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The Rayleigh scattering of electromagnetic waves by density and current fluctuations in a degenerate 
electron liquid is investigated. Detailed formulas are obtained for the angular and frequency 
distributions of the intensity of the scattered radiation. Rough numerical estimates are presented. 

It is well known that the interaction between the con­
duction electrons in a metal is not small compared with 
their kinetic energy. In a number of problems, this 
leads to the necessity of considering the conduction 
electrons not as an ideal gas of Fermi quaSi-particles 
but as a degenerate electron liquid, describable by 
means of Landau's Fermi-liquid theory[ll. One of these 
problems is the Rayleigh scattering of electromagnetic 
waves by conduction electrons, inasmuch as the Fermi­
liquid interaction substantially alters the spectrum of 
the characteristic oscillations of the system. 

In the present article, a theoretical investigation is 
performed of the Rayleigh scattering of electromag­
netic waves in an electron Fermi liquid, with the pur­
pose of elucidating the angular and frequency distribu­
tions of the intensity of the scattered radiation. 

The appearance of scattered waves is due to the 
interaction of the incident wave with fluctuation oscilla­
tions of the electron liquid, and the spectrum of the 
scattered radiation is determined by the fluctuation 
spectrum of the system. The calculation of the scatter­
ing coefficient can therefore be divided conveniently 
into two sections: 1) the determination of the dependence 
of the scattering coefficient on the cor relators of the 
various physical quantities, which reduces to solving the 
problem of the interaction between a given incident 
wave and given fluctuations; 2) the calculation of the 
correlators of various physical quantities in an equi­
librium electron liqUid. 

We shall be interested in the scattering of waves with 
high frequencies (ultraviolet and higher), i.e., in the 
case when nw is large compared with the binding energy 
of electrons in the atom and with their mutual interac­
tion energy, or, in the language of the classical theory, 
when the frequency w of the incident wave is large 
compared with the frequencies of the proper motion of 
the electrons in the system. Therefore, in treating the 
interaction between the incident wave and specified fluc­
tuations, i.e., in Sec. 1, we can regard the electrons as 
a Fermi gas, neglecting both their interaction with the 
atomic nuclei and the Fermi-liquid interaction. This 
situation is completely equivalent to that which is found 
in the calculation of the high-frequency dielectric per­
mittivity of a substance[2l. With regard to the Fermi­
liquid interaction; it may be noted in addition that, since 
the Fermi-liquid corrections to the particle spectrum 
develop in a time t - a/vo (a is the mean spacing between 
the atoms, and Vo is the velocity of the electrons at the 
Fermi surface), for w >vo/a there is no point in taking 
into account the Fermi-liquid interaction in this part 
of the calculation. 

As regards the second part of the calculation, Le., 
the calculation of the spectral distributions of the fluc­
tuations in an equilibrium electron liquid, it is now 
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absolutely necessary to take complete and rigorous ac­
count of the interaction, by virtue of its determining 
role. Here it is necessary to retain all the terms as­
sociated with the Fermi-liquid interaction, inasmuch 
as they affect the spectrum of the collective oscillations 
of the system in an essential way and thereby influence 
the time behavior of the fluctuations, which, in its turn, 
determines the important, though relatively small, 
change of frequency in the Rayleigh scattering. 

1. To find the dependence of the scattering coefficient 
on the correlators of the various physical quantities, we 
shall make use of a method usually used for a plasma[3l 
In the propagation of an electromagnetic wave in a de­
generate electron liquid, the total electric field E(r, t) 
can be represented in the form 

E(r, t)=EO(r, t)HE(r, t)+E'(r, t), 

where EO(r, t) is the field of the incident wave, E'(r, t) 
is the field of the scattered wave, and oE(r, t) is the 
fluctuation of the electric field in the degenerate elec­
tron liquid; correspondingly, the particle distribution 
function can be written in the form 

where no is the equilibrium Fermi function, and 

where n~ and n{ are the small corrections to the equi­
librium function associated with the incident and scat­
tered waves, and on is the fluctuation of the distribution 
function. Because of the smallness of the nonlinear 
interaction between different oscillations, we assume the 
incident wave to be given (here, the fluctuations are 
also assumed to be known-their calculation will be given 
below) and choose it in the form of a monochromatic 
plane wave: 

(1) 

in this case, n? satisfies the linearized kinetic equation 

~+van,O +eEo~=O' 
at ar ap , (2) 

we consider the case when the collision integral can be 
neglected (w T» 1, where T is the time between colli­
sions) . 

