
Exact theory of propagation of ultrashort optical pulses in 
two-level media 

L. A. Takhtadzhyan 

Leningrad State University 
(Submitted July 4, 1973) 
Zh. Eksp. Teor. Fiz. 66, 476 ... 489 (February 1974) 

It is shown that the equation a-.,= -sina-, which arises in many branches of physics and in 
particular describes the propagation of ultrashort optical pulses in a two-layer medium without 
dissipation, can be solved exactly under the condition a-(± 00, T)=O (mod21T) by reduction to the 
inverse scattering problem for a certain differential operator. Furthermore explicit solutions can be 
obtained, describing the interaction of so-called 21T pulses (solitons) and 01T pulses (double solitons). 
It is shown that in the interaction of solitons and double solitons their amplitudes and speeds do not 
change, but the phases and the coordinates of the centers make a jump. It is also shown that the 
only soliton collisions that occur are binary collisions between solitons, between double solitons, or 
between a soliton and a double soliton. 

The equation 

&'a 
--:= O'tT= -sino, 
&~ &. 

( 1) 

arises in many branches of physics. In particular, it 
describes the propagation of ultrashort optical pulses 
in a two-level medium without dissipation. The dimen­
sionless quantities ~ and T are connected with the 
space and time variables x, t in the following way: 

~=(Q/c)x, .= (t-x/c)Q; 

Q=(ac)"', a=2nnowoP'/lic, 

where c is the phase velocity of light in the medium. 
Here Wo is the carrier frequency of the incident pulse, 
which is a plane wave propagated along the x axis, no 
is the density of two-level atomic systems in the medium, 
and P is the dipole matrix element for the transition be­
tween the upper and lower levels of the system. 

In our case the electromagnetic field is of the fol­
lowing form: 

E(x, t) =E(x, t)eos (kox-wot) , 

where the connection of a with the amplitude E is given 
by at = PE/n, it being assumed that 

The detailed derivation of Eq. (1) and its application 
to the description of optical pulses are given in a paper 
by Lamb,[ll to which we refer the reader. We point out 
that Eq. (1) has been known for a rather long time in 
connection with the theory of surfaces of constant nega­
tive curvature.[2] It also arises in the theory of dislo­
cations,[3] in some models of field theory,[4-S] in the 
theory of superconductivity /7-9] and in nonlinear me­
chanical models of wave propagation.[IO] Up to the 
present, however, no complete analytical description 
of the solutions of Eq. (1) has been given, and the pur­
pose of many authors has been only to find particular 
solutions of the equation. In the present paper we shall 
give an exact description of the general solution of Eq. 
(1) under the condition: 

S A (~, .)ds=O(mod 2rt). (A) 

which arises naturally in applications. Under the con­
dition (A) Eq. (1) can be solved exactly by the method of 
the inverse problem, if we first identify solutions of Eq. 
(1) that differ from each other only by an integer multi­
ple of 27T. 
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We note that the possibility of solving Eq. (1) by 
the method of the inverse problem was pointed out by 
Lamb,[U] but he did not develop the corresponding 
formalism. In this case we can use the substitution 
A = a~ to reduce E.q. (1), with the boundary conditions 
a( ~, T) - 0 (mod 27T) for 1 ~ 1- 00, to the equation 

A,(x, t) =-sin (XA (z', t)dX') ' (2) 

where to make the argument more intuitive we shall 
from now on give the variable t = T the meaning of time. 
It is assumed that A(x, t) satisfies the condition (A). 

