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A self-consistent theory of electromagnetic excitation of ultrasound in semimetals is developed. It is 
assumed that the skin effect is normal and that WRL /s <;;; I (RL is the carrier Larmor radius and s is 
the velocity of sound). It is shown that the excitation of secondary electromagnetic fields by 
ultrasound leads to an additional "surface" absorption which under certain conditions may exceed the 
volume absorption. Near an acoustic resonance, neither the transparency nor the additional surface 
impedance is proportional to the small interaction constant coupling the ultrasonic and 
electromagnetic waves. 

The resonance excitation of ultrasonic waves in semi­
metals by electromagnetic fields was discovered experi­
mentally by Gantmakher and DolgopolovClJ and has been 
discussed several times since [2-sT. In [2-4J it was shown 
that deformation interaction between the carriers and· 
the ultrasonic waves predominates in semi metals , the 
coefficient for conversion of electromagnetic waves into 
ultrasonic waves was calculated, and the behavior of the 
resonance amplitude as a function of the magnetiC field 
strength was examined in broad outline. It was assumed 
that the penetration of the electromagnetic field into the 
metal could be calculated by a successive-approximation 
method without allowing for the electromagnetic field 
excited by the ultrasonic waves, and the acoustic quality 
factor Qa that limits the amplitude of the ultrasonic 
wave at a resonance had to be introduced as a phenom­
enological parameter. Although the method developed 
in [2-4J leads to some important results, it is not en­
tirely consistent. We therefore feel that the theoretical 
study of the electromagnetic excitation of sound in semi­
metals should be continued. 

In a more rigorous approach one would have to calcu­
late both the acoustic quality factor Qa and the observed 
resonance contribution to the surface impedance of the 
semimetal, and to do this one must take into account the 
excitation of coupled electromagnetic and ultrasonic os­
cillations in a semimetal plate by an incident electro­
magnetic wave. Although the coupling parameter 
E=A2Q/pS2 is small (here p is the density of the semi­
metal, s is the velocity sound, Q is the density of 
states, and A = Ae + Ah, where Ae ,h are the deformation 
constants for the electrons and holes), the coupling of 
the electromagnetic and ultrasonic oscillations becomes 
important near the acoustic resonances and must be 
taken accurately into account. 

In this paper we obtain a self-consistent solution to 
the problem of the electromagnetic generation of long­
wavelength ultrasound in a semimetal and calculate the 
resonance contributions to the surface impedance of the 
plate for various excitation modes. Simple physical con­
siderations show that the secondary electromagnetic 
waves excited by an ultrasonic wave must lead to two 
related effects that were not considered in the earlier 
work [2-SJ. 

Let us suppose that an electromagnetic wave is inci­
dent from one side onto a semimetal plate whose thick­
ness d greatly exceeds the penetration depths for field 
and carrier density disturbances, Le., is greater than 
both "skin" depths [6J. Then if no ultrasound were gen­
erated, the electromagnetic field reaching the far face 
of the plate, and the field emerging into the vacuum, 
106 Sov. Phys.-JETP. Vol. 39, No.1, July 1974 

would be -exponentially small. However, the ultrasonic 
wave excited in the plate gives rise to secondary elec­
tromagnetic-field and carrier-density oscillations. 
Thus, an ultrasonic wave is accompanied by forced vol­
ume oscillations, and these give rise to volume absorp­
tion of sound. Further, the reflection of the ultrasonic 
wave from the surface of the plate perturbs the field 
and the carrier density near the surface in regions whose 
thicknesses are of the order of the skin depths, and this 
means that the electromagnetic field partly penetrates 
through the plate. The transparency of the plate to the 
electromagnetic field transported by ultrasonic waves is 
not exponentially small.ll 

We note that near the acoustic resonances, neither the 
transparency nor the change in the surface impedance of 
the plate due to the change in the field at the front face of 
the plate is proportional to the weak coupling between 
the electromagnetic and ultrasonic oscillations. Of course 
if the field E is incident on the surface of a semi-infinite 
metallic body, the secondary field E' excited by the ul­
trasonic wave will be of the order of EE. In the plate, 
however, owing to the multiple reflection of the ultra­
sonic wave from the faces (and to the consequent multi­
ple infiltration of the field), the field getting through in 
the vicinity of an acoustic resonance will be E"~ E'Qa 
~ E'/E, Le., it will be independent of the interaction 
constant E. 

