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The rate of spectral exchange between the rotational structure components in isotropic space and in 
an external field is determined. It is found that spectral exchange is an essentially nonadiabatic 
phenomenon and that its retention in current classical theory in the elastic collision approximation, 
and its complete absence in the nonadiabatic quantum theory, is erroneous. After suitable adjustment 
the two theories have been made consistent with each other. In the course of this it turned out that 
spectral exchange manifests itself by an unusual transformation (collapse) of the Stark and rotational 
structure with increasing pressure. Detection of such collapse enables one to establish whether the 
collisions are "strong" or "weak" and to determine the degree to which they are nonadiabatic. 

INTRODUCTION 

In the existing literature two different approaches to 
the problem of the broadening of rotational structure 
have been established: the quantum and the classical 
approach. Although both approaches are legitimate, in 
their present form they are not consistent, and even 
contradict each other. The majority of the quantum 
calculations[1-3] derive from the fundamental paper of 
Anderson[4] which laid the foundations of nonadiabatic 
collision theory. They are all based on a theorem proved 
by Anderson, according to which the rotational spec­
trum of molecular gases in the absence of external 
fields consists of lines which are independently broad­
ened, with each of them, in spite of multiple m-degen­
eracy of terms which combine in the transition, being 
characterized by a single relaxation parameter which 
determines its width and shift. The classical approach 
has been developed by Gordon[5-7] who showed that 
collisions can not only alter the phase of a rotating di­
pole, thereby giving rise to the usual line broadening, 
but also can reverse the direction of rotation of the ro­
tator (polarization of the radiation) transforming a P­
component of the spectrum into an R-component, and 
vice versa. A P-R-exchange of this kind, together with 
the spectral exchange associated with a change in fre­
quency as the result of a collision (j-diffusion), is the 
cause of a coordinated transformation of all the com­
ponents of the rotational spectrum which exchange among 
themselves. The presence in the classical theory of this 
additional source of broadening of the resolved structure 
forces one to prefer it in those cases when a consider­
able discrepancy is discovered between the experimental 
data and the corresponding quantum estimates of the 
widths [7-9]. 

Such a situation can not be acknowledged to be nor­
mal. An exchange between lines of rotational structure 
ought to be described by quantum theory no worse than 
by a classical theory, if such a phenomenon has an ob­
jective existence. And, conversely, in a situation when 
Anderson's theorem holds it must disappear in classical 
theory for the same reasons as in quantum theory. The 
fact that in quantum theory exchange is always ignored 
while in classical theory it never disappears merely 
testifies to the inadequacy of both. 

In the present paper both theories, the classical and 
the quantum theory, are subjected to a revision and are 
intercompared after the necessary correction. As has 
been established, spectral exchange within a rotational 
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structure is absent in quantum theory exclusively due to 
neglecting the nonadiabatic transitions between different 
rotational terms. This is well founded if collisions are 
of an adiabatic nature (WoTC »1), and has no justification 
if they are such as they were taken to be in [4] on the 
assumption that WoTC = 0 (wo is the rotational frequency, 
T c is the duration of a collision). After a suitable gen­
eralization of Anderson's theorem it has been estab­
lished that also in a not so extreme nonadiabatic situa­
tion (wo T c « 1) all the lines of the rotational spectrum 
in quantum theory, as in classical theory, are interre­
lated by j-diffusion, and over and above this pairwise by 
P-R-exchange. And conversely, under adiabatic condi­
tions, when in accordance with Anderson's theorem all 
these lines should be broadened independently of one 
another, exchange between them is exponentially small 
and can be omitted from consideration. The retention of 
P-R-exchange in the classical theory of Gordon[5C] in 
the case of elastic colliSions is a fiction which disap­
pears after an actual averaging of the result of the col­
lision over impact parameters which has not been car­
ried out by the author. Just as in the case of quantum 
theory, this result is a direct consequence of the rota­
tional isotropy of space which, together with the adia­
batic nature of collisions, is a necessary condition for 
the validity of Anderson's theorem. 