The method of the inverse problem was discovered 
by Kruskal, Greene, Gardner, and Miura[12] and was 
applied by them to the well-known Korteweg-de Vries 
equation. Later Zakharov and Shabat[13,14] applied the 
method to the equation 

iu,+u=+xul ul'=O. (3) 

Furthermore, Faddeev and Zakharov have proposed a 
mechanical interpretation of the method of the inverse 
solution as applied to the Korteweg-de Vries (KdV) 
equation, using an invariant description of infinite­
dimensional mechanical systems. [15] The mechanical 
interpretation of the method of the inverse solution has 
also been applied (cf. [16]) to Eq. (3) in the case K < 0 
and with boundary conditions different from those of 
Zakharov and ShabatY4] 

Let us apply the method of the inverse solution to 
equations of the form Ut=S(u), which can be put (cf. [17]) 
in the form 

&£/&t=[L, M]=LM-ML. (4) 

Here S is in general a nonlinear operator, and Land 
M are linear operators containing the set of functions 
u(x, t) as coefficients. It follows from Eq. (4) that the 
spectrum of the operator L does not change with time, 
and the asymptotic characteristics of its eigenfunctions 
at any instant of time can be easily calculated from their 
initial values. The reconstruction of the set of func­
tions u(x, t) at an arbitrary time is accomplished by 
solution of the inverse scattering problem for the 
operator L. 

It is not hard to verify that Eq. (2) can be written in 
the form (4), where the operators Land M have the 
following forms: 

1 d i 
L= i'2 ax +-ZA (x, t) 'C" 
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M1jJ(x) = -{ 1 [exp (- +(a(x, t) +a(x'. t» ) (To+T,) 

+ exp (+(a(x, t)+a(x', t») (TO-T,)] 'I'(x')dx' 

and To, T1 , T2, T3 are the Pauli matrices 

( 1 0) (0 1) (0 -I) ( 1 0 ) 
'0= 01 ' ,,= 10 ' T,= i 0 "'=\0-1 

We note that the M operator of Eq. (2), is an integral 
operator, whereas the M operators of the KdV equa­
tion and Eq. (3), are differential operators. On the 
other hand, the L operator for our equation is a special 
case of the L operator for Eq. (3). We note that in im­
plicit form the operator L already figured in Lamb's 
work.[ll] 

A number of papers[13,14,17 ,IS] have brought out the 
fundamental role of particular solutions of Eq. (3) and 
the KdV equation, the so-called solitons, which are 
directly connected with the discrete spectrum of the 
corresponding operator L; that is, it has been estab­
lished that for an arbitrary initial condition the asymp­
totic state is a finite set of solitons. In our case an an­
alogous role is played by particular solutions of Eq. 
(1) : 

a(x, t)=±4arctgexp[2a(x-tI4a'+xo)], a>O, 

(Xo is a real number) which we also call solitons, and 
by other solutions 

( ) 4 ( a cos(2c(x+ct!4IAI'-~» ) 
a x, t =- arctg 

Icl ch(2a(x-atI4It.I'+xo)) , 

which we call double solitons. 

In the application to the propagation of optical pulses 
a soliton, or a 211" pulse according to Lamb's classifi­
cation, plays the role of the pulse for the propagation in 
an attenuator, associated with self-induced trans­
parency. A double soliton plays the role of a 01T pulse, 
associated with a more complicated form of self-
induced trarisparency. A soliton is characterized by 
two parameters-the proper velocity v= 1/4a2 and 
the coordinate Xo of the center. A double soliton is 
characterized by four parameters: the proper velocity 
1/41 XI 2 , the amplitude a/ I c I, the coordinate Xo of the 
center, and the phase i3, where X=c+ia. The parameters 
of the soluble soliton and soliton are independent and 
can be chosen arbitrarily. 

The soliton and double soliton are representatives of 
an extensive family of solutions of Eq. (1) which can be 
expressed in explicit form. In the general case such a 
solution (let us call it an N-soliton) depends on 2N 
arbitrary real parameters Vj, Xoj, j = 1, ... , k1; vp' Xop, 
i3p, ap/lcpl, p=1, ... ,k2 , where k1+2k2=N. At non­
identical velocities Vj and vp' an N-soliton solution 
decays as I tl - 00 into solitons and double solitons, k1 
and k2 being the numbers of solitons and of double 
solitons; i.e., the N- soliton solution describes a process 
of scattering of solitons and double solitons. Only the 
coordinates of the centers and the phases change in the 
scattering, the proper velocities and amplitudes remain­
ing the same. Only binary collisions between solitons, 
between double solitons, and between soliton and double 
soliton contribute to the changes in the scattering. 