As regards the scattered wave, since it appears as a 
result of the interaction of the incident wave with the 
fluctuations all the nonlinear terms associated with this 
interaction should be retained in the equation for n[. 
Thus, n[ satisfies the equation 

ant' ant' , 8no 
--+v--+eE--

at ar ap 

~ 1 ) a6n ( 1 ) on,o +e IEo+-[vHO] --+e 6E+-[vIlH] --=0, 
c ap C op 
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(3)* 
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where HO is the magnetic field of the incident wave, 
and oH is the fluctuation magnetic field. In accordance 
with what has been stated above, Eqs. (2) and (3) do not 
contain Fermi-liquid terms. 

Using (1) and (2), we find from Eq. (3) an expression 
for the Fourier component (nDk' ,w'. Calculating next 
the current associated with n~, with the aid of Maxwell's 
equations we find the field E' of the scattered wave. 
For the case of scattering of a high-frequency trans­
verse wave, taking into account that the calculation of 
the fluctuations is performed with allowance for the 
Fermi-liquid interaction, we obtain 

4"ioo' 
k"c'-e (k'. 00') 00" JJ.k· .• •• ( 4) 

where E(k', w') is the dielectric permittivity corre­
sponding to the linearized kinetic equation of the type (2), 
and the quantity J, which is due to the nonlinear terms 
in Eq. (3), is the current responsible for the appearance 
of the scattered waves: 

ie { . [ Q'c'(k' q) Eo+q (k'Eo) J 
J. ..•. ~--, e6p .... Eo- , (')" , 

moo 0000 uOO -q C 

+ ~(k6i •.•• )Eo- ~(k'6i .... )Eo- ~(Eo6i •.•• )k - ~(k'Eo)6i •.•• 
00 !O 00 00 

1 Q' } 
+ (Ll)" , [(Eo6j •.•• )k'+(q6i. .•• )Eol . 

00 !O -q C 
( 5) 

Here m is the electron mass, n is the frequency of the 
Langmuir oscillations of the electron gas, op is the 
particle-density fluctuation, 

Q' e S 
6i •.•• ~ (Ll)' " 6j •.•• -- p(6n(p» •.•• d, 

!O -qc m 
( 6) 

and oj is the current-density fluctuation 

. S aeo {anoS '}d 6J~e -- 6n(p.r.t)--- f(p.p')6n(p'.r.t)d, " ap ae . (7) 

EO(p) is the equilibrium particle energy, and f(p, p') is 
the correlation function introduced in Landau's theory 
ofthe Fermi liquid(1). The index 1 denotes the projec­
tion of the vector on to a plane perpendicular to k', 
6w=w'-w, q=k'-k, and dT=2dp/(21Tli)3. Since we are 
considering scattering by the collective oscillations of 
the system, the change of wave-vector of the wave on 
scattering satisfies the condition 1/ q »a. 

The total scattered intensity I is determined by 
averaging the well-known expression for the increase of 
the energy of the electromagnetic field per unit time[4): 

1=- 4- Re S dr<E' (r. t)J' (r. t». 

Using (4), we obtain 

1= _1_ ImS dk'doo'd!O,' exp{-i(oo' -!O,')t) 
(2,,)' 

x 00' <J J.k· .• ·J .I.: ..... ) 1 (k"c'-e' !O"). 

Here and below, E'=E(k',w') and E=E(k,w). 

Since, according to the general theory of fluctuations, 

<1J.k· .• · J J.k· .... )006 (00' -00,'). 

the integrand is real and, consequently, the imaginary 
part of the integral can only be due to the poles of the 
integrand. We therefore replace (k,2 C2_ E'W,2)-1 by 
i1To(k,2c2- E'w,2) and, after integration over the modulus 
of the vector k', we obtain 

1~_l-S dQ'd!O'd!O,'v7 !O"<JJ.k· .• · J~k· .• "); (8) 
32,,"c' 
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here, the magnitude of the wave vector k' and the fre­
quency w' of the scattered wave are connected by the 
relation k' = R w' / c, and dn' is the element of solid 
angle in the direction of k'. 