In the present paper it is shown that .in just the same 
manner in which the nonadiabatic nature of collisions 
includes exchange between different rotational lines, a 
violation of isotropy of space, even by a weak field and 
only over a free path, gives rise to exchange between 
similarly polarized components of a line split by the 
field which is brought about by means of adiabatic col­
lisions. An essentially quantum definition of the fre­
quency of P-R-exchange and a quasiclassical estimate 
of the rate of exchange processes interconnecting com­
ponents of the structure split by the field has been ob­
tained. The essential generalization and Simplification 
of the theory which made this possible has been achieved 
by means of decomposing the collision operator in terms 
of an irreducible tensor representation. 

As is well known, every exchange manifests itself by 
the fact that the lines of the resolved structure which it 
interconnects are at first broadened and shifted propor­
tionally to the square of the pressure, and then merge 
at the center of gravity of the spectrum (collapse of the 
structure) forming at high densities a single homogene­
ously broadened line. This effect can be easily distin-

Copyright © 1975 American Institute of Physics 433 



guished against the background of the usual broadening 
and shift linear in terms of the pressure. In accordance 
with the above, a comparison of the frequency of P- R­
exchange with the width of the line enables one to draw 
conclusions concerning the degree of nonadiabaticity 
of colliSions, while exchange within the Stark or Zeeman 
structure characterizes the "strength" of the collision, 
becoming comparable to the width in the case of a weak 
interaction and disappearing in the case of a complete 
phase upset. 

1. CLASSICAL THEORY 

The evolution of the dipole moment of a diatomic 
molecule which has undergone n colliSions at instants 
t1t2 , ... , tk, ... , tn, can be traced from begirining to end 
in any realization of the process. For this it is sufficient 
to note that in the system of coordinates whose z' axis is 
at all times oriented along the rotational angular momen­
tum of the molecule j(t), while the x' axis is oriented 
along its dipole moment d(t), the latter always has the 
form d'(t) = d'(O) = d. Without restricting the generality 
of the diSCUSSion one can assume that at the initial in­
stant the dipole moment is oriented along the x axis of 
the laboratory coordinate system: d(O) ={d, 0, o}. Its 
pOSition at the instant t in this system is determined by 
the transformation of coordinates R(t) which relates it 
to the moving coordinate system: d(t) = dR(t). It consists 
of a sequence of rotations which correspond in turn to 
the free path (L(tk-tk-1)) and the collisions (Uk), which 
in accordance with the sense of the impact approxima­
tion are regarded as instantaneous: 

( 1.1) 

The operator L rotates the system about the z' axis 
by an angle wo(tk-tk-1), while the rotation described by 
Uk depends on the mechanism of the collision and on its 
impact parameters. 

In order to Qbtain an equation for the average evolu­
tion operator R(t) it is necessary to carry out an aver­
aging over the stochastic sequence of the instants of 
collisions and over all possible results of these colli­
sions. For this it is sufficient to utilize the general 
procedure of summing such realizations which was de­
veloped in[lObJ and which yields 

R(t) = (roo-II)R(t) , (1.2) 

where 

(1.2a) 

here To is the mean duration of a free path, while aver­
aging denoted by angular brackets is performed over 
different impact parameters of the collision. 

From the form of (1.2) it follows that if R commutes 
with Wo- II at the initial instant, then this property is 
conserved in future. But R(O) = 1 and, consequently, the 
operators on the right hand side of (1.2) can have their 
pOSitions interchanged, and after this multiplication on 
the left by d leads to the equation 

d(t)=d(ro,-II). (1.3) 

The symbol indicating averaging above d(t) is omitted 
both here and in future. 

In order to attain uniformity in the classical and the 
quantum deSCription of relaxation we go over to the 
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FIG. 1 

variables 1) dq=diAiq (i=x, y, z; q=O, ±1) in such a 
manner that 

( 1.4) 

Then in the kinetic equation obtained from (1.3) 

dq= (iffioqfiq.q-P q.q) dq. (1.5) 

the matrix Wo is diagonalized, while the collision oper­
ator which was initially diagonal now is transformed into 

Pq·q=< 1:0-1 [fiq•q- (A -IIIA)q',»=< 1:0-1 (Ilq•q-Dq•q), (1.6) 

where Dq'q(fI-1T/2, a, 17+1T/2) is the matrix of finite 
rotations [11J the sequence of which is taken to be the 
same as in [5J: about z by an angle fI, about x by an 
angle a, about z by an angle 17 (Fig. 1). 