In comparison with the KdV equation there is a possi­
bility of formation of bound states of a finite number of 
solitons and double solitons having identical velocities. 
For Eq. (3) in the case K >0 this fact was established by 
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Z akharov and Shabat. [13] In the N- soliton case, a bound 
state becomes conditionally periodic with respect to t 
as 1 t 1 - 00. We note that in this way a double soliton can 
be interpreted as a bound state of two conjugate "com­
plex solitons" which do not exist separately. 

The writer's attention was called to the possibility 
of solving Eq. (1) by the method of the inverse problem 
by L. D. Faddeev. He expresses his thanks to L. D. 
Faddeev for his interest in the present work. 

1. THE SCATTERING PROBLEM 

The operator L here differs from the operator L in 
the paper by Zakharov and Shabat[13] only in the choice 
of basis in spin space. Therefore all the results of [13] 

on the direct and inverse scattering problems remain 
valid. We only point out additional properties of the 
given solutions, which arise because the function A(x, t) 
is real, and recall the basic facts of scattering theory 
for the operator L. Throughout most of this section we 
shall not indicate the dependence on t, since in the 
scattering problem the time t p~ays the role of a param­
eter. 

Let us consider the system of equations 

L1jJ = k1jJ. ( 5) 

For real k we define the J ost functions g(x, k), f(x, k) 
as solutions of the system (5) with the asymptotic forms 

g(x, k) =e-ikx (~) + 0(1) as x--oo, 

(6) 

f(x, k) =e"" (~t) + 0 (1) as %-+00. 

For real k the pair of functions g(x, k), g(x, k) 
= T2 g*(X, k) form a fundamental system of solutions, so 
that 

f(x, k) =a(k)g(x, k)+b(k)g(x, k), (7) 

where the transition coefficients a(k) and b(k) are 
given by the formulas 

1 1 
a(k)= 2i{g(x,k),f(x,k)}, b(k)=T;{f(x,k),g(x,k)}, 

(8) 
{g, f} =g./2-g,f,. 

The J ost functions admit of analytic continuation in the 
half-plane Imk >0, and therefore it follows from Eq. (8) 
that a(k) can also be analytically continued into the 
upper half-plane and 

lima(k)=l, Ikl- oo , Jmk:;;'O. (9) 

We also note that 

la(k) 1'+lb(k) 1'=1. (10) 

Since A(x) is real, we easily see that 

a(k)=a'(-k'), Jmk:;;'O, b(k)=-b'(-k), Imk=O. (11) 

We shall assume that a(k) has no zeroes on the real 
axis. (We have unfortunately been unable. to find in terms 
of the function A(x) an effective criterion for the absence 
of zeroes of the function a(x) on the real axis.) It then 
follows from (9) that in the half-plane Imk >0 the quan­
tity a(k) can have only a finite number of zeroes Xj, 
j = 1, ... , N, which, for greater Simplicity and clarity of 
the resulting formulas, we shall take to be simple zeroes. 
It follows from Eq. (8) that 

f (x, Aj) =Cjg (x, Aj), 

and on the basis of Eq. (6) we conclude that the zeroes 
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of a(x) are eigenvalues of the operator L. From Eq. 
(11) we find that the numbers Aj, and also the Cj, j=l, 
... , N, are located symmetrically relative to the im­
aginary axis. 

We shall call the set of quantities 
trek), Aj, mj, ;=1, ... , N}, 

the scattering data of the operator L; here 

b(k) 
r(k)= ark) , 

mj=c Ii da(A;) N , dk' ;=1, ... , . 