Another effect associated with the surface perturba­
tions of the field and carrier density is an additional 
ultrasonic absorption. The basic cause for the absorp­
tion of sound in a semimetal is the work done by the 
elastic waves against the electron pressure2l : 

oA=Afu·V'ndV. The volume perturbations of the carrier 
density n, which have the spatial period AS = 21T/k1 , give 
rise to volume absorption (absorption coefficient inde­
pendent of the thickness of the plate) of the ultrasonic 
wave. The presence of density perturbations and lattice 
deformations localized at the surfaces of the plate leads 
to an additional absorption of ultrasound. This "surface" 
part of the absorption depends on the thickness of the 
plate and may be comparable with or greater than the 
volume absorption. 

In this section we find a self-consistent solution to the 
problem of the excitation of longitudinal ultrasonic oscil­
lations by an electromagnetic. wave incident normally 
onto a semi metal plate of thickness d occupying the 
region O~ y~ d, the external magnetic field Ho and the 
magnetic field H of the incident wave being assumed to 
be parallel to the z axis. For Simplicity we consider 
an isotropic model of a semimetal with single electron 
and single hole valleys and equal carrier concentrations 
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Ne = Nh. We assume the deformation potential tensor 
Aik to be isotropic and neglect the momentum depen­
dence of its components. We also assume that the intra­
valley relaxation times 7e,h are small compared with 
the intervalley recombination time 7M = wiiJ. The equa­
tions for the problem include the elasticity equations, 
Maxwell's equations, and the equations of continuity (all 
quantities are proportional to expi(wt-ky)): 

p(k'S'-Cil') u=-iAkn, k'E.+4niCilc-'j.=O, 

j=j'+j', -ieCiln'f'ikj. '0' =eoo" (n-n.), 

jy =±o~E.'f'iekD (n-np) , j.=o'E%+ikeD~ (n-n.), 

Here we use the following notation: 
a' =O'X%e+cr~:r'\ o=OI/Y'Ol/iJh (av/+o1l1lh )-" 

~=~.+~., ~., h=eH, T., him., hC, D=o/e'Q, 
Q=Q.Q.(Q.+Qh) -t, np=ikAQu; 

(1) 

ne = nh = n are the deviations of the electron and hole 
concentrations from their equilibrium values, and D 
is the ambipolar diffusion coefficient in the magnetic 
field. Expressions for the currents and the form of the 
continuity equation were obtained in [9], where it was 
shown that np=-Q(O€e+o€h) is the quasistatic change 
in the carrier density accompanying the sound wave 
(o€=Aikuik). For a static deformation, n=np. 

Expressions (1) for the current are valid when 
w 7 e h «1. Here we have used the condition div j = 0 and 
hav~ eliminated the longitudinal field Ey . The standard 
boundary conditions, namely that Ex and Hz be con­
tinuous at the surface of the semimetal and that j~ 'F eVn 
=0 and au/ay=-An/ps2 at y=O and y=d (here V is the 
carrier recombination rate at the surface), must be im­
posed. Solving Eqs. (1), we obtain the dispersion equa­
tion for the coupled oscillations: 

(k'-Ol'/s'-ek') t. (k) =-ieook' (k'+411iooo'c-') , 
t. (k) = (iCil+Cil,,) (k'+4niCilo'c-')+Dk'(k'+4niooooc-') (2) 