Since a deflection of j in both directions from its 
initial direction (a ~ 0) is brought about by a collision 
with equal probability, all the elements of the matrix 
(1.6) odd in a vanish as a result of averaging. In conse­
quence of this it turns out that the relaxation of do is not 
related to the other d±l> and is completely absent in the 
case of a linear molecule, since from the outset do = O. 
Thus, (1.5) represents a two-component equation in terms 
of d±l with 

< 1:.-1 sin' ; e,,,-q» ) 

< ,;.-' [ 1! cos' ; e-'(8+q)]) • 

(1.7) 

The diagonal elements of this matrix provide for the 
ordinary broadening and shift of lines of appropriate 
polarization (q = ±1), while the nondiagonal elements 
provide for the exchange between them. The existence 
of the latter elements was first noted by Gordon [5CJ 
however, in determining the matrix Pq'q, Gordon un­
justifiably assumed that the two angles a and 17 were 
quite sufficient to describe the result of the collision. 
In doing so he assumed that 17 is nothing other than the 
jump in the phase of the rotating dipole. 

But none of the angles of rotation in (1.7) is super­
fluous and their connection with the jump in the phase 
is not so Simple. Moreover, not having the aim of ac­
tually carrying out the averaging denoted by the angular 
brackets, Gordon essentially left open the question 
whether exchange is in reality taking place or not. The 
point is that the nondiagonal elements of (1.7), and at the 
same time the effect of exchange can disappear as a re­
sult of averaging over the angles. 

This is just the situation existing in the case of adia­
batic colliSions whose only result is a rotation of the 
pair of vectors j and d by a certain angle 0 about an 
axis whose orientation in the laboratory system is de­
termined by the angles A and F. In virtue of the iso­
tropy of space and the loss of memory of the initial 
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state during the time of collision (W07C» 1) all the orien­
tations of this axis are equally possible, i.e., 

1 
dW(A, F) = 4;tsinA dA dF, dW(6) =!(6)d6, (1.8) 

with f(a) being close to a a-function in the case of weak 
collisions and degenerating into a constant in the case of 
strong collisions. The connection between these angles 
and those which determine the result of a collision in 
(1.7), 

a 6 
sin2 =sinAsin2 , cos Asin6 

cos 6 + sin' A sin' (M2) 
(1.9) 

tg ( '1;9 )= tg F 

testifies to the fact that they are all needed: if one as­
sumes, as in the case of Gordon[SC1, e = 0, the system 
(1.9) becomes inconsistent. But if, taking (1.9) into ac­
count one carries out an averaging in (1.7) over the dis­
tributions (1.8) then it turns out that all the nondiagonal 
elements vanish and 

4 ,. Il 2 1 
1=-To-' S sin'-f(cS)dcS",;--. 

3 0 2 3 To 

(1.10) 

Thus, an exchange between lines of different polariza­
tions does not take place as a result of adiabatic col­
lisions: they are broadened independently and in the 
same manner in complete agreement with Anderson's 
theorem. 

It is of interest that no matter how strong are the 
adiabatic collisions the rate of relaxation of the dipole 
moment of the rotator does not exceed 2/3 of the colli­
sion frequency 70- 1 = nva- (a- is the cross section for the 
colliSion, n is the gas density, v is the average thermal 
velocity). This is explained by the fact that in one of 
the three orthogonal orientations of the dipole moment 
(along the axis of rotation resulting from the collision) 
its phase is unaltered and no broadening results from 
the collision. In contrast, the two other orientations 
introduce equal contributions into the phase relaxation 
each of which at the maximum attains the value 70- 1/3. 
In the case of weak colliSions the amount of broadening 
is determined by the disruption in the phase of the di­
pole moment: y = 7 1-\a2)/3, but this phase is specified 
by 0 and certainly not by 1) as was asserted by 
Gordon[5b,C1. 