We note that a(k) and b(k) can be uniquely reconstructed 
from the scattering data (cf. [19]). 

We shall now say a few words about the inverse prob­
lem. Its solution is based on equations of the Marchenko 
type, which can be obtained by means of the formalism 
in the work of Faddeev. [19]. From the scattering data 
we construct the kernel F(x + y): 

1 w N 

F(u)= 2nI:(k)e-ihU dk+ ~mr"JU (12) 

and let K(x, y) be a real-valued matrix function satis­
fying the equation 

. . 
't,K(X,y)T2+iF(x+Y)'t,+i J K(x,u)F(u+y)'t,du=O, x>y, (13) 

and the condition 
[K(x, v), T,]=O. ( 14) 

Then the required function A(x) is given by the formula 

A(x)'to=2[K(x, x), T,li],;,. 

We note that the matrix K(x, y) is the kernel of the 
transformation operator for the solution g(x, k), i.e., 

g(x, k) =e-ih= ( :) + LK(X, u)e-'" (~) du. 

(15) 

We shall now establish exact formulas for the general 
solution of Eq. (1). It follows from Eq. (4) that the ei­
genfunctions of the operator L obey the equation 

illjl/ilt+MIjl=O. (16) 

More exactly, if the initial condition for Eq. (16) satis­
fies (5), then the solution of Eq. (16) at an arbitrary 
time will also satisfy the system (5) with fixed k. 
Since as I xl -00 

we have from Eq. (16) (as I xl -00) 

8' 1 
iltor !(x,k,t)----;;!(x,k.t), 

from which we easily derive that a(k) is independent of 
the time, while 

b(k, t)=exp (-it!2k)b(k, 0), mj(t)=exp (-it/2Aj)mj(0). (17) 

The formulas (17) give us the general solution of 
Eq. (1).1) 

We now note that the condition (A) is equivalent to the 
condition a(O)=±1. It then follows from Eq. (17) that a 
solution of Eq. (1) satisfies condition (A), provided that 
it satisfies that condition at time t = O. 

2. N-SOLITON SOLUTIONS (EXPLICIT FORMULA) 

Let us consider the inverse scattering problem in the 
case r(k, t) = O. Then the Marchenko equation has a de-

230 Sov. Phys.·JETP, Vol. 39, No.2, August 1974 

generate kernel al'd is easily solved. We note to begin 
with that owing to the condition (14) we have 

K(x, y)=a,(x, y),;O+a2(x, Y)'t,. 

We write the function F(u+y) in the form 
N 

F(u+y)=i ,Em,exp(-iA,u-iA;y)=i(rp(U), Ijl(y» 

and shall look for a 1 , a 2 in the form 

a,(x. y)=(a,(x),Ijl(Y», a,(x, y)=(az(x). Ijl(y». 

Then after obvious transformations the Marchenko 
equation reduces to a linear algebraic system for the 
determination of the functions a1(x) and a2(x): 

a,(x)+iV(x)a2(x) =0, iV(x)a,(x)-a,(x) =-irp(x). 

where the matrix V(x) is defined by the formula 
= 

V;k(X)"'; Jrpj(x') Ijl,(x') dx'; ;,k=l, ... ,N. 

This system, as will be shown in the Appendix, is non­
degenerate, and, using Eq. (15), we get 

A (x, t)=4(a2 (x), Ijl(x) )=+4i Sp( (1-V'(x) )-'V' (x» 
(18) 

. d det(I+V(x,t)) 
=+21-1n , dx det(I- vex, t» 

where in the last form we have included the dependence 
of mj on t, and 

Vj,(x,I)=-.-'-exp -i(Aj+Ak)x--1 . im· ( i ) 
1.,+Ah 2Aj 

Finally, we write the explicit formula for an N-soli­
ton solution a(x, t) of Eq. (1) 

() . det(J+ V(x, I» 
a x, t =+211n --0---:-::-:-:-;----0-:­

det(I- vex, t» 
(19) 

We note that Eqs. (18) and (19) have appeared in a 
paper by Lamb, but without a sufficiently rigorous deri­
vation and without explanation of the conditions imposed 
on the numbers Aj' mj, j = 1, ... , N. From general 
arguments about the solubility of Marchenko equations 
it follows that the functions A(x, t) and a(x, t) defined 
by Eqs. (18) and (19) take only real values. This, by 
the way, will also be proved in the Appendix. 

