is a monotonic function, while the sec­
ond is an oscillating function of the magnetic field H. The 
presence of the oscillating term leads to a periodic de­
crease of the conductivity, which, as is well known [7J, is 
the cause of the field and current bursts that occur in the 
bulk of the metal. Since the oscillating term contains the 
factor (qDo)-1/2« 1, the amplitude of the bursts is small. 
The sum (3.14) can be regarded as the result of the ex­
pansion of the tensor in powers of the small parameter 
(qDof 1/2. This means that the equation for the field can 
be solved by the method of successive approximations 
after representing ~ a(k) in the following form: ~ a(k) 
= ~ 1a(k) + ~ 2a(k). For the infinite metal the function 
~ 1a(k) of the first approximation is the solution of the 
equation in which the current denSity ja(k) = Aaj3k -1 ~ /3(k); 
in the second approximation ~ 2a(k) is an oscillating 
function with a small amplitude: 1~2al/1 ~wl-(kDor1/2 
«1. 

In contrast to the conductivity, there is in the expres­
sion for the tensor Ki/3 no term that is a monotonic func­
tion of H 1). The leading term in the expansion of the 
function Ki/3(q, H) is a small term of the order of 
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(qDofl/2, and contains an oscillating factor. Therefore, 
for the purpose of the computation, it is sufficient to 
know the first approximation for the field: 6 a(k) '" /5 w(k). 
The expansions of the functions (T~~ and Qii3 are of 
similar nature, and, consequently, only the monotonic 
terms in the expression for the current density should 
be considered. In the case of diffuse reflection (p = 0) 
we obtain: 

Aa~ { 1 S~ dk, ( k )} ia(k)=-Zk l5~(k)-- ~~(k,)", k ' 
:t 0 i 1 

_ 1 M"J~dk''''(k) (..'L){cos(qDJL\) 
U'def---,- -----<9, ,'" 'I 

A'H' 2rrq" k, k, (qD,) , 

cos (lc,D,+!'.) 

(kiD,)'" 

sin[ (q+k,)Do+L\] } 
«q+k,)D,)'" ' 

where I./!(X)=Xl/2(1+xf l (here we have retained the 
dominant terms of the expansions in powers of the 
parameter I'Y 1« 1). 

(3.17) 

(3.18) 

For specular reflection (p = 1) the current density 
ja(k) and the sound amplitude Ui def have the following 
form: 

. A., Ca, "'Soo dk , [1 1] 
1.(k)=~,(k)+k(kDo) (k ,),,' (Ik-k,l)';' - (Hk,)," 8,(k,), 

, (3.19) 

U =_~ {!!:!.;s ( ) cos (qDoH) 
'def ) ~ q (D ) 'I, 

.izzi u q q 0 

N,~ " S·· dk , [1 sgn(q-k,) ] } (3 ) 
+q-(qDo) " 0 k:: (q+kY" + (lq-k,I)" 8,(ktl. .20 

In the formulas (3.19) and (3.20) the integral terms 
are due to the surface electrons. The tensors Cai3 and 
Nii3 are determined in the following fashion: 

C ,;s-~~ l'n S mdp, ~ _ Va(lJl')V,~ 
• (2rrli) , 4 1.l...J [IV,'(!l,)ID,Qj"" 

W=1,2 

(3.21) 

N.,s;_2_e_l';-s mdp. ~ A..(lJ")v,_(~)sign~~. 
, (2nli)' 4 1 ~2 [Iv: (11,) lDoQ]'" 

For the quadratic, isotropic dispersion law E = p2/2m, 
the expressions for the tensors (3.16) and (3.21) are 
considerably simpler: 

3 Ne' 
A.'=-4 --11." mVl 

3 Ne' 9n 
CYY=T C== mvl 5f'(0.25) , 

,/ 2 Ne 
Cx,=C,x=O, M"=-6,,1I,, V --, 

n 1 
Ne f'(0,25) 

Ni~=6it/jr.Y 1 

1 12nl'rr 

where N is the electron concentration. 