We shall transform the correlator (J lk' ,w 'Jh' ,w~> 
by means of formula (5). The calculation of the fluctua­
tions given below can be carried through to the end for 
the case when the electron Fermi surface is isotropic. 
(In the general case, the problem is substantially more 
complicated and becomes equivalent to the determination 
of the dielectric permittivity tensor with the anisotropy, 
the electron-electron interaction and the spatial dis­
persion taken into account.) In this approximation (which 
can be assumed to be legitimate for the alkali metals, 
aluminum, lead, and also for liquid metals), the function 
f(p, p') depends only on the angle X between the vectors 
p and p' at the Fermi surface and can be expanded in a 
series in Legendre polynomials: 

F(x)~f('I) (~) = L,F,P,(cosx); 
deo l'Ju=J.I . 

The expression (7) for the current-denSity fluctuation 
then takes the form 

6j= :. ( 1+ F~) S p6n(p. r. t)d,. (9) 

where m* is the total effective mass of a Fermi quasi­
particle, and, according to formula (6), 

[ Q' m'] 
c5i •.•• =c5j.... (Lloo)'-q'C' m(1 +F,/3) . (10) 

Substituting (10) into (5), we can express 
(J lk' ,w 'J!k' ,w~> in term~ .of the correlators of the 
charge and current denSIties 

<l5p •.•• 6p; .••. ). <6j i .... l5i,~ .•• ,). <l5p ••• fiii~ .•• ,,) (LlOJ,=!O,' -OJ). 

Since the scattering coefficient is additive with respect 
to the different types of scattering, it is convenient, in 
view of the cumbersome nature of the general formulas, 
to consider the scattering by the transverse and longi­
tudinal oscillations separately. 

We consider first the case when the fluctuation oscil­
lations at which the scattering occurs are transverse: 

fip •.• '"~O. fij .... .Lq. 

Then 

.. _~[ Q' m' ]{~(k'6')E 
JJ.k .• - "( A)' " (l+F 13) J.... , m!O u!O -qc m ,OJ (11) 

- :' (E,fij.".) kc (k'E,) fijJ.q.'. } 

and the correlator (J lk' ,w 'J!k' ,w {> can be expressed in 
terms of the spectral distribution (ojt>q,~w of the corre­
lation function of the fluctuations of the transverse-cur­
rent density in the following way: 

( em· )' 
<JJ.k· .• • J~k· .... )~" Vfi (OJ' -OJ,') m'(1 +F,/3) 00" 

x [1- -:---:-;00,--"--;;-:- ] '{_(_Ll!O_)_' EoJ.' (k"-k,") + 2Ll~OO' k,EOl (E,kJ.) 
(Lloo)'-q'C' 00' 00 (12) 

'2 2 I 

+ 2Ll!O k,'E'J.,(k'E,)+~kJ.'(E"-EOI')+~[(E,kJ.) 
00 ~ 00 

-EOIkJ.,l (k'Eo) + (k'E,)' (1 +cos' (kl'q) ) } <fij,') •.•• ",,2n V6 (00' -00,') <IJ.')k· .• ·, 

where 
, ,m(1+F,I3) (13) 

(j)o=Q m- , 

V is the total volume, and the index l denotes the pro­
jection of a vector along the direction of q. 
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Substituting (12) into (8) and performing the integra­
tion over wi, we find the scattering intensity in the fre­
quency interval dw' into the solid-angle element dn' 

dI= _V_17 w"<I.c'>., w,dw'dQ'. 
Hin'e' . 

( 14) 

In the case of scattering of an unpolarized wave, the 
expression (14) should be averaged over the different 
orientations of the vector Eo. By calculating the differ­
ent projections occurring in the formula (12), as a re­
sult of this averaging we obtain 

VE' ., " 
dI=_o (e'),/'( em ) [1- 000 ] 

32n'e' m'(1+F/3) (tlw)'-q'e' 

{( tlW)' ~ ~ tlw lie 
x -- sin(k'q)sin(k'q-8)cos8+-- y ,sin'8cos8 

00 00 e 
(15) 

+sin' 8 (H :' - V:' cos 8)} <llj,'> •.•• dw'dQ' 

(e is the scattering angle). The formula (15) is valid for 
any frequency change .:lw. According to the calculation 
performed below, (ojf)q,.:lw is non-zero for (.:lW)2=W~ 
+ q2c2 and for .:lw.$ qVF. In accordance with the require­
ments of the laws of energy and momentum conservation 
in the scattering, in the first case the expression in the 
square brackets in formula (15) vanishes, i.e., there is 
no scattering by high-frequency transverse OSCillations, 
and in the second case scattering with only a small 
change of frequency is possible. Thus, .:lwlw« 1. We 
shall perform a comparative estimate of the three terms 
in the curly brackets in formula (15). Using the relations 

sin (k'q-8) cos 8=sin (k'q)-sin 8 cos (k;q-O) 

and 

q sin (J2q) =k sin 0, 

we write the first term in the form 

( tlw )' k' ( tlw )' k 
-- -sin'8- -- -sin' 8 cos (k7q_8). 