"'D(k'-k,') (k'-k,'), 

Here Go = G~ + G~ is the conductivity in the absence of a 
magnetic field, € = A 2Q/ pS2 is the coupling constant, 
and we have assumed that kRL« 1 (Rt.,h are the elec­
tron and hole Larmor radii). For €=O, Eq. (2) breaks 
up into the dispersion equation for sound and the equa­
tion for electromagnetic oscillations in semimetals 
that was investigated in [6]. To the first order in € we 
have 

k - 00 + 6k {jk _ ek, ieook, (k '+411' '-') '--;- '" '-2-2t.(k,) , 1000 c. (3) 

The real and imaginary parts of ok1 respectively de­
termine the change in the dispersion and the volume 
absorption coefficient rvol =-s 1m ok1 for the ultra­
sound, which we investigated previously [9]. Here we 
also give the well known expressions (see [6]) for the 
other roots of Eq. (2) at i3e,h» 1 and € = 0, which we 
shall need later on: 

ioo+oo,.. 4niooo' [iOO+OO'" 4niooo. ]-' 
k,'''' - -D--c-' - --D-+-c-,- , 

• [ ioo+oo" 4niCilo.] k,""- --+--- 0 

D c' 

(4) 

The solution to Eqs. (1) represents a superposition 
of three oscillations, of which one is basically acoustic, 
and the other two are basically electromagnetic: 
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n = iAQkP (A e-i','_B e"") ___ i _ ~ k S (A e-ih,'_B e'h,.,) 
t.(k,) , , e(OOM+iCil) ~ '" " 

" 
• = - iAQW (A rih"+B eih,,) + n S (A r'II,'+B e'h,,) 

, t. (k,) , , ~" ,. 

Here we have used the notation: 

M=4noo'e~Dk.'c-', W =eook,'D(k,'+4niCilooc-') , 

S = c' (k,'+4niooo,c-') p=t. (k,) -ioo (k,'+4niooo' c'). 
, 4l1ioo~ , 

U sing the boundary conditions and standard pro­
cedures, we find the unknown amplitudes, the strength 
of the field that penetrates the plate, and the surface 
impedance. However, if Ik2 ,3Id»1 and exponentially 
small effects can be neglected, the quantities of in­
terest can be easily expressed in terms of the solutions 
of two simple auxiliary problems. 

The first auxiliary problem, that of the excitation of 
ultrasound by an electromagnetic wave incident on a 
semi-infinite specimen, was solved in [3]. The amplitude 
uoo of the ultrasonic wave and the field Eo(O) at the 
surface are given in our notation by the following ex-
pressions: 

u~=x,H(O), 

CpS't. (k,) (OOM+ioo) (k,S,(l +p,) -k,S, (1 +p,)} 

Eo(O)=-Zo'H(O), zo' = ko[S.(Hp,)-S,(Hp,) 1 
k,S,(l+p,) -k,S,(l+p,) 

here Kl is the amplitude conversion factor for the 
transformation of the electromagnetic field into an 
acoustic field, and zg is the surface impedance. 

(5) 

The second auxiliary problem is that of the reflec­
tion of ultrasound of amplitude Uoo from the semimetal­
vacuum inte rface in the y = d plane: its solution is of 
the form 

B=u oo (l-R) e-""', E=x,uooe- ih", 

x,=8npsoo'x'/c, 

2iEk,k,k,DW[S,(k,'-k,') -S,(k,'-k,') 1 
et. (k,) (OOM+im) [k,S,(1+p,) -k,S,(l+p,) 1 

(6) 
R 

Here B is the amplitude of the reflected ultrasound, E 
is the field emerging into the vacuum, and it is natural 
to call K2 the conversion factor for transformation of 
ultrasonic waves into electromagnetic waves. The quan­
tity R in (6) characterizes the change in the ultrasonic 
reflection coefficient associated with the excitation of 
electromagnetic fields at the interface. 

The amplitudes of the ultrasonic waves in the plate 
and the field that has traversed the plate can now be 
easily found by conSidering the multiple reflection of 
the ultrasound at the faces: 

E(d) 
2i[sin k,d-iR cos k,d] , 

Z=Z,'+t.Z, 

Z 4nipsm' x,' cos kid 
t. = 

c sin k,d-iR cos kid ' 

here ~z is the resonance increment of the surface 
impedance for I k2 ,3Id» 1. 