The distribution of the angles of rotation ariSing as 
a result of nonadiabatic collisions differs essentially 
from (1.8). In the case of W07C« 1 the axis of the dipole 
does not have time to shift in the course of a collision 
and the reorientation of the angular momentum of ro­
tation occurs in the plane perpendicular to this axis, 

Substituting (1.12) into (1. 5) we obtain the balance equa­
tions 

( 1.13) 
d_=-irood_-Wd_+Wd+ 

for the complex amplitudes d+ =-Y2. ~1 and d_ = v'2 d_ 1 
the meaning of which is clear from (1.4): a rotator 
with angular momentum oriented along the z axis has 
on a free path 

The exchange between them occurring with the fre­
quency W at the same time reverses both the direction 
of rotation (wo --wo), and also the phase (<p --<p), and 
together with a reversal of phase there is also a re­
versalof sign in the work done by the field, the absorp­
tion of which gives us an idea of the rotational spectrum 
of the rotator. 

Thus, an exchange of frequencies (polarizations) in 
(1.13) is accompanied by a replacement of absorption by 
emission. But in all other respects the situation here 
is the same as in the well-known problem of averaging 
the structure of the spectrum by motion[lOa,12,131, the 
solution of which has the form 

1 S~ d ( -i-WIQ -i+WIQ 1 F(ro)=-Re dte-'·'d.(t)=-Ro . + . ,(1.14) 
:rt 0 2:rt ro-Q-lW ro+Q-lW 

n = (W6 - W2)1/2. The resolved structure of this spectrum 
consists of two weakly asymmetric lines which differ by 
the sign of the frequency. In a purely rotational spec­
trum observed only along the positive semiaxis of w, 
they correspond to two opposite circular polarizations, 
while in the vibration-rotational spectrum they corre­
spond to the appropriate P- and R-components [51. 

As long as the frequency of exchange is small com­
pared to the splitting of the lines (W «wo), their width 
is t:.W1/2 = W, while their shift towards one another 

(1.15a) 

is not great. The principal contribution to the broaden­
ing is given by the diagonal matrix element Pq'q, while 
the correction, quadratic in W, is introduced by the 
nondiagonal matrix element. At low pressures the ef­
fect of the latter is not great and, neglecting the shift 
of the lines, Pq'q can from the outset be secularly 
simplified. However, with increaSing pressure the situa­
tion is essentially changed. At W = Wo a collapse of 
the structure occurs: both components of the spectrum 
merge at its center of gravity (at the middle) forming 
subsequently a single line of width 

( 1. 15b) 
so that 

dW(a) =<p(a)da. 
which diminishes as the pressure increases. As a re­

(1.11) sult of this the distinction between adiabatic and non-
Of course, the absolute value of the angular momentum 
is also altered at the same time giving rise to 
j-diffusion, but it is better to postpone taking this cir­
cumstance into account until the next section, and to 
restrict ourselves here to an analysis of only the ef­
fect of disorientation of j. The latter is represented by 
the one-parameter collision matrix obtained from (1.7) 
and (1.11): 

Pq·q=W (! ~) , (1.12) 
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adiabatic broadening is manifested with particular 
degree of contrast in the case of condensation of a gas. 
The adiabatic spectrum after a smearing out of the 
structure continues to broaden linearly with increaSing 
density, while the nonadiabatic spectrum, having under­
gone a collapse, becomes narrowed in the inverse propor­
tion established in (1.15b). The purely rotational spec­
trum in this case is converted into a spectrum of losses, 
while the free rotation is converted into the Brownian 
movement of the dipole moment[141 which relaxes at the 
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rate r 1 = (wg/2W) - n-1. In contrast to the adiabatic esti­
mate of it carried out by Anderson[4J the rate of the non­
adiabatic Debye relaxation does not increase, but dimin­
ishes with increasing density which is more characteris­
tic of a liquid than of a gas. But in actual fact, apparently, 
something intermediate takes place, since the real col­
lisions are characterized by moderate nonadiabaticity 
woTc:::::nb/Iv:::::O.3M-1/2(M is the molecular weight). 

