
The connection between various inclusive processes in 
quantum electrodynamics 

E. A. Kuraev, L. N. Lipatov, and M. I. Strikman 

Leningrad Institute of Nuclear Physics 
(Submitted August 1, 1973) 
Zh. Eksp. Teor. Fiz. 66, 838-848 (March 1974) 

The connection between inclusive spectra f(x, k1 ) = da/iJx3 2 kl is considered. For the conjugate 
reactions a +b~c + any thing and a +c~ii + any thing, as calculated by means of inelastic Born 
amplitudes, the relation fi,~,(x,kj.' s)=-x -1J;~b(1/x,klx, -xs) is obtained. 

1. In the theory of hadron interactions at high ener­
gies there has been increasing interest in recent years 
in the study of inelastic processes with so-called in­
clusive experimental arrangements, in which one meas­
ures only the momenta of certain final particles, with 
arbitrary momenta of the other observed particles Y J 

In quantum electrodynamics, owing to the fact that 
the photon mass is zero, any observable process is 
necessarily inclusive, since it is accompanied by an in­
finite number of undetected photons. Recently a number 
of inclusive processes occurring in colliding beams 
have been investigatedY-5] 

In the present paper we show that inclusive cross 
sections calculated by means of inelastic amplitudes in 
the Born approximation and differing from each other 
by the interchange of an initial particle with one of the 
final particles are connected by simple relations, Eqs. 
(21) and (22). These relations considerably reduce the 
volume of the calculations, and are useful for securing 
consistency in calculations of various processes in 
quantum electrodynamics. Radiation corrections break 
these relations. 

In describing hadron scattering processes at high 
energies, multiperipheral models are used with suc­
cess. The relations (21) and (22) hold for these models, 
and are indeed simplified owing to scaling invariance. 
Reactions in which these relations are violated conse­
quently cannot be described in the framework of simple 
multiperipheral models. Analogous relations for the 
matrix elements of processes in quantum electrody­
namics have been widely used, in particular in papers 
by Bethe, Maximon, and Olsen.[6J They are first men­
tioned in the literature, under the name of the "substi­
tution law," in the book of Jauch and RohrlichY] 

In Sec. 2 relations connecting the cross sections of 
conjugated processes are derived. In Sec. 3 these rela­
tions are illustrated with the examples of the following 
conjugated reactions: 

1) e'·e-~e;e··, and e+,~e+e+e-, 
2) e+e-~e+e-n, e+,~e+e+e-, and n~e+e+e-e-, 

and also in terms of the symmetry properties of the 
reaction e+e- - e'e+e-e-. 

In conclusion, in Sec. 4 we discuss the possibility of 
using the relations to analyze inclusive spectra involv­
ing hadrons, and also consider the causes of breaking 
the relations, by taking non-Born diagrams into account. 

2. Let us consider the reaction a + b - c + c 1 

+ ..• + cn , and the reaction b + C- - a + c 1 + ... + cn: 
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We shall suppose that s = (P, + P2)2 » mi, and also that 
-s = -( -k + P2)2» mt where 

jI.=-k, k=-p,. (la) 

Let Ma- c be the amplitude of the first reaction, and 
let MC--a be that of the second. Then the matrix ele­
ments are connected by the crossing relation 

(2) 

We note that the relation (22) connects two ampli­
tudes in the phYSical and in the nonphysical regions of 
the respective reactions. In the Born approximation the 
analytic continuation of Eq. (2) is trivial. We are inter­
ested in the behavior of the cross sections at large 
energies., so that it is convenient to work in the Sudakov 
variables ' ) CI', (3, k1 ,[8] where 2) 

m' 
P/=Pl--P2, 

S 

m' 
p,'=p,--p" 

s 
(3) 

Let us also introduce Sudakov's parametrization for the 
momenta of the particles in the conjugated reaction: 