We note that since 1m Aj >0, j = 1, ... , N, it immedi­
ately follows that A(x, t) goes to zero exponentially for 
x - 00. In the Appendix it will be shown that A(x, t) 
also decreases exponentially for x -....00. 

We point out that for the function A(x, t) defined by 
Eq. (18) condition (A) is satisfied. In fact, in this case 
it follows from (10) that on the real axis I a(k) 12 = 1, 
from which we conclude that a(k) can be continued 
analytically into the lower half-plane, and has poles 
there at the points AT, j = 1, ... , N. Noting the asymp­
totic behavior of a(k) for I kl -00, we conclude that 

lIN k-Aj 
a(k)= k-A" 

J=l ] 

from which we see that a(O) = ±1. 

Let us now examine some special cases of Eq. (19). 

1) A=ia, m=ib, Imb=O. We find then that 

a(x, t)=-4arctg (:a ex'p (2aX- L t)), 
i.e., we have a soliton with velocity v = 1/4a2 and 
center coordinate 
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1 Ibl 
xo=-In-. 

2a 2a 

In our present case 

S A (x, t) dx=o( 00, t) -o( -00) =-2n sign b. 

That is, we have a 21T pulse. 

2) Al=ia1, A2=ia2, aI, a2 >0, m1 =ib1, m2=i~, Imb1 
= 1m ~ = O. After some simple calculations we find that 

(! a.+a,! Ch('/,(W.-w,))) o(x, t) =4 arctg ._- sign b. . , 
a.-a, sh ('/,(w.+w,+2~)) 

(! a,+a,! . Sh('I,(W,-W,))) 
o(x, t) =4 arctg -- sign b, . , 

a,-a. ch('/,(w.+w,+2~)) 

Wi= 2ai(X+XOi)--t , 
2ai 

1 I bil 
xOj=-ln--, 

2aj 2aj 

! a.-a,! a=In --L- , 
al I a2 

;=1,2; 

b.b,>O, 

Le., we have a two-soliton solution with velocities 
vl=1/4aL V2= 1/4aL and center coordinates Xol, X02' As 
will be shown further on, for t - ±oo this two-soliton 
state decays into two solitons with these same veloci­
ties and when changed center coordinates X<Tl' X<T2' 

We note that for bl~ >0 we have a 41T pulse, for 
bl~ < 0 a 01T pulse. 

3) A1=c+ia, A2=-A{, ml=d+ib, m2=-m:. After 
elementary transformations we find that 

( ) ( a cOS(2e(x+etI4IAI'-~))) 
o x, t =-4 arctg 

lei ch(2a(x-atI4IAI'+xo)) , 

1 ! me ! 
Xo = 2a In 2Aa ' 

Le., we have a double soliton with velocity v= 1/41 A1 2, 
phase fl, center coordinate Xo, and amplitude a/I cl. 
F or I t I - 00 the double soliton does not decay, but 
moves as a whole; that is, the double soliton is an ele­
mentary object, as is the soliton. For Itl- oo , as can 
be seen from the formula as written, the main contribu­
tion to the double soliton comes from the part periodic 
in t. 

We also point out that the double soliton is a 01T 
pulse, i.e., 

~ 

S A (x, t) dx=o (00, I) -0 (-00, t) =0. 