2. QUANTUM THEORY 
In the case of nw« T the structure and the form of 

the absorption spectrum of linearly polarized light 
(with t'x= rr coswt, rry= Cz=O) 

w'N/s' -
l(w)="3T Re J e-'·'K(t)dt 

o 

is given by the Fourier transform of the correlation 
function [ISJ 

(2.1) 

K(t)='/,(-1)'p,(jmld,,(t)d_.+d.IL.(t) Ijm>, (2.2) 

where Pj is the equilibrium density matrix diagonal in 
the I jm)-representation (m is the component of the 
rotational angular momentum j along the z axis of the 
laboratory system), T is the temperature, N is the 
density of active molecules. 

The temporal evolution of the average dipole mo­
ment is described by the kinetic equation of collision 
theory[lObJ 

.~ I 
d,,(t) = TlH, d,,(t) ]-<d,,(t)-Sd,,(t)S+), (2.3) 

in which H is the total Hamiltonian of the rotator along 
a free path, while the result of a collision is given by 
means of S, the scattering matrix. 

Taking into account the initial condition dq(O) = dq 
one can easily obtain from (2.3) the following matrix 
equation for the Fourier-transformed components of 
the dipole moment -

d,,(w) = J e-'o'd.(t)dt: 
o 

<jmli(w-li-'[H, d.(w)]) Iln>+<j'm'ld.(w) Il'n'> 

x p (j;:' II;:') =<jmld"lln). 

The quantum relaxation operator 
of I l' I pC: linn) =nJ v!(v)dv b db dO. 

x [6".6""".611 .6"'-<jmISIj'm'><lnISII'n'>·] 

(2.4) 

(2.5) 

in contrast to the classical one is in an evident manner 
diagonal with respect to q. Its other properties are 
established after averaging over the impact parameters 
b and the relative velocities of the colliding particles 
v (dO = sin {3 d{3 dO! dy, where O! and {3 are the polar 
angles of v, y is the azimuthal angle of b in the plane 
perpendicular to v). 

The averaginr. over the angles can be carried out in 
a general form 16J if the external fields are so weak 
that they do not affect the result of a collision. In such 
a case in the system of coordinates rigidly connected to 
b and v it is given by the scattering matrix S, which in 
virtue of the spatial isotropy depends only on the abso­
lute values b and v. The same result is expressed in 
the laboratory system in terms of S by means of ma­
trices of finite rotations [11J. 
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<jmISIj'm'>=D~~(O)D~'m' (0) <jaISIj'c!'>. (2.6) 

After averaging over 0 the operator P assumes the 
following form: 

p(i.'m'I/'n')=(_1)m+m'(2X+1)( j XI) 
1m In -m q n 

., I' (2.7) 
x ( I ,x ,) <j/lp(x) Ij' e'>, 

-m q n 

where 

<j/lp(x)Ij'l'>=(-1)a+.' ( j x I) ( j'" x l',) P (~'a' I/'f) (2.8) 
-a q ~ -a q ~ la IP 

are the matrix elements of the reduced operator p, 
while 

- j'a' I'~' 
p(ja I/~ )=8n'nJv!(v)dvbdb[6jj.6 ••. 611 .6w 

(2.9) 

-<jaISlj'a'></~ISII'P'] 

is the relaxation operator in the coordinate system of 
the collision. 

From the properties of the 3j-symbols the following 
selection rules emerge for the nonvanishing elements of 
the operator P: m+n'=m'+n, while from the unitary 
nature of the S-matrix follows the property: 
(jll p(K) I j 'l') = (lj I p(K) Il'j')*. 