We now find the law of transformation of the Sudakov 
variables for the change to the conjugated reaction. 
ExpreSSing the vector Pl in terms of the Sudakov 
parameters of the conjugated reaction: 

p,=-iJj5/+Bk'-k.L, j5,''''p" 

k'=k-m'p/!2kp" 
(5) 

and then going back again to the Sudakov variables of 
the direct reaction: 

p,' .. - ~p/=p,= -up/-k.L +~ (ap,'+~p,'+k.L- m'p,') (6) 
s 2k~ 

and comparing the coefficients of p~, p~, and k i , we get 

Carrying out analogous operations for the vectors ki, 
we get 
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(7) 

(8) 
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k 'k ~i 
f.,L= i.l.--k.,L, 

~ 
(9 ) 

Accordingly, in Sudakov variables the crossing rela­
tion (2) takes on the following appearance: 

Mo-,(kJ.' ~, kilo' ~i' s) =M'_ii(liJ.' ~, k,J." ~/, -~s), (10) 

where the variables on the right-hand side are defined 
by Eqs. (7)-(9). 

Let us now examine the connection between the cross 
sections of conjugated processes. 3) To do so we write 
the expression for the cross section in Sudakov vari­
abIes: 

""!"_,(~, ~" kJ.' kilo' s)d~d'kJ.e(~) 

x IT d~id'k'J.e(~i)e (1-~- I:~). 
1=1 i=l 

Let us compare fa-c(,B, i3i, kl' kil' s) and fe - a({3,,BL 

ktl' kl' s). We have 

h-.(~, ~/, liJ., k;', s) = 21~1 1M.,_iil' (12) 
1 '-.-1 1 4tt n-I_I 

x (2n)J'2~II 2(2n)3~,' lsi [1-~- L~i] . 
1=1 i=1 

+ [m'-(.E kiJ.'+kJ.)'] [s (1-~-t ~i)] -I). 
i=1 i=::1 

Substituting Eqs. (8) and (9) in this equation, we get 

f"-,(~, ~" kJ.' kilo' S)=( -+) nh_ii(~' ~;', liJ.' k/, s). (13) 

Let us denote the differential inclusive cross section 
dn/e,Be,Bie2kle2kil for the process 

m 

a+b --- C+ L c,+ anything 

by <Pa - c + m' Using the fact that the dependence of kil 
on kil and that of ,Bi on ,B i are linear [see (9 )], and 
also that in Eqs. (11) and (12) the integration over kil 
is taken over the entire plane, we have, integrating Eq. 
(13), 

(14) 

In particular, for a one-particle inclusive process the 
re lation will be 

1 (1 kJ. ) <jJ"-,(~,kJ.,s)=-T<jJ'_ii T'T -~s , (15 ) 

(16) 
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Let us denote by c.oa-c +m the inclusive distribu­
tion in fractions of the energy. Then 

if"_'+m(~, ~" ~m, s) = (_1)m+l_l_<ji'_ii+m(~, ~,', ~:, s). (17) 
~m_1 

If the particles have spin, then one must average over 
spins of the initial particles and sum over spins of the 
final particles. This means that in the right-hand sides 
of Eqs. (13)-(17) one must insert a factor 11 = sals~\ 
where sa and Sc are the numbers of spin states of the 
respective particles a and c. Besides this, if the parti­
cles a and c have different statistics we must multiply 
the right-hand sides of Eqs. (13)- (17) by -1, since the 
density matrices of a fermion and an antifermion differ 
in sign [cf., e.g., the connection further on between 
Eqs. (25a) and (25b)]. 

We shall now show that the relations (15) and (16) 
remain the same if there are identical particles, and 
see how this alters the other relations. We call atten­
tion to the fact that this is the main point of difference 
between inclusive and exclusive cross sections. 

Let us consider the exclusive reaction b + Il 
- (n + 1)N + mj..L, where j..L and N are particles of dif­
ferent kinds, and the conjugated reaction b + N - nN 
+ (m + 1) j..L. Here Eq. (13) is altered in the following 
way: 

( 1) n+m+1 
(n+1) f'_(n+I)Ntm, = (m+1) - T !1i_nN'Hm+!)" (18) 

since there is a factor (k!fl in the definition of the 
cross section for the production of k identical particles. 