00 q' 00 q 

Taking into account that 

tlw k kv, 
----~--«:1 

ffi q (i) , 

and 

we see that the first term is much less than the third at 
all scattering angles. 

Furthermore, the ratio of the second term to the 
third is of the order of .:lw cos elw. Thus, at all scat­
tering angles, the first and second terms can be dis­
carded. Replacing EIE' by unity in the third term and 
dividing dI by the scattering volume V and the energy­
flux density of the incident wave 

e -
So=~1/8Eo', 

we finally obtain the differential scattering coefficient 
for scattering by the transverse fluctuations: 

dh,= _8 ( em' )'[ 1- 00,' ]2 
4n m'c'(1+F,/3) (tlw)'-q'e' 

x sin' 8 (1+2 sin'~) <Ilj,'> •.• wdw' dQ'. 

( 16) 

In the case of scattering by the longitudinal fluctua­
tions, when Opq,.:lw;" 0 and the current-density fluctua-
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tions are expressed in terms of the charge-density 
fluctuations 

tlw 
Ilj •.•• =e "-'.- q/lP •.•• , 

q" 

an analogous treatment gives for the differential scat­
tering coefficient the well-known[2] formula: 

1 •• 
dhl=_(_e_) (Hcos'8)<llp'> •. a.dw'dQ', (17) 

4n me' 

where (Op2)q,.:lW is the spectral distribution of the cor­
relation function of the particle-density fluctuations. 

2. The calculation of the spectral distributions of the 
fluctuations is performed by the method of "random 
forces," developed by Rytov[S] and Landau and Lifshitz[6] 
for the calculation of fluctuations in electrodynamics 
and hydrodynamics, and applied by Abrikosov and 
Khalatnikov[7] to the kinetic equation. 

As usual, the electron Fermi liquid is described by a 
closed self-consistent system of equations, consisting of 
the kinetic equation and Maxwell's equations[B]. We in­
troduce an additional "random force" y(p, r, t) into the 
right-hand side of the kinetic equation, so that the 
linearized kinetic equation for the fluctuation of the 
quasi-particle distribution function in an equilibrium 
electron liquid is written in the form 

iJon+iJlln l!eo DnoS f ( ') iJ Il (' )d' __ _______ p,p - n p ,r,t t 
at Dr rip ap Dr 

Dn, bn 
+e6E-,-=--+y(p,r, t), 

dp 't 

(18) 

while the Maxwell equations remain unchanged. The 
term -onl T in Eq. (18) schematically describes the col­
lisions of the particles. In the case .:lw T » 1, which is 
the only one we shall be interested in, the collision in­
tegral plays only an auxiliary role in the calculations 
and its exact form is unimportant, since in the final re­
sults we shall eliminate it by taking the limit T ~ <x). 

By means of Maxwell's equations, the fluctuation oE 
of the electric field is expressed in terms of the charge­
and current-density fluctuations, which are determined 
in turn by the fluctuations of the distribution function. 
For the Fourier component of the electric-field fluCtua­
tion, we have 

«SEq, A,(!.\=6E[Q, ~w +6E1Q , L\.(!!; 

4nie 4nie S 
IlE, •. a.=- --.- qllp •. a.=- -.,- q Iln .... (p) dt, 

q' q' 

bE _ 4nitlw (19) 
"".-- (tlw)'-q'e' /lj"". 

(tl4:;~~;,c' (1+ ~!) S ( ~~), Iln ••• (p)dt. 

oEZq,.:lw and oEtq,.:lw are respectively the longitudinal 
and transverse components of the field 5Eq,.:lw; (8Eol 8p)t 
is the vector projection of the vector 8 Eo/ 8p on to a plane 
perpendicular to q. 