The concrete form of the relaxation operator achieved 
in (2.7) essentially Simplifies the solution of the kinetic 
equations. In the absence of external fields when H is 
nothing other than the Hamiltonian of the free rotator 
Ho it is natural to seek a solution of (2.4) in a spheri­
cally symmetric form 

( j 1 I) <jmld,,(w) Iln)=(-1)J+m<jld(w) II) , 
-m q n 

(2.10) 

assuming that only the reduced matrix elements of the 
dipole moment (j I d(t)ll) vary with time. Contracting 
(2.4) with the aid of (2.7) and (2.10) we obtain the equa­
tion for the reduced elements 

i(OO-OOi/)<ild(oo) 1l>+<jllp(1) 1I'I'><j'ld(w) Il')=<jldl/), (2.11) 

the formal solution of which (j , I d( w) Il') 
= (j II G-11 j 'l ')(j I d Il) is obtained by an inversion of the 
fundamental matrix 

<jll Glj'l')=i( oo-w;,)6",6",+<j/lp(1) Ij'l'>. (2.12) 

Substituting it into (2.10) and utilizing the result in (2.2) 
we obtain from (2.1) 

I (00) ~Re p,[ <j I dllHj' I dll'><j'l' I G-' Ijl>+<ll d Ij)<I' I d I;'><l'j' I G-lllj) 1; 
(2.13) 

<j I d Il>=d<iI no il>=d( -1) J+(j+l+t)/'[max (j, I)]"'. 

1 [II'j(j+1) ] 
pj= ---; exp 2fT . 

(2.14) 

Since the nonadiabatic processes have been taken 
into account in (2.13) on the same basis as the adiabatic 
ones all the lines of that spectrum which differ in mag­
nitude or in the sign of the frequency are in prinCiple 
interrelated by means of the nondiagonal elements 
(jllp(1)Ij'l') which specify the frequency of exchange. 
Only if the collisions (as a result of adiabaticity) are 
unable to induce transitions between different j-terms 
(j O! I S I j' O!') = 1ijj 'SiO! o!' the operator p, and together with 
it the G-matrix are diagonalized and the spectrum (2.13) 
in complete agreement with Anderson's theorem de­
generates into a sum of independently broadened Lorentz 
lines 
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(2.15) 

for which r=(jllp(1)ljl). The resonance term in (2.15) 
corresponds to absorption of circularly polarized light 
by a rotator rotating in the same direction; while-the 
nonresonance term corresponds to absorption of circu­
larly polarized light by a rotator rotating in the op­
posite direction. It is not superfluous to note this, since 
the presence at the same time of both terms is nec­
essary only in the case of a rotator. In the case of a 
two-level system, just as in the case of a harmonic 
oscillator, the sign of the frequency does not alternate 
(wo >0) and the correctly polarized light is always ab­
sorbed and emitted only in a resonant manner (Fig. 2a). 
Both terms are present in this case only when the light 
is linearly polarized, i.e., when in addition to the cor­
rectly polarized component (wo > 0) it also contains the 
incorrectly polarized component (wo < 0), and certainly 
not because the resonant term should be identified with 
absorption while the nonresonant term should be identi­
fied with emission 2) as in the interpretation of Ben­
Reuven [17]. And only an equilibrium ensemble of ro­
tators rotating equally in both directions (wo ~ 0) absorbs 
either of the two circularly polarized components of 
light both in a resonant and a nonresonant manner, and 
both together with twice the intensity (Fig. 2b). 

These explanations are needed for a correct inter­
pretation of the result of nonadiabatic collisions which 
together with the usual frequency exchange 
(Wjl - Wj'l', j > l, j' > l') give rise to an exchange be­
tween transitions which differ only by the sign of the 
frequency (Wjl - Wlj) as a result of which absorption 
alternates with emission. In order to identify this 
latter process with its classical analogue discussed 
in the preceding section it remains for us to convince 
ourselves that together with a reversal of the sign of 
absorption the polarization of the resonantly interacting 
component of the light wave is also reversed. 