We shall show that the inclusive reactions 

b+p,---(n+1)N+mfL+ anything 

b+N---nN+(m+1) fL+ anything 

are connected by a relation analogous to (18). 

(19a) 

(19b) 

ConSider the contributions of the exclusive cross 
sections 

b+p,---(n+1+r,)N+(m+r')fL (20a) 

to the inclusive process (19a), and of those of the 
process 

b+N--- (r,+n)N+(m+1+r,) fL (20b) 

to the inclusive process (19b). It is obvious that in (20a) 
we must take each cross section with the weight 

C~ ~ ~ + r1' C~ + r 2' and also those in (20b) with the 
. n m+l 

welght Crl +nCm + 1 + r2' Using (18), we have after in-
grating over all unobserved particles: 

( 1) n+m+l c,7+nC:::!:+" (n+1 +r,) 
'Pii-+(n+ON+ml1= -13 fPN-+nN+(m+t)l1cn+1 (r2+m+l)Cm 

n+t+rJ m+r2 

( 1) n+m+' n+1 
= -~ cpW-+nN+(m+OI1 m+l . 

Thus we get the following connection: 

(m+1)<p'_(n+l)N+m,(~, kJ.' ~i' kilo,S) 

= (- -+ ) n+m+l (n+1)<p1i_nN+(m+l"'(~' liJ,., ~,', kilo" S) 
(21) 

and, in particular, for the case of an ordinary inclusive 
reaction a + b - c + anything (i.e., m = n = 0), Eqs. 
(15) and (16) remain valid. In the case when the particle 
c to be detected is an antiparticle relative to a, the 
functions (Pa-c and c.oc-a coincide. Denoting both of 
them by X' we have: 
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x(x, s) ~-xx(1/x, -XS). (22) 

These relations (13)-(17), (21), (22) determine the 
behavior of the cross section of the conjugated reaction 
in the nonphysical region. In particular, in the relation 
(22) the physical region of variation of x, 0 < x < 1, is 
connected with the nonphysical region, x> 1, and con­
sequently it becomes necessary to continue through the 
pOint x = 1. Analogously, in Eq. (21) {3i must be contin­
ued from the region !3i > 0 into the region !3i < O. In such 
an analytical continuation there are, first, changes of 
the signs of sand u, and also of their re lati ve value, 
and second, (PI, ki) and (k, ki) change their signs. Ac­
cordingly, there can be obstacles to the analytical con­
tinuation (in Hegge-pole language) as follows: 1) singu­
larities of the inelastic amplitudes, associated with sig­
nature phenomena in s, 2) singularities at x = 1, asso­
ciated with the three-reggeon limit in the reaction a + b 
- c + anything, and corresponding signature factors for 
these reggeons, 3) low-energy singularities, associated 
with thresholds in the final state with respect to (k, ki) 
and (Pi, kilo In the Born approximation for the inelastic 
amplitudes all of these singularities are absent. 

In the higher approximations, in all of the diagrams 
we have checked, the singularities of the first and sec­
ond types are only logarithmic, and the correct answer 
is evidently obtained if in the continuation these 
logarithms are understood in the arithmetic sense 
(cfY]). Singularities of the third type can seriously dis­
rupt the entire procedure (see Sec. 4). 

Let us examine some consequences of the relation 
(22) under the condition that for s - "" the function X 
becomes no longer dependent on s and that X is ana­
lytic at the point x = 1. Then the general solution of the 
functional relation (22) can be written in the form 

x(x)~(l-x)<p((1-x)'/x), (23) 

where rp(y) is analytic at y = 0 and is positive for 
y > 0 (cf.[IO]). 

Let rp (Y) = a + bY for small /; then to accuracy up 
to (1 - X)4 we have 

x(x) ~a(l-x) +b (l-x)"+b(l-x)'. 

In the general case the relation (23) requires that X 
vanish as an odd power of 1 - x. 