It is not difficult to see that in this case the electro­
magnetic field excites only longitudinal acoustic vibra­
tions. The transverse acoustic wave does not exist in 
the approximation under consideration: Ut- (qDof 3/2 • 

4. Let us use for the solution of the Maxwell equa­
tions for the Fourier component fff a(k) of the field the 
method developed by Hartmann and Luttinger [9J. In 
order not to have to solve a system of integral equations, 
let us in the case of diffuse reflection diagonalize the 
tensor Aai3' This is easily accomplished by rotating the 
axes in the xy plane through the angle (): 

tg 29=2Ax/ (A=-Ayy). 
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In the new system of coordinates the equation for the 
field can be written in the form 

, p, { SOO dk , (k) )} , '(0) k-8,(k)+- 8,(k)- -. '" --- 8,(k, =-2£, , 
k (l nk t kJ 

i=l, 2, p=O. 

Here we have introduced the notation: 

An integral equation with a kernel of the type (4.1) is 
solved with the aid of the Mellin transformation. Its 
solution has the form: 

2E: (0) 1 ';>00 k' 
8,(k)=- tko''']' 2ni,JdZM,(Z) [V>] , 

IJi) = I i3 i 11/3 • The function Mi (z) is regular in the 
vertical strip of the complex plane 

-2.75< Re z<1. 

(4.1) 

(4.2) 

(4.3) 

except at the singular point z =-2. The Singularity of 
Mi(Z) at z =-2 is a simple pole with a residue equal to 
unity. 

The function Mi(Z) is the solution of the difference 
equation: 

M,(z-3)+a,(1--cos- ' nz)M,(z) =0 

(ai = exp[i arg i3il), and is described by the formula 

M,(z) = ~ exp [- Z;21n a,] exp{ I G' (f)dt } / sin ; (z+2), 

~ (4.4) 

G'(z)=-Jt 2z+3cosJtz +V(z)s;Go'(z)+V(z). 
3sin2nz 

The arbitrary periodic function V(z) = V(z + 3n) (n is 
an integer) is chosen such that the function Mi(Z) has the 
requisite analytic properties in the interval (4.3). In 
other words, it should annul those singularities of the 
function G~(z) that arise in the strip (4.3) under con­
sideration. 

Let us substitute the Fourier component fffi(k), (4.2), 
of the field into the formula (3.18) for the sound ampli­
tude. The integration over ki presents no difficulty. The 
second and third terms, which contain rapidly oscillating 
functions under the integral sign, are small compared to 
the first term. We obtain after the integration 

1 ~ M"a" E,' (0) '+Sf~d M, (z) [ q ]' cos (qDo+~) 
u'de[(q)=-.l...J----- z----

A,,,, q [k,f) l' cos nz k") 'I' qDo 
~,$ 0 c-i<:>;> 0 

The asymptotic behavior of the function I Ms(z) I for 
z -- co ensures the uniform convergence of the contour 
integral. This makes possible the computation of the 
asymptotic form of the amplitude Ui def(q) for small q 
in the form of a series-a sum of the residues of the 
integrand. In the magneti~7f~eld region (1.1)-(1.2), the 
acoustic wave vector q« ~S) (this corresponds to the 
condition for the anomalous skin effect, 15« x), and 
therefore we can restrict ourselves to the first terms 
of the series: 

U =_1_ ~ a,.M" E '(0) cos[qDo+L\] {1+0 (_q_)} 
'def A,,...l...J 2~.· (qDo) 'I, k")' 

~=x,y 0 

p=O. 

(4.5) 

The asymptotic form of the field 8 i(q) is computed 
in similar fashion, and takes the form 
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E;' (0) { (q)} (f!i(q)=--~-i-q 1+0 k.") ,p=O. 

5. In the case of specular reflection, it is convenient 
to write the equation for the field in the following form: 

, 4niw (f!.(k). ".S~ dk, 
k(f!,(k)--,-A"-k--!~,(kD,) ~ 
co' 

{ 1 ___ 1_}(f!,(k,) =-2E' (0) =1 (5.1) 
x Ik-k,I'" (k+k,)'''. k " P , 

~,= 1: 4:~ b"b"C." bll=b,,= cos <D, b12=-b2l = sin <D. •. , 
Here ~ is the angle of rotation that diagonalizes the 
tensor Cafj. 