3. N-SOLITON SOLUTIONS (ASYMPTOTIC BEHAVIOR 
ASltl-+ oo) 

Let us study the behavior of an N-soliton solu­
tion for large I tl. We shall confine ourselves to the 
case in which all the velocities Vj' vp are different. 
Then the N-soliton solution decays for I t I - 00 into 
solitons and double solitons diverging from each 
other. To verify this, we arrange the Vj, vp in 
decreasing order: VI>'" > Vkl+k2 , and consider the 
limit of a(x+vlt, t), l~[~kl +k2, as t- oo • For definite­
ness we investigate the case when A[ =-Ai ' Le., A[ = ia[, 
a[ >0. 

To begin with we note that 
det (l+V(x, t))=det U+W+(x, t)); 

2(Uj'i' 
W j• (x, t) = --' -' - exp (V (x, t) +~k + (:r, t)), 

1c;+f .• 
i 1 mj Jt 

V(x,t)=-iAjx--t+-ln-+i-, 
41., 2 2Aj 4 

and use the well known formula (cf. [20l) 

231 SOy. Phys.-JETP, Vol. 39, No.2, August 1974 

" 
det(I+W)=1+ L:L:e(j" ... ,;")exp(2(~i,++,,,+~j :)), 

11=1 NCn (20) 
A(;" ... ,j,,) = If 8(j", ;,), 

where Nen is the set of all choices of n out of N ele­
ments. We then find that 

Re~/(x+v,t, t)--oo as t_oo (1";;;;<1), 

Re~/(x+v,t, t)_oo as t_oo (l<;";;;N). 

We now use the following factorization (cf. [21l) 

det(I+W+) =exp(2(~,:,+ ... +~.v+))f,+, 
f,+=A exp(2(~.++ ... +\;,+)) 

+B exp(2\;,+)+C+ ... +D exp( -2(~,+,+ ... +~N+))' 

We note that there are analogous formulas for det(I 
- V)x, t)), in which 1:j is everywhere replaced with 
1:j = 1:j -i1T/2. Accordingly we find that 

lim o(x+v,t, t) 

=+2iIn[ (_1)"" C+(im,/2A,)Bexp(-2iA,x) ] 
-=C:---'(-im-,-:-:/2:--A--:-,)-=B:-e-x=-p -:-( --'2:-iJ..:-,x-:) , 

and, using the fact that Eq. (20) gives the relation 
B N 

-(5 = II 8 (l, il , 
.1=/+1 

we conclude that 
lim o (x+v,t, t) = lim o(x+v,t, t; V" xO/+) (mod 2n), 

,~~ 

where a(x, t; V[, X;;Z) is a soliton with the parameters VI 
and X;;l: 

1 Im,l 
xOl=-ln--, 

2a, 2a, 

+. 1 y., IJ..i-J..,1 
~ xo·=- , In--. 

a, ~ IAi+Ic,1 
)=/+1 

(21) 

* In the case A[ =-AZ+l we find similarly, using Eq. (20) 
and the corresponding factorization, that 

lim 0 (x+v,t, t) = lim 0 (x+v,l, t; v" xo,+, C" ~,+) (mod2n), 

where a(x, t; V[, X~[, CI, f3[) is a double soliton with the 
parameters 

v,=1/41J..d', XO'+=XOl+~+XO/, p,+=p,-t-"'+PI 

and with the amplitude aI/I cZI, where 

1 m, 
PI = 2c, arg '2.J.., ' 

(22) 

Similar formulas corresponding to Eqs. (21) and (22) 
hold as t -_00. To obtain these formulas all we have 
to do is to take the sums indicated in Eqs. (21) and (22) 
from 1 to Z- 1. Also if v is a number such that v;" Vj, 
j = 1, ... , kl + k2' then just as before we find that as 
Itl- oo , a(x+vt, t) goes to zero exponentially, and this 
proves that the N-soliton solution decays into solitons 
and double solitons for It 1-00. For t - 00 the fastest 
one of the solitons and double solitons is ahead, and the 
slowest is behind. As t --00 the arrangement is re­
versed. 