Fluctuations of the distribution function and of the 
"random force" occur only in the region of the Fermi 
surface and can be represented in the form 

on(p)=v(tt, rp)b(eo-Il), y(p)=y'"(tt, rp)b(eo-Il), (20) 

where J and cp are the polar angles of the vector p, 
and Jl is the chemical potential. 

According to the general theory of fluctuations, by 
following the same path as in [7] it is not difficult to 
convince oneself that the expression for the correlator 
of the "random forces" in a charged Fermi liquid has 
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the same form as in a neutral Fermi liquid: 

<y(p, r, t) y (p', r', t') >= ~ I) (r-r') I)(t-t')~ I) (e,-fl}ll (e,' -fl) 
.. d .. 

(21) 
X{21)( 0 -1)- ~ FnPn(coSX) }. 

C SX ~ HFn/(2nH) , 

here and below, the temperature T is defined in energy 
units. 

By means of the kinetic equation (18), we now ex­
press the fluctuations of the distribution function in 
terms of the fluctuations of the "random forces." Inas­
much as the case of an arbitrary function f is rather 
complicated, we confine ourselves to the case 

F(x) =FIPI(cos x) =FI cos x. 

This is the simplest form of the function F(X) for 
which the propagation of transverse zero sound is in 
principle possible. 

Going over to Fourier components in Eq. (18), by 
using formulas (19) and (20) and choosing the polar axis 
along the direction of q, we obtain 

I ( ) dQ {I y.~::(tt, lp)dQ/4n 
v., •• tt, Ip 4; = -i~(j)+tgv, cos tt+1!'t 

FI I "-' dQ }{ F, ( 1 ) - HF,!3 I,(g,.~(j) Y., •• (t}, Ip)~ H HF,/3 i~(j)---;- I,(q, ~(j) 

4nie'v, ( d-r; ) } -, + --- -- I, (g, ~(j) , 
q de. .._. 

(22) 

I ( ) ' dQ I y::::(tt,Ip)sint}coslp dQ { 
v ••• tt,lp smttcoslp-= 1 

, 4n -i~(j)+igv. cos tt+,1/ .. 4n 

F, 2nie'v,'~(j) ( d .. ) ( F,) 
+igv'-2 (l,(g,~(j)-I3(g,t1(j))+ (~ )'_ " -d- H-3 

(tl q C eo to=11 

x (l.(g, ~(j) -[,(g, ~(j)) } -', 

where Vo=(8Eo/ap)Eo=iJ.' and 
1 

1 J.I" dJ.l 
In (g, ~(j) = -2 I --,-'-:--'---,--,--,­

-i~(H+iqv.J.I+1h . 

(23) 

These two integrals ((22) and (23)) give the possibility 
of constructing the correlators in which we are inter­
ested. The first integral is proportional to the density 
fluctuation, and the density correlator is 

• ( d .. ), < I dQ I' "dQ' ) (24) <l)p., •• 6p." •• ,>= -d- v.,··(t},Ip)-4 v." •• ,(t} ,Ip )-4- . 
ell to=1J. n :rt 

The second integral, according to formula (9), is propor­
tional to one of the components of the transverse-cur­
rent fluctuation, and, by virtue of the isotropic distribu­
tion of the transverse- current fluctuations, the trans­
verse-current correlator is 

. .' , '( d.. )' ( F I ) , 
(cS]tq,aw 6]tQI,t.wl)=2e Vo d;: e,,=Il 1+ 3 

< I ( dQ I' (" , ,dQ' ) x v ..... tt,Ip)sinttcoslp~ v." •• , tt ,Ip )sint} cOSIp ~ . 

(25) 

Using formulas (23) and (21) and taking into account 
that 

6 (cos x-l) =2n6 (Ip-Ip') 6 (cos tt-cos t}'), 

cos X =cos tt cos t}' +sin tt sin tt' cos (Ip-Ip'), 

we find from formula (25) 

. .' , ,T ( d .. )' ( F, )' ( ) <6!,., •• 61 .. " •• ,>=2ne v, - -d- V 1+- 6 ~(j)-~(j)1 
't Eo EO=J.I 3 
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6 { I' (1-fl')dfl F, } 
x .,.. 1-~(j)+gV'fl+i!'tI' - 1+F,/3 11,-1,1' 

-I 

x /1 +igv, F, (II-I,) + 2nie'~"~~, (~) (1 + F,) (1,-1,) / ~'. 
2 (~(j) -g c de, .,-. 3 (26) 

We must obtain the limiting value of this expression as 
T-OO. 