We note the following simple relation between the 
amplitude E(d) of the field that has traversed the plate 

(7) 
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and the surface-impedance increment ~Z: 

E(d) cos k.d=-H(O)I!.Z. 

Thus, by measuring the resonance increment of the 
surface impedance one automatically measures the 
amplitude of the field that has traversed the plate. 

As is evident from (7), the acoustic resonances cor­
respond to the minima of sink1d-iRcosk1d. If there is 
no external field (H(O) = 0), the equation 

sin k.d=iR cos k.d (8) 

determines the resonant frequencies wN = SN1Td- 1 + ~wN 
and the damping constant r for free acoustic oscilla­
tions in the plate. We have 

f=~=fv+fsu" 
Q. 

s 
fsu'=dReR. 

(9) 

This result means that, as we mentioned above, the ex­
citation of secondary electromagnetic fields at the sur­
face of the semi metal by the ultrasound leads to an ad­
ditional ultrasonic absorption r sur and to an additional 
shift of the resonance frequencies by the amount 
-(s/d)Im R. 

We note that in the considered case 1 k2 ,31d »1 the 
ratio rsur/rv does not exceed 4/lk2ld for any value of 
the frequencies and the other parameters. Thus, the 
surface absorption can be neglected when 1 k2,31 d » 1. 
However, the surface absorption may be substantial 
for thin plates in weak magnetic fields under the condi­
tion that 1 k~ Id« 1; 1 k~ 12 ", (iw + wM)a' / aoD. This situation 
apparently obtained in the low-temperature experiments 
on antimony reported in [3J 

Finally, for the transparency 1) (defined as the ratio 
of the transmitted flux to the incident flux) near a res­
onance (detuning ow - r), we have 

where, according to [9J, 

32n'p's'w' Ix.I' 
c'lcF {\"2' (10) 

e w' {[ ( 4nwo' ) '] [ 4nwo' 4nWO,]} f v ""---- WM k.'+ -- +Dk.' k.'+-,--,- . 
. 2 II!.(k.) I' c' c c 

Let us consider the dependence of 1) on Ho for the 
limiting cases in which the recombination is respec­
tively strong ( 1 P2,31 »1) and weak (I P2,31 « 1). Since 
1)(00) = 1)(0) 1 (k~)21M + kgk~) 1\ we give only the results for 
1)(0). At high frequencies, 

we have 

I k, I' 1 . 4no,D 
1] - - -- for --w"tM=a.>1, 

k,' Ik,'dl' c' 

I k',' 1 4no,D 
1]- '-- -- for.--wTM=a:<1. 

k, Ik,dl' .. c' 

(11) 

In weak fields 1) is independent of Ho, while in strong 
fields it decreases as H;4. At low frequencies (w 1M « 1), 
1) has a maximum at the magnetic field strength deter­
mined by the condition 

a = I ::' I' ( 1+ I ::' j') -'/~aext. 
As the magnetic field increases, 1) increases as Hg 
when a« aext and decreases as H;4 when a« aext. 
The value 1)(0) of the transparency at the extremum is 
given by 
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k, I' 
1]= Ik,' Ik,'dl' {k.'+2Ik,'llk,'I'(k.'+lk,'I')!i·}, 

We note again that the transparency reaches its greatest 
value when the frequency is low and the surface recom­
bination is strong. 