With this in mind we consider the transition j = 0 -
j = 1 (Fig. 3), which is at the same time the simplest and 
the essentially quantum transition (classical theory is 

Wa 

FIG. 2_ The resonance (dotted line) and the nonresonance (solid 
curve) absorption of light by a two-level system (a) and by a rotator (b). 

n 

FIG. 3. The transition j = 0 <--* j = 1. 
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FIG. 4. Spectral exchange of nonadiabatic origin: a) in a two-level 
system, b) in a rotator. 

valid only for j, j' » 1). The block of the fundamental 
matrix relating to it has the form 

G= (1OIGI10> (1OIGIOD) _ (i(Ul-UlO) +f -~ ) . 
(01IGI1O) (01IGI01) - _~. i(Ul+Ulo)+f" (2.16) 

f=f'+if"=(10Ip(1) 110)= < 1- ~ 13 00°' ~Sm",t), (2.17a) 
m 

1 --
~=V+iV= -(iOlp(1) 101)= 3" «-1) m(1mISI00)(00ISI1, -m)·). 

(2.17b) 

The nondiagonal element of this matrix is a measure 
of the "phase memory" of the system [18], i.e., of the 
degree of coherence of the j-terms arising in collisions 
and remaining in spite of averaging over all the im­
pact parameters [19]. Its structure enables us to see 
which particular tranSitions exchange among them­
selves: in the given speCific case (111 d1 1 00) with 
(00Id1 11,-1) and (1,-1Id_ 1 100) with (00Id_ 1 1 11) (Fig. 
3). The sign of the quantum nWjl ~ 0 which determines 
the direction of the transition (absorption or emission) 
changes together with the sign of its polarization 
(identical with the m-component of the upper level) 
which labels the classical resonance frequency Wo. In 
this the rotator essentially differs from the two-level 
system [17 ,18] in the case of which the nonadiabatic 
collisions exchange only absorption with emission, and 
this in classical language is equivalent to inverting the 
phase of the harmonic oscillator while retaining the 
same frequency [17], 

X=Xo cos (Ulot+rp) -+Xo cos (Ulot-rp). 

However, formally, an inversion of the frequency while 
retaining the same phase transforms x(t) in exactly the 
same manner. Therefore the spectroscopic manifestation 
of exchange in a two-level and a three-level system, 
the latter of which in this case is a rotator, has many 
aspects in common. Only in the former case the ex­
change occurs with a fictitious (forbidden) line, while in 
the latter case both transitions are allowed (Fig. 4). 

Indeed, the spectrum corresponding to the fundamen­
tal matrix (2.16), 

J(Ul)-d'( 0+ ,)Re[ -i-~'/Q + -i+~'/Q] 
P P Ul-Q-if' Ul+Q-if" (2.18) 

can be obtained from the solution of a more general 
problem [19] by the following redefinition of its parame­
ters: da=-db=d (w=O, ~/2=wo, r a =r1;=r), while the 
spectrum of a two-level system is obtained if one of the 
lines is assumed to be forbidden: db = 0 (the rest re­
mains the same). If we are dealing with a vibrational­
rotational spectrum W should be measured not from 
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zero, but from the vibrational frequency. On being added 
to it a positive quantum shifts the resonance to the right, 
while a negative quantum shifts it to the left thereby 
forming the P- and the R-components represented by 
corresponding terms in (2.18). Whether n is real or 
purely imaginary, i.e., whether we are dealing with a 
spectrum before collapse or after, depends on the rate 
(I {31 ) at which exchange between them occurs. 

The present treatment differs from the solution of the 
classical problem discussed in the preceding section 
only by the fact that the possibility is taken into account 
of phase disruption occurring in addition to exchange. 
In the case r 1/ = {3" = 0, r' = {3' = W they are phenomenolog­
ically identical. Thus, taking into account the nonadia­
batic nature of collisions leads to a qualitatively differ­
ent broadening of the low frequency components of the 
spectrum (and at high pressures of the spectrum as a 
whole) than in the original theory of Anderson [4]. 