The integrals In are easily calculated. The zeros of 
the denominator of expression (26) as T - 00 coincide 
with the roots of the dispersion equation for the trans­
verse oscillations of a degenerate electron liquid[91. It 
is convenient to consider two cases: 

1. I ~I <qvo. 

In this case, the denominator does not vanish. As re­
gards the numerator, the second term in the curly 
brackets is finite when T - 00, and after multiplication 
by l/T gives zero; therefore, a contribution to the 
numerator is given only by the first term, which is easily 
calculated: 

1 • lim-S 
'f .... "" 't -. (1-fl')~fl n j (1-fl')I)(qv'fl-~(j)dl1 

(gv,J.I-~OO '+ .. -' _. 

= q:, [ 1- ( :~ n . 
As a result, we obtain 

<6j .. , •• 6j,~" •• ,>=2n'e'v,'T ( :~ ) .. _. V ( 1+ ~'r I) (~oo-~oo,) 
x6.,q,_s_(1-s') {[H F,_~ (F.- 3000')' (H 1-S2In~)]' 

~oo 3 2 g'c' 2s 1-s 

+ [n; (1-s') (F,- ~~::) n -', 
where s= ~/qvo. 

2. I ~w I >qvo. 

In this case, all the integrals in the curly brackets in 
the numerator of the expression (26) are finite and the 
whole numerator tends to zero like 1/ T. Therefore, the 
correlator (26) can be nonzero only at those points at 
which the denominator also tends to zero, Le., according 
to what has been said above, when 

~(j)=±s,qv" 

where So satisfies the equation 

( s, s,+1 ) 1 2 
(s,'-1) -In---1 =---, 

2 s,-1 3 F, 

(transverse zero sound[91), and when 

(a transverse high-frequency wave). 

(27) 

Considering the correlator (26) near these solutions 
of the dispersion equation and using the relation 

we obtain 

.. -' 
lim ( ')' _,' n6 «(j)-(j)'), 
'f""'" Ct}-(a) +T 

• .' " '( d .. ) (1+ F.) TV (1)1'., .. 1)!,q" ... >=4n e v, de, .. _. 3 . 

x 6(~OO-~(j)6 {2 (H£:.) so'-1 
• .,.. F, 3 1 +F,/3-3so' 

1 00 , 
X [I) (~(j)-s,qv,) +6 (~oo+s,gv,) 1 + ---'-

3 (j)o'+c'q' 

x [6 (~(j)-l' (j)o'+c'g') +6 (~oo+l' (j)o'+c'q') 1 }. 

In a completely analogous way, starting from formu­
las (24), (22) and (21), we arrive at the following ex-
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pressions for the density correlator: 

</lp" •• /lp;" •• ,>=2n'T ( ddT) V (1+ F, )'/l(/l(O-/l(O,)/l"" 
e~ £0=", 3 

X_S_{[1+ F, +s' (F,+~) (1--":"'ln 1+S)]' 
/l(O 3 (/l(O) , 2 1-s 

+[~(F,+~)]'}-' 2 (/l(O) , 

in the case when 1.1w I < qvo, and 

<05p" •• llp;" •• ,>=n'~ ( ddT) VII (/l(O-/l(O,) /l"" [6 (/l(O-(O,) +Il (/l(O+(Oo) I 
Eo l!a=Jl. 

when I ~W I >qvo. 

Transforming from the correlators to the spectral 
distributions, in accordance with the relations 

(/lP., •• /lP.:, •• ,>=2n V6 (/l(O-/l(O,) 6.,.,<6p'> ,,'.' 

(6jt" •• 6j;", •• ,)=2n V/l (/l(O-/l(O,) 6"" </ljt') t,'.' 
substituting these into the formulas (16) and (17) and 
introducing the quantum correction factor 

1i/l(O 
T(e~l>"IT -1t'. 

we finally obtain the distribution of the scattered radia­
tion over the angles and frequencies: for the case of 
scattering by transverse fluctuations, 

9(y)={1, y>o, 
0, y<O 

The first formula differs essentially from the second 
by the factor V~/ c2, since the scattering by the trans­
verse oscillations is a relativistic effect. 