Now let us discuss the excitation of ultrasonic oscil­
lations in a semimetal plate by electromagnetic waves 
incident Simultaneously onto both faces (H(O) = H(d), 
E(O)=-E(d)), since such excitation has been investi­
gated experimentally[1,3J. The solution for the case in 
which the excitation is symmetric (with respect to the 
magnetic field) is similar to the solution given above, 
but here the field E, the currents j~,h, and the displace­
ment u contain the factor sin ki(y-d/2) in place of the 
exponential, and the density n contains the factor 
cos ki(y-d/2), with i= 1,2,3. The impedance of the 
plate is given by Z = Zo + ~Z , with 

Z, 
ik,t,t,[S, (1 +ji,) -S,(1 +ji,) I 
k,S, (1+p,) t,-k,S,(1+p,) t, ' 

I!.Z = lmiek,'k.'o,Ds. 
I!.'(k.) [c.+'/,iR,s.1 

[ k,(k,'-k.') t,-k,(k,'-k.') t,+k,k,V(k,'-k,') (wM+iw)-' l' 
x k,(k,'+4niwo,c ')t,-k,(k,'+4niwo,c ')t,+k,k,V(k,'-k,') (wM+iw)-' 

2ewD'k. 'k,k, (k,'-k,') (k.'+4niwo,c-') ' (ooM+ioo)-' 
R, = L'.'(k.) {k,(k,'+4niooo,c-') (1+p,)t,-k,(k,'+4niooo,c ') (1+ji,)t,} 

k,d 
t,,,,,tgT , . k,d 

Si::;;:;;;SlnT' 
kid 

c,""cOST' (12) 

The behavior of Re ~Z near the acoustic resonances at 
WN=(2N+ 1)s1T/d with N=O, 1,2 was studied experi­
mentally in [1,3J. 

Here we give the expression for the oscillating addi­
tion to the impedance, calculated under the following 
Simplifying assumptions, which are valid for the experi­
ments of [1,3J: 1 k3ld» 1 and k~« 1 k2k31. The second 
inequality sets an upper bound wmax of the order of 
108 sec-1 to the frequency of the ultrasonic wave. No 
limitations are imposed on 1 k2ld. Under these conditions 
we have 

s ei~ 

I!.z=-IL'.Z,I--
d 6oo-if' 

ImI!.Z, 
tgs=-­

ReL'.Z, 
6oo=oo-oores, f=fv+ (sid) Re R" (13) 

Sniek,'o,Dk,'k.' [ (ooM+ioo) +ik, vI' 
L'.Z,"" . 

(k.'-k,') '{k, (ooM+ioo) '-k, (ooM+iw)4no,Dooc 't,-ik,k,'VDl' 

Except for a numerical factor, Re ~Zo is proportional 
to the energy lost by the electromagnetic wave in ex­
citing ultrasound; these losses were investigated in [4J 

To investigate the quantity a2x/ aw 2 = (Re ~Z)", 
which was measured in [1,3J, it is convenient to express 
X" in the form 

X" =~ I L'.Z, I f(t x) 
d r3 1:0, , 

(14) 
f(s, x) =[cos s(x'-3x) -sin s(3x'-1) I (1+x')-'. 

Following [1,3J, we define the amplitude of the reso­
nance as Xmax-Xmin. Direct calculations show that 
f(xmax)-f(xmin) depends only very weakly on ~, so that 
the frequency, magnetic-field, and temperature depen­
dences of the resonance amplitude are fully determined 
by the factor 1 ~Zo I/r3. 

Let us first discuss the resonance line shape, which is 
determined only by the parameter ~. When ~ = 1T/2, the 
line has one maximum at the center and two symmetric 
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mInIma. When ~ = 0 or ~ = 7T, the line has one maximum Let us first consider the temperature dependence 
and one minimum, with Xmin =-Xmax and f(xmax) of the resonance line width, which is determined by the 
=-f(Xmin); in intermediate cases there is one maximum ultrasonic absorption coefficient r. The behavior of r 
and two unsymmetric minima. Let us consider the de- as a function of T depends essentially on the frequency 
pendence of the line shape in weak magnetic fields (the number of the resonant harmonic). Suppose the 
(k2 '" kg, k3'" kg) on various parameters in certain limit- frequencies are such that the condition kId < (1M:/ T)1/2 is 
ing cases. For definiteness we assume that I kg Id ~ 1. satisfied. In this case the main contribution to r at low 
If 11>2,31»1 (strong surface recombination), ~=7T/2 and temperatures where 
the line is always symmetric. For 1 "'-,31« 1, we have d ( T )'/' ,,0 Ik,'ld - - _ <t, 
~ = 2 tan -1( W 1M:), and the asymmetry of the line depends I '''' 