Equations (21) and (22) enable us to describe the 
process of scattering of solitons and double solitons. 
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As the time t varies from --00 to 00 there is a change 
of the coordinate of the center of the l-th soliton: 

+ _ 1 (~N IA,-A,I ~l-1 IAj-Ad) 
6xOI=6 XOI-t. XOI=- In--- In--

a, IA;+A,I I Aj+A, I 
]=1+1 i_I 

and a change of the center coordinate and the phase of 
the p-th double soliton: 

+ - 1 (f, IA;-Apl 1:"-' IAj-API) 6xop=6 xop-6 Xop=- J In--- In--
ap"'""-l IAj+Apl . IAj+Apl 

J=p+2 3=1 

These formulas can be interpreted by supposing that 
the solitons and double solitons collide with each other 
and among themselves in pairs. In each binary colli­
sion of a soliton with a soliton the faster is shifted 
ahead by the amount 

1 IA;+A,I 
-In-- V,>Vh 

a, IA;-A,I' 

and the slower is shifted back by the amount 

~InIA;H,I. 
a; IA;-A,I 

In a collision between double solitons the faster is 
shifted ahead by the amount 

~In IAj+A,IIA1+.+A,1 
a, IA;-A,IIA;+I-A,I ' 

and the slower is shifted back by the amount 
~In IA;+A,IIA;+.+A,I . 

aj IA;-A,IIAj+l-A,1 

Finally, in a collision between a soliton and a double 
soliton the faster-for definiteness suppose it is the 
soliton-is shifted ahead by the amount 

~ In IAj+A,IIA;+.+A,1 
a, IA;-A,II "j+.-A,I 

and the slower-the double soliton-back by the amount 

We note that if we take the "mass" of the l-th soliton to 
be ai, and the "mass" of a double soliton to be 2al, then 
a law of conservation of "momentum" holds in binary 
collisions. We also point out that the total displacement 
of a soliton or double soliton is equal to the algebraic 
sum of its shifts in the binary collisions, so that there 
is absolutely no effect of many-particle collisions. 
There is a similar situation with the phases of double 
solitons. 

We note that the existence of binary collisions only 
for the KdV equation and for E,\, (3) was established in 
papers by Zakharov and Shabat. 13,14,181 

4. BOUND STATES AND MULTIPLE ZEROES. 
CONSERVATION LAWS 

The velocity of separation of a pair of solitons (or a 
pair of double solitons, or a soliton-double soliton pair) 
is proportional to the difference of their parameters Vj. 
For identical velocities the objects do not separate for 
large Itl, but form a bound state. Let us consider the 
bound state of a soliton and k2 double solitons, 1 + 2k2 
=N,where Aj"'><k for j;o'k; j,k=l, ... ,N and Vj=v, 
j = 1, ... , k2 + 1. Then it can be seen immediately from 
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the general formula (19) that the main term in the 
bound state will come from the conditionally periodic 
part of the solution, which is characterized by k2 fre­
quencies Wj = Re 2Ajv, where Aj = A]+l' j = 2, ... , N. 

We have so far been considering the case in which 
all the zeroes of the function a(k) are simple. We can 
deal similarly with the case of multiple zeroes if we 
change the term in the kernel of the Marchenko equa­
tion which is obtained by the theorem of residues, since 
the residues of the function l/a(k) will be of different 
form. In all other respects the scheme described above 
is still valid. 