3. We shall demonstrate the usefulness of the rela­
tions we have derived by using them to calculate some 
electrodynamic processes. 4) 

Let us consider the differential distribution in the 
energy fraction x = EjE received by the positron from 
the photon in the process of photoproduction of a pair 
e+e- on an electron: 

This quantity has the form 

do/dx~2~ro'[In(s'x'( i-x) ') -I]· 
. [i-'/,x (i-x)], m,~1. 

(24a) 

(25a) 

By means of the relation (16) we shall find the spectrum 
in the fraction of the original electron energy which is 
carried away by the photon in the process of single 
bremsstrahlung in the collision of an electron with a 
nucleus [11]: 
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(24b) 

(We note that in the right member of Eq. (16) we must 
change the sign because in this case the initial and final 
particles have different statistics.) We get 

do 1 [ ( (l- Y)') ] [ 4 ] -=2~ro'- In s'--- -1 y'+-(1-y). 
dy y y' 3 

(25b) 

Let us now consider the process of double brems­
strahlung in opposite directions in the c.m.s. of collid­
ing electrons: 

The differential distribution in the fractions x, and 
X2 of the initial energy of the e + and e - that are carried 
off by the photons, for process a in (26) is of the 
form Ll2 ] 

d'o _ 8~'ro2 [1'] (~-1) (~-i ) 
d~, d~, - -n- 'a, ~, 

+112a,~,+1'],(~,(L-l)+a,,(~~ -i))], (27a) 

5 7 7 1 7 
11'~4+8~(3), 112=8'£(3), 1']3=2'+8'W). 

Multiplying the right-hand side of Eq. (27a) by X,X2 and 
making the substitution 0' 2 - xi" !3 I - xi" [see Eq. 
(16)], we obtain the differential distribution in the frac­
tions of the energy carried off by the positrons of the 
final pairs in the process of production of two pairs by 
two photons [see diagram b of (26)]: 

d'o Sa'r," [ ] 
._----='-- 1'],J:.(i-x.)x,(1-x,)+1'],--1'],(x.(1-x,)+x,(1-x,» _ 
dx. (h, n 

(27b) 

Integration of this expression over x, and X2 gives the 
total cross section for production of two pairs by two 
photons L13]: 

(28) 

From the differential cross section for double 
bremsstrahlung, Eq. (27a), we can also obtain the dif­
ferential cross section for production of a pair by a 
photon on an electron with the emission of an additional 
photon [diagram c of (26)]. To do so we must multiply 
the right-hand side of Eq. (27a) by y and make the sub­
stitution /31 - y-'; the result is 

dOTe+-+Te+e+e- 8a.4 
[ (1 ) -- 1'], --1 y(l-y) 

dyda, 1t a, (27c) 

-1']2a,-1']3 C2 -l-a,y(l-y) )] . 

We note that the cross section (25b) remains un­
changed if we multiply the right-hand side by -(1 - y) 
and everywhere replace (1 - y) with (1 - Y r'. The 
cross section (27b) is unchanged if we perform the 
same operation with (1 - x), and the cross sections 
(27a) and (27c) remain unchanged under the same opera­
tion with (1 - /31) and (1 - y), respectively. This is a 
consequence of the relation (22) and the fact that we are 
considering the amplitude in the Born approximation, in 
which the cross sections for interaction of particle a 
with particle b and for interaction of the antiparticle a 
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with the particle b are equal (in the limit as s - ""). 

With increase of the number of particles in the final 
state the number of symmetry relations for the differen­
tial cross sections becomes larger. As an example let 
us consider the process e+e- - e+e+e-e- under kinematic 
conditions with the new pair moving in the direction of 
the electron. In the Weizslicker-Williams approxima­
tion the differential cross section in the energy frac­
tions x, = E,/E, Xz = EzlE of the final electrons in the 
c .m.s. system can be written in the following form: 

do/dx,dx2=/(X" x,)ln s, (29 ) 

where f(xI' xz) satisfies the following symmetry rela­
tions, owing to (17): 

( XI X') 
/(X"X2)=/(X2,X I)=/ A'6 

(30) 

(1 ~) (1 ~) =f - - =f -,- , 
Xi' Xi Xz Xz 

where ~ = Xl + X2 - 1. 