on the magnitude of the volume recombination, the f r 2 2 I 0 comes rom sur - ES d- TM (kl» k21). As the temper-
asymmetry increasing as W1M: decreases. Finally, if 
11>21« 1 but I P31» 1, we have ~ = 7T/2-tan- 1(wTM)' In ature rises, I k~1 increases as (1M: TrI/2 and r v 
this case the resonance line becomes less asymmetric increases. We have rsur-rv when Ikgld-1, and as T 
as WTM decreases. Further, when W TM « 1, We have increases further, r sur falls while r v rises as long as 
~ = 2 tan-1(p3 (1 + I P31 cos(7T/4)fl sin( 7T/4) and the line I kgl < kl' and the total absorption may remain almost 
shape is entirely determined by the surface recombina- constant. When I k~ I > kl' we have r - r v - EW2 1M:. 
tion. Thus, a detailed study of the resonance line shape Now let us conSider the case of high frequencies with 
could yield interesting information about the parameters kId» (1M:/ T)1/2. In this case the T dependence of r is 
of the semimetal. more complicated. When I kg Id« 1, the principal contri-

Let us consider the dependence of the resonance am- bution to the absorption comes from the volume term 
plitude a2x/aw2 on the magnetic field Ho and the tem- r v - EW2T, which decreases with increaSing T. The 
perature T. The Ho dependence of the amplitude is de- conditions I kgld < 1 and kId> (TM/ T)1/2 break down at 
termined mainly by the Ho dependence of I LlZo I and higher temperatures. If the first of these conditions 
therefore differs little from the dependence predicted in is the first to break down, r will be determined as be­
[3,4]. For WTM« 1 in weak fields (0' = 47TaoDc-2wTM« 1) fore by r v , which has a minimum at kl-1. Actually, 
we have LlZo - H6 and r sur is independent of Ho, whereas for okl- 1 we have r v - EW2 T, and for kl < 1 (with kl 
r v is independent of Ho for k1,$ I k~ I", (wMa'/ aoD)1/2. > I k21) we have rv - Es2a' /aoD - 1/ T. If the condition 
In strong fields (0'« 1), rv ~ EW2TM/2, r v is again kl.d >(1M(T)~/~ is the first to break down, however, rv 
independent of Ho rsur« r and the resonance am- WIll be slgmflCant only as long as this condition con-
plitude decreases' as H0'2. T~~ amplitude reaches its tinues t? ho.ld. When.1 kg Id < 1 and kId < (TM/ T )1/2 , the 
maximum at 0' - O'ext. For the higher harmonics absorption IS due mamly to the surface term (r - r sur 
kl2: I kg I and the sound absorption increases with' Ho at - Es2d-2 1M:), but as T rises further the absorption again 
0' $kjl kgl, so the amplitude maximum may shift toward becomes of volume type (r- r v- Es2a'/aoD-1/T) when 
smaller Ho with increasing frequency. Such a shift was I k~ld~ 1 and continues to rise as long as I kgl <k1. When 
noted in [ll Ik21 >kl' we have r-rv-Ew2™' 

Now let us consider the temperature dependences of Finally, let us consider the T dependence of the res-
the resonance line width and amplitude for the case of onance line amplitude a2x/ aw 2