Equation (1) has an infinite set of conservation laws; 
this follows simply from the fact that the function a(k) 
is independent of the time. A characteristic feature 
of equations solvable by the method of the inverse prob­
lem is the presence of so-called polynomial conserva­
tion laws, i.e., functionals of the form 

1,,(0)= S Pn(cr,cr., ... )dx, n=1,2, ... , 

where P n is a polynomial in its arguments (cf.[13,14,22J). 
These conservation laws are also due to the fact that 
a(k) is constant in time. There exists a regular method 
for expressing such conservation laws i based on trace 
identities for the operator L (cf. [13-15 ). We give a 
recurrence formula for the polynomials P n (Cf. (131): 

n>l, 

ik>O 

We note that one can obtain a·different series of con­
servation laws by starting from the expansion of a(k) in 
a Taylor's series in the neighborhood of zero: .. 

a(k)= )I lInkn. ......, 

Because of lack of space we give only the expressions 
for the first two coefficients: 

a,=±l, a.= 7X(1-coscr)dx. 

APPENDIX 

1. Let us consider the solution of the homogeneous 
system +a1(x) + iV(x)a2(x) = 0, iV(x)a1(x)- a2(x) = O. Intro­
ducing O!lX(Y) = (ab), ifJ(y)) and 0!2X(Y) = (a2(x), ifJ(y)) and 
using the definition of the matrix V(x), we find that 

. . 
+a •• (y)+i S a,.(u)F(u+y)du=O, 

. 
i J a,; (u)F(u+y)du-a,;(y) =0. 

We multiply the first equation by O!~x(y) and the sec­
ond by 0!2X(Y), and integrate over y from --00 to x. Sub­
tracting the first equation from the second and USing the 
formula for F(u+y), we get . 

J (la,x(Y) 1'+ICG,.(y) 1')dy=O, 

i.e., O!lX(y) = 0!2X(Y) = 0 for y::= x, from which we conclude 
that a1(x) = a2(x) = O. 

2. Let Aj =-Aj and mj =-mf for 1::= j::= K, and Aj 
= A]+l and mj =-mj+1 for K < j ::= N. This can always be 
achieved by renumbering the Aj and mj, j = 1, ... , N. 
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It is now to be noted that the matrix I + Y*(x) is ob­
tained from the matrix 1- Y(x) by successive binary 
interchanges of column number K + 1 with the columns 
numbered K+2, ... , N-l, N, and of row number K+l 
with rows K+2, ... , N-l, N; that is, after N-K (sic) 
interchanges we obtain from 1- Y(x) the matrix 1+ Y*(x). 
Owing to a well-known property of determinants we find 
that 

det (I+V'(x»=det (I+V(x»)'=det (I-V(x)), 

since N-'K (sic) is even. 

3. We note that 

det (AI+ V(x» =AN+at (x)A·v- t + .. . +a", (x) , 

where ak(x) is the sum of the k-th order minors of the 
matrix Y(x) in which the rows and columns have the 
same set of .indices. Since each such minor is of the 
form of the matrix Y(x), on setting A = 1 in the equation 
just written, we find that 

N 

det(I+ V(x») =1+ ~ La(jt'"'' i,,)exp(-2i(1.,+ ... H;,.lx). (A.l) 
n=1 NC" 

Denoting det(I + Y(x)) by 6.(x) , we get 

A(x)=+2i~ln Ll(x) = +2i Ll'(x)L'l'(x)-~(X)Ll"(x) 
dx L'l'(xl - 1L'l(x) I' 

We note that for x -00 the largest contributions to 
numerator and denominator come from their terms 
containing 

exp ( -4i .t I.;X) . 
j=1 

However, using Eq. (A.l), we can verify that in the 
numerator this term comes in with the coefficient 

N N 

la(l, ... ,N) I' ~2(-A;') +Ia(i, .. . IV) I'L 2(-1.;) =0, 

whereas in the denominator its coefficient is 1 det Y 12 , 
where 

m, 
Vi< = Aj+A,' j, k=l, ... , N. 

The fact that detY "'0 is well known (cf. e.g., [23J). Now 
from the fact that 

we conclude that A(x) decreases exponentially for 
x -00. 
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I)The formulas (17) are also contained in a paper which has recently 
appeared: M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, 
Phys. Rev. Letters 30, 1262 (1973). (Note added by authors, 
September 21, 1973.) 
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