Switching on an external field introduces a still more 
essential correction making an adiabatic spectral ex­
change possible which is not observable in an isotropic 
space and which does not have a classical analogue. Even 
if the effect of the field on the result of a collision is not 
significant and the P-operator remains the same, the 
appearance in the Hamiltonian of a field term alters the 
symmetry of H and makes it impossible to reduce the 
basic kinetic equation (2.4) to its reduced variant (2.11). 
The complex structure arising in the case of the field 
from each rotational line can be calculated only by a 
direct solution of the corresponding secular problem. 
In an adiabatic theory its rank does not exceed the num­
ber of similarly polarized components (depolarization by 
collisions is not possible), but it must be greater than 
unity in order that exchange between them should take 
place. It is evident that degeneracy of both j-terms 
which guarantees the existence of the same polarization 
in a multiple number of components remains as before 
a necessary condition for the existence of adiabatic ex­
change [20]. It is satisfied for all rotational transitions 
except for the lowest one (j = 0 - j = 1). 

For the sake of definiteness we consider the simplest 
of them (j = 1 - j = 2). In an electric field 1,' directed 
along the propagation vector of the light wave (H = Ho 
-do 1,') the degeneracy of the multiplet 1-2 is partially 
removed and a stark structure [21] consisting of three 
lines arises (Fig. 5) 

I d(fj' 
Cll'm.l.=Cll,,--- (-) (32+5m'-63n') 

2101i Ii ' 
(2.19) 

which are allowed by the selection rules: m = n ± 1. Each 
of them consists of two components of oPPosite polari­
zation. Examination of the explicit form of the operator 
(2. 7) enabl~s one to ve:si.fy easily that adiabatic colli­
sions ((ja I S I j' a') = 1ijj'sha') broaden and mutually ex­
change all lines of the same polarization. For example, 

( 

i-rl~fi"~isi".3ra_2~1- ~2~,_2K2~., ~oii'l1- ~iii"+ ~6~, ) 

p = 3lr 2 V2 2 V2 3 1 8 va vii 4 va 
10 ~1- 6 ~'-15~" 1O'I1+lfi"+r5Y8 , '10 '11+ 6i"-1'5 ~, . 

vii Vii Vii Vii va 4 V3 1 1 2 
10 'I1-T~''+15~'' '1O'I1+T~'-15~" 10 '11+ "2i"+ "5 i" 

(2.20) 

As is evident from the definition itself of YK = (211 p(K)121), 
these constants are the rates of relaxation of dipole 
(K= 1), quadrupole (K = 2) and octopole (K = 3) moments 
for the transition. In the case of weak collisions: 
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, 

FIG. 5. Stark compo­
nents of opposite polariza­
tion; the dotted lines cor­
respond to Wo < 0, the solid 
lines correspond to wo> 0. \~x!1 

o 

Y3 < Y2 < Yl, the rate of exchange has the same scale as 
the individual broadening of components determined 
by the diagonal elements of P. But if the collisions are 
so strong that the rate of relaxation does not depend on 
the multipolarity: Yl = Y2 = Ys, then exchange is absent 
entirely, since all the nondiagonal elements in (2.20) 
vanish. Thus, the existence or the absence of exchange 
can serve as a criterion of whether the collisions are 
"weak" or "strong." 

But the actual manifestation of exchange is the same 
as usual [19,20]. As long as the splitting of the Stark 
components is considerably greater than their width, 
the latter is fundamentally determined by the diagonal 
elements of (2.20). But when as the pressure is in­
creased the exchange between the components leads to 
a collapse of the structure, then a single line arises 
shifted in frequency but of width Yl which is the same 
as in the absence of the field. If Y2 and Ys are neg-
ligibly small compared to Yl, then all the components of 
the allowed structure have a different width and the small­
est of them increases with pressure by an order of magni­
tude more slowly than after collapse. In accordance with 
this the determination from the Stark structure of all 
three relaxation constants, if they are comparable in 
magnitude, is not only possible in principle, but is 
practically realizeable. 

l)A summation is carried out over dummy indices. 
2)The origin'of this interpretation is, apparently, associated with the 

incorrect definition of the correlation function which was utilized by 
Ben-Reuven [17] in the unsymmetrized form (with respect to an inter­
change of d(t) and d). As a result of this the resonant and the non­
resonant components of the spectrum appeared in it with the weights 
respectively of the upper and lower states, whereas in actual fact 
they are of equal magnitude. 
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