There are contributions to f(xI, xz) from three 
types of diagrams: Bethe-Heitler diagrams, [5,14] de­
celeration diagrams,[15] and interference diagrams[4] 
which arise from the fact that the final electrons are 
identical: 

f(x" X2) =/BH(xl, x,) +!;nt (XI, x2)+fdee(X" X2). (31) 

Under the transformation Xl - xr/~, X2 - x21 ~ the 
Bethe-Heitler diagrams go over into deceleration dia­
grams, so that 

f BH(XI, X2) =f, (x.!~, x2/~). (32) 

Consequently, to find the contribution of the decelera­
tion mechanism it suffices to know that of the Bethe­
Heitler mechanism.[ l4l 

The quantity fint{XI, X2) is the sum of contributions 
from four gauge-invariant sets of diagrams: 

or 

fint (XI, X2) =f,(x" X2) +/b(XI, X2) +/c(x" X2) +/d(XI, X2). 

The expression for fd(xI, xz) is given in Appendix 2 of 
of[4 l , which also gives a connection between fa, fb, fc' 
and fd derived by means of a relation completely ana­
logous to Eq. (17). Thus in this case the relation (17) 
allows us to shorten the work of calculation by a factor 
four. We shall not give the expression for fint{x" xz) 
because of its cumbersomeness; we remark only that it 
satisfies a relation identical with the relation (30) for f. 

4. In this section we shall demonstrate with one ex­
ample how the relation given above are broken when the 
radiation corrections to the inelastic amplitudes are 
taken into account. Let us consider the two conjugated 
reactions: 

e-e--e-+ anything; e+e--e++ anything (34) 

The distribution in the fraction ~ of the energy of 
the initial positron which is carried away by the final 
positron in the second of the reactions (34) is the same 
as the analogous distribution for the first reaction, up 
to very high orders of perturbation theory, in which the 
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inelastic amplitudes with one-photon and with two-pho­
ton exchange begin to interfere. Therefore, if we do not 
go to such high orders, we expect that the simple rela­
tion (16) will be valid for each of these reactions: 

f(~, s)=-~f(l!~, -~s). (16a) 

We shall show, however, that this relation is violated as 
soon as we study the radiation corrections to the sim­
plest exclusive process, e-e- - e-e-Y, which leads to 
a nontrivial dependence of the inclusive cross section 
on ~. [We note that the relation (16a) is satisfied for 
the process e-e- - e-e-YY in the Born approximation(15 j 

(see also (27a)).] From the relation (16a) it follows in 
particular that for small 1 - ~ and large s the cross 
section should be of the form 

f(~) =c,M(1-~)+c2(1-~)+O( (1_~)2). (35 ) 

This is precisely the form of the cross section for this 
reaction as calculated in the Born approximation for 
s - 00 [cf. Eq. (25b)]. We shall show, however, that the 
behavior of the first radiation correction f, (~) for 
~ -1 is as follows [see Eq. (41) below]: 

/I(~) I'_I-const, 

and this contradicts the relation (35), which is a conse­
quence of the substitution law, Eq. (16a). 

To calculate fl (~) we use the Weizsacker-Williams 
method: 

2a f~ dx 
dOec-+c<'T=.-lns -doeT_"TI 

rt 0 X 
(36) 

where dUe Y_ e Y is the radiation correction to the dif­
ferential cross section for elastic Ye scattering, the 
momenta of the electron and photon in the initial state 
being respectively p and k. The invariant K = 2(k, p) 
is connected with the energy of the photon in the labora­
tory system: w = K!2m. The differential cross section 
can be expressed in terms of the radiation correction 
UI (KI, Kz) to the amplitude for the Compton effect in the 
following way: 

UI(X,X2)=P.(XI, X2)+P I(X2, XI)' 

x,""x=2(k, p), x2=-2(k', p), 

t= (k-k') 2=XI+X2, 

(37) 

where k' is the momentum of the final photon. The 
expression for PI (KI, KZ) has been calculated by Brown 
and Feynman.[16] We need only the expression for 
duee _ ee Y for ~ - 1. The condition for the final photon 
to be real, expressed in Sudakov variables, can be 
written: 

1-~ = (k.c"_'A2) lx" 

where A is the photon mass. 