Let us compare in Eq. (5.1) the terms that are due 
to the bulk and surface conductivities. When the condition 
(1.2) is fulfilled, the second term is (kDO)1/2 times smaller 
than the third term, and it can be neglected. This means 
that the dominant contribution to the "skin" current is 
made by the surface electrons whose trajectories lie en­
tirely within the skin layer (slipping electrons). If we 
substitute into Eq. (5.1) the solution obtained under such 
an assumption, then it turns out that it is valid for all k 
satisfying the inequalities D~ 1 «k« Ki, where Ki 

== (CP'Do)2/5ko-1. We are interested in precisely this 
region 

The solution to the integral e~uation (5.1) has been 
obtained by Kaner and Makarov 10J: 

2E' (0) 1 ,+i~ k I 

(f!,(k)=--'-,---. S dtM(t) [-], -2.25<c<0.5, 
Xi 21U c_io; Xi 

[ t+2 ] nt 
M(t)=exp -5-(in-In2n+4 In 0,4) cos Tr(t+1) (5.2) 

xr[- ! (t--} )]r[-! (t-~)], p=1. 

The integrand has poles of order one at tl =-2l (l= 1,2, 
... ) along the left semiaxis and at tm = (1 + 5m)/2, tn = (3 
+5n}/2 (m, n = 0,1,2, ... ) along the right semiaxis. Its 
behavior as 1 t 1- 00 allows us to find the asymptotic 
forms of the field for small and large k. For k = q « Kb 
we obtain 

(f!,(q)=- iE,'(~) (~)'I'{t+O ',..'L )}, p=1. (5.3) 
5)(, Xl Xl 

Let us substitute the obtained results (5.2) and (5.3) 
into the formula (3.20) for the sound amplitude Uidef: 

_, {n iE,' (0) ( q ) 'I, cos (qD.+~) 
U'deC=I"H' -1..... b"M,,-c -'. - ( D)'" 

,. "X, q x. q 0 (5.4) 

1: '/ 2E,'(0) l ( q )} - b"N,,(qD.) '--,--. - . 
x, q x, 

'.' 
The integral 

1 ,+,~ t+2 
I(x.)",,-. S dtx.'exp{--lin-In2nHInO.41} 

2m ,_,~ 5 

XSin;(Z-~)f(z+~)r[-+(z- ~)]r[- :(z-~)] 
can be evaluated by the same method used in the evalua­
tion of the integral (5.2). Its asymptotic form for small 
xs = q/ KS «1 is given by the expression 

51'2nr(-'/,) ',. 
I(x.)= exp[0.7(in -In 2n+4In 0.4)jx, . 

2f('/,) 

In the magnetic-field region (1.1)-(1.2) being investi-
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gated, the parameter 1 q2Do/ KS 1 « 1, and the second term 
in the expression (5.4) is small compared to the first. 
Consequently, 

p=1. (5.5) 

6. The formulas (4.5) and (5.5) describe the ampli­
tude of the transverse acoustic wave. In the case of 
longitudinal sound we must compare the amplitudes due 
to the induction and deformation forces. It is not diffi­
cult to see that for diffuse electron scattering from the 
boundary, the amplitude 1 Uind 1 is (qDO)1/2 times smaller 
than 1 U z def 1 , while for specular scattering they are of 
the same order of magnitude: 

u,=U'def, p=O, 

-, { Qmc' , 1: b,.M" '() (D A)} U.=-iA,,,, ---2E. (0)+ ---E. 0 cos q .+L.l , 
4nwqe 5~iqD. ,. 

Thus, we obtain that an electromagnetic wave in a 
metal excites longitudinal and transverse acoustic vi­
brations whose amplitude is an oscillating function of 
H-1. The period of the oscillations is found from the 
condition q <lDo(H) = 2rr, i.e., 

p=1. 

and is equal to the period of the oscillations of the geo­
metrical resonance in sound absorption, but it is out of 
phase by rr/2. The nature of the oscillations is elucidated 
by the distinctive features of the periodic motion of the 
electrons in the magnetic field and their interaction with 
the acoustic wave. The period and the phase of the 
oscillations do not depend on the nature of electron re­
flection from the metal surface. The surface electrons 
have an appreciable influence on the distribution of the 
electromagnetic field in the skin layer and, consequently, 
on the amplitude of the oscillations. 

In conclusion, I express my profound gratitude to ~. 
A. Kaner for a discussion of the work. 

*[uH] =u X H. 

I)In [6], the monotonic term-the contribution of the integration region 
not containing stationary-phase points-is retained. On account of the 
inequalities (1.1 ), the consideration of this term leads to small cor­
rections. 
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