.. Despite their cumbersome appearance, the formulas 
obtained have an intuitive physical meaning. In each 
case, the frequency spectrum consists of an average 
part -qvo < ~w < qvo and two sharp lines, at ~w = ±soqvo 
in one case and at ~W = ±Wo in the other. The central 
plateau corresponds to the Doppler broadening of the 
main line, and the side lines are satellites in the Ray­
leight scattering, corresponding to transverse zero 
sound and the plasma oscillations. Since the frequencies 
of these oscillations in metals satisfy the condition 
ti.1w »voJ.l/ c - eD, in the whole range of temperatures 
T.$ en we have, for the satellites, the purely quantum 
case, and, consequently, only the Stokes satellite re­
mains in each doublet. The existence of zero sound in 
metals depends on the magnitude of the Fermi-liquid 
constants, which, unfortunately, have been insuffiCiently 
fully studied. We remark, however, that the possibility 
of propagation of transverse zero sound in metals is 
problematical, since Eq. (27) has a solution only under 
the condition Fl >6, which is extremely restrictive. 

Rough numerical estimates give for the intensity of 
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the zero-sound satellite 
9 

dh, ~ 10'11(0 sin 2 sin' 9dQ'. 

Propagation of transverse zero sound is possible only 
if q satisfies the conditions 

OOo/c<q<(O,/v" 

while, for Rayleigh scattering, 

2 00 . 9 
q= 7 8111 2 

Hence it follows, firstly, that a zero-sound satellite can 
be observed only in the scattering of waves with fre­
quencies W»Wo and, secondly, that with increasing fre­
quency of the incident wave the maximum scattering 
angle at which the zero-sound satellite is still observed 
decreases and, since the product W sin(e/2) is not 
changed, the determining factor is sin28. Therefore, the 
lowest possible incident-wave frequencies, i.e., 
W -1016_1017 are optimal. At such frequencies, the re­
gion of angles at which the zero- sound satellite is ob­
served is displaced toward larger angles, including 
8"'90°. 

For frequencies W - 1017 and angles €I '" 90°, 
dh,-10-'dQ' cm- l • 

For the intensity of the satellite corresponding to 
the plasma oscillations, we obtain 

dh,-1Q-'-10-'dQ' cm- l • 

The region of angles at which this satellite should be 
observed is determined by the relation 

9 c 
2oosin-2 <000-. 

v, 

The total intensity of the central plateau (for w - 1017 

and €I '" 90°) is of the order of 10-8_10- 9 dO' cm- l. 

In conclUSion, the author expresses her deep grati­
tude to I. M. Khalatnikov for suggesting the topic and for 
valuable comments and to I. P. Pitaevski'i for useful 
discussions. 

*[vHol =v X Ho, 

lL. D. Landau, Zh. Eksp. Teor. Fiz. 30, 1058 (1956) [Sov. 
Phys.-JETP 3, 920 (1957)] .. 

2L. D. Landau and E. M. Lifshitz, Elektrodinamika 
sploshn~kh sred (Electrodynamics of Continuous Media), 
Gostekhlzdat, M., 1957 (English translation published 
by Pergamon Press, Oxford, 1960). 

3A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. 
Sitenko and K. N. Stepanov, Kollektivnye kolebaniy a v 
plazme (Collective Oscillations in a Plasma), Atomizdat, 
M.,1964. 

4J. A. Stratton, Theory of Electromagnetism, McGraw­
Hill, N.Y., 1941 (Russ. transl. Gostekhizdat, M., 1948). 

5S. M. Rytov, Teoriya elektricheskikh fluktuatsil i 
teplovogo izlucheniya (Theory of Electrical Fluctuations 
and Thermal Radiation), AN SSSR, M., 1953. 

6L . D. Landau and E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 
32,618 (1957) [Sov. Phys.-JETP 5, 512 (1957)]. 

7A. A. Abrikosov and I. M. Khalatnikov, Zh. Eksp. Teor. 
Fiz. 34, 198 (1958) [Sov. Phys.-JETP 7,135 (1958)]. 

8V. P. Silin, Zh. Eksp. Teor. Fiz. 33, 495 (1957) [Sov. 
Phys.-JETP 6, 387 (1958)]. 

9V. P. Silin, Zh. Eksp. Teor. Fiz. 35,1243 (1958) [Sov. 
. Phys.-JETP 8, 870 (1959)]. 

Translated by P. J. Shepherd 
252 

A. N. Shaanova 1219 