• It was found in [3] that 
weak magnetic fields. As regards the surface recombina- the a~plitude at the first resonance decreases with in-
tion, we shall assume that 11>21« 1 and I P31 »1; the creasmg ::' but t~at the amplitude at the third harmonic 
last condition was aRparently satisfied in the experi- has a. maxImum; l~ was a~so found that the line width 
ments reported in [3 . Under these assumptions the r~mal~s constant m the first case but decreases appre-
resonance amplitude a2x/aw2 and absorption coefficient clably ill the second case. It is not difficult to see that 
r are given respectively by Eq. (15) leads to such a temperature dependence of the 

amplitude provided r is temperature independent (Le., 
(15) does not have an electronic origin [11]) and provided 

further that the condition I kg I < kl gives way to the con­
dition I k~ I > kl as T increases, it being assumed that 

fj'X 28 I LlZ,I ILlZ I "" 2ek,'c'lk,'I'V"M'k, 
0;; ""d-r-'-' '(k,'+lk,'I')'4na,DT," 

r""~W'M{ wa' +48 k,'lk,'1 } 
2 a'+a,D'Mk.' d (k.'+lk,'I')'T, ' (16) the condition I k~ I > kl holds at the first resonance for 

T,""th (lk,'id/2). 

The first term in (16) describes the volume absorption, 
and the second term, the surface absorption. We must 
call attention to the following circumstance. In the ex­
periments reported in [1,3] , the condition kle h »1 was 
sometimes satisfied (le,h are the electron a~d hole 
mean free paths). When kl ~ 1, the nonlocal corrections 

e,h 

a':'''''~+~ '''(kR )'=~ (1+~k'I' ) ""~' 5 a, .,h R' 5 .,h 
fI,h t""h. 

contribute significantly to the conductivity a' = a~ + ~x. 
It is necessary to take spatial dispersion into account 
when calculating the volume damping of the ultrasound, 
and it seems legitimate to do so. At the same time, a 
small correction of the order of (kRe ,h)2 to a' changes 
the roots ~ 3 of the dispersion equation (2) by a small 
quantity of the order of I kg 12~ h, and in our approxi­
mation these roots should be neglected. 
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all T. Such an explanation, however, is not entirely 
satisfactory: First, it contradicts the temperature de­
pendence of the line width; second, the condition 1 k~ I > kl 
apparently does not hold at low temperatures. Actually, 
kl~7T/d; then I k~l/kl;S (d/7Tl~T/1My/2« 1, since in the 

. t [1 3] l expenmen s' - d but T 1M« 1 at low frequencies. 

Now let us examine the temperature dependence of r. 
At the first resonance we have kId < (TM/ T)1I2 , and r(T) 
= const provided TM is temperature independent. The 
line amplitude remains unchanged as long as I kg I < kl and 
I kg Id" 1, and then it falls, being proportional to 
I k~12V2TM;(ki + I kg 12r2. At the higher harmonics we have 
kId> (TMI T)1I2, and the line-amplitude maximum may be 
associated with an absorption coefficient minimum. For 
example, if the condition I k~ld > 1 remains in effect as T 
rises, the amplitude maximum will be determined by the 
condi tion kl- 1. When kl > 1 we shall have a2x/ aw2 

-T-2rM, and when kl<1 (with kl> Ikgl), a2x/aw2-T4T~. 
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It should be pointed out, however, that the condition 
for a possible amplitude maximum and narrowing of the 
line width to which our calculations lead, namely the 
condition kId> (TM/ T)1/2 , is very rigid and is not satis­
fied at the third harmonic. Perhaps allowance for the 
anisotropy and the presence of more than one valley in 
the electron spectrum would lead to the appearance of 
numerical factors that would make it easier for this 
condition to be satisfied. 

Thus, our results are only in qualitative agreement 
with the experimental data on the temperature depen­
dences of the resonance-line amplitude and width. Quan­
titative agreement between the theory and experiment 
will be possible only when a more realistic model of a 
semimetal is developed and more experimental data 
are available. 

l)Kaganov and Fiks[7] were the first to call attention to the possibility 
of a nonexponential transparency of metals associated with genera­
tion of ultrasound. Effects associated with the transport of an elec­
tromagnetic field as a result of its interaction with weakly damped 
oscillations of another kind were discussed even earlier[B]. 

2)According to[9], the induction mechanism for sound absorption is 
significant only at extremely low frequencies or in very strong mag­
netic fields. Estimates made in [4] show that in most cases one can 
also neglect the contribution from the induction forces to the elec­
tromagnetic generation of sound. 
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