(38) 

It is obvious from Eq. (38) that for ~ - 1 the square 
of the momentum transferred from the initial photon to 
the final photon is much smaller than their energy in 
the c.m.s. We must consider two regions in the integra­
tion over K: 

1) The region -t ~ mZ« K corresponds to the ordi­
nary three-reggeon limit; if the photon has mass A ~ m 
for ~ - 1 there is a contribution only from this region, 
and this contribution is small: 

do f~ dx 1 
-- ---(1-M 
dl1 m 2/(t_d) 'K 'X 
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and does not contradict Eq. (35). 

2) The region of integration -t « K ~ m 2 , for 
A-I, comes in only for 11.2 = 0, according to Eq. (38). 
In this region K2"" -Kl == -K, and the expression for the 
cross section of the Compton effect, Eq. (37), can be 
written in the following form 

(39) 

where in this special case the expression for Ul (Kl, K2) 

can be greatly si mplified [17 J: 

{ 3-x' 3 1 
u, (x, -x) = x' (i-x')' In x + -;z + 2x'(x+1) 

1 2 -S· d1 [4 x ] +. +~ --In(-l) ---2+-
2x'(1-x) x"" 1-1 x 2 

(40) 

-~J' ~ln1[i.--2-~]}. 
x' Q 1-1 x 2 

Using Eqs. (39) and (40), we can rewrite the expression 
(36) in the form 

da=/, (11, s)dl1, 

4a2T02 
I, (11, s) 1,_" = - --In s 

.IT 
(41) 

Accordingly we have found that for A-I the quantity 
fdA, s) approaches a constant, which contradicts the 
relation (35), and consequently the relation (16a). This 
means that when there are radiation corrections to the 
inelastic amplitudes the simple relation (16) for the in­
clusive cross section does not hold, generally speaking. 
It is not known whether there exists a generalization of 
this relation which takes in cases in which the inelastic 
amplitudes are not treated by perturbation theory. In 
this connection, whether or not Eq. (16) holds can serve 
as a criterion of whether a given process is described 
by a sum of Born inelastic amplitudes. This is espec­
ially interesting for strong interactions, where there is 
no completely consistent theory. 

Processes of multiple production at high energies 
have been successfully described by the use of multi­
peripheral mode IS, in which all processes are described 
by sums of Born inelastic amplitudes. Consequently, it 
would seem that the relations of Sec. 2 would apply to 
them. Usually, however, in multipheripheral mode Is one 
introduces propagators of the Regge type with Singular 
multipliers, and also form-factors. This changes the 
analytic structure of the expressions and makes it im­
possible to continue the relation (22) through the point 
x = 1. At the same time it is not clear how large the 
singularity at x = 1 is, nor whether the function violating 
Eq. (22) is a small correction. Therefore it is of partic­
ular interest to test the main predictions following from 
the re lations of Sec. 2, name ly : 

a) In reactions of the type PiT + - iT - + anything, for 
x close to unity the differential cross section goes to 
zero as an odd power of (1 - x). 
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b) The distributions for the reactions pK+ - iT + 
+ anything and PiT- - K- + anything match each other for 
x close to unity. The experimental data now available 
are insufficient for such testing. 

The writers thank N. P. Merenkov, M. G. Ryskin, 
V. S. Fadin, and V. A. Khoze for helpful discussions. 

l)For simplicity we suppose that the masses of all the particles are equal. 
2)We recall that the variable (j coincides with the Feynman variable X. 
3)We assume that all the particles are scalar and nonidentical. The 

complications that arise when we do not use these assumptions will 
be discussed later. 

4)ln this section we shall consider cross sections integrated over the 
perpendicular components of the momenta of all final particles. 
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