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A microscopic theory of tunnel phenomena is developed for inhomogeneous barriers. "Point" 
junctions of the tunnel type, or a set of such junctions, are considered in the theory as a limiting 
case. It is shown that a tunnel current from two apertures oscillates as a function of the voltage, 
with a period that is inversely proportional to the distance between the apertures. This is due to 
interference phenomena in the tunneling. The oscillations are a macroscopic phenomenon and possess 
a large period. Other forms of inhomogeneous barriers in both the normal and the superconducting 
states are studied. Components of the quasiparticle and pair current (Josephson current) are 
calculated. 

1. INTRODUCTION 

Tunneling in metal-insulator-metal systems displays 
interesting features both in the normal[1J1) and in the 
superconducting states. [2J Consideration of such effects 
is usually based on the method of the tunnel Hamilton­
ian, [3J which describes in first order perturbation 
theory the transitions between two subsystems (N += N, 
N += S or S += S). Recently, after the creation of the 
microscopic theory of the stationary Josephson cur­
rent, [2, 4-£J interest has developed in systems of "weak 
coupling," which are different from the classical plane 
structure S - I - S (I is an insulator homogeneous over 
the thickness of the layer). Systems of the type S - N - S 
(N is a layer of normal metal)[ 7-1 oJ , S - C - S bridge 
structures [llJ, plane S - ~ - S junctions [l2J, and so on 
were investigated. The purpose of the present paper is 
to study the tunnel mechanism of current flow between 
two metals separated by an inhomogeneous barrier 
whose transparency changes from point to point on the 
transition surface. The treatment is consistently micro­
scopic and allows us to study the effects connected with 
the inhomogeneities in both normal and superconducting 
structures. 

The inhomogeneity of the barrier may be due, for 
example, to local thinning out or to defects in the struc­
ture of the insulating layer, impurities, surface rough­
ness, and other imperfections, which are unavoidable in 
real junctions, [13J or which are created deliberately by 
some method or other. [14J The theory considered below 
also includes the case of a "point" junction of the tunnel 
type (a tunnel contact of small area) as a limiting case. 
Experiments (see[15J) in which observation of oscilla­
tions of the tunnel current in systems containing organic 
insulating coatings was reported, served as the direct 
stimulus for these investigations. The oscillations of the 
current (and of its derivatives dIldV, d2I/dV2) took place 
as a function of the voltage on the junction and were 
originally connected with the features of the spectra of 
the organic impurities. A hypothesis was put forth by 
1. K, Yanson,2) according to which such behavior can be 
explained by the multiplicity of the junction (the pres­
ence of a network of regions of increased transparency), 
which can lead to interference phenomena in the tunnel­
ing of electron waves in the crystal. It will be seen be­
low that this point of view finds its reflection in the 
formalism of the theory that we have developed. At the 
same time, the absence of detailed information on the 
structure of the barrier in[15J did not allow us to make 
a unique identification of the observed features. 
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The considered model of the tunnel junction consists 
of two identical semiinfinite metal half-spaces; - 00 < z 
< 0 and 0 < z < 00 (regions 1 and 2) separated by a 
potential barrier of the form 

V(r)~Vol(p)6(z), (1.1) 

where p is a two-dimensional vector in the plane z = 0, 
f(P) is a dimensionless function larger than or of the 
order of unity, normalized, for example, in such a way 
that If Imin = 1 (for a homogeneous barrier, f = 1). The 
o-function character of the barrier assumed in (1.1) is 
not an essential limitation-thus, for example, in the case 
of a superconducting state the thickness of the insulator, 
d ~ 20 - 30 A, is always small in comparison with the 
correlation length of superconductivity theory, ~ ~ 10-4 
cm, and therefore any barrier is virtually a 0 -function 
barrier. For normal metals, the assumption (1.1) is a 
more serious limitation and does not convey certain 
features of the tunneling that occur in real structures, 
for example, the sharp directivity of the effect. Never­
theless, this is not of any essential significance for the 
phenomena discussed below. 

In what follows, Vo will be assumed to be a large quan­
tity, which guarantees smallness of the coefficient of 
transmission of the electron through the barrier 
(D ~ vj/V~). The case of a "point" junction can be ob­
tained if we assume the function f(p) to be equal to unity 
in the limits of some region pES and to infinity outside 
of S (f = Q() for p ~ S), or if f (P) is specified in the form of 
a Gaussian function 

f(p) =e"lo' (1.2) 

with sufficiently small a, In Sec. 2 we shall show that the 
wave functions of the problem considered can be found by 
expansion of the Schrodinger equation with a potential of 
the form (1.1) in a series in powers of the reciprocal of 
Vo for an arbitrary function f(P). This allows us to find 
the tunnel current of an arbitrary inhomogeneous barrier. 

A general method is set forth in Sec, 3 for calculation 
of the tunnel current, based on the Green's function tech­
nique (a preliminary communication on this method for 
the case of homogeneous barriers has been published 
previously [16J). In the case of normal metals, the present 
method gives results equivalent to those obtained by the 
method of Bethe and Sommerfeld[17J with account of the 
dependence of the transmission coefficient D on the 
components Px, Py' Pz of the momentum of the incident 
electron that is specific for the problem at hand (the 
dispersion law is assumed to be quadratic and isotropic). 
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Interference effects are investigated for normal metals, 
effects that are due to inhomogeneities and are con­
nected with effects of the t~e of Friedel oscillations for 
degenerate Fermi system so 18J Finally, Secs. 4 and 5 
are devoted to the study of similar effects in the super­
conducting state and to a calculation of the Josephson 
current for inhomogeneous barriers. 

2. WAVE FUNCTIONS OF AN 
INHOMOGENEOUS BARRIER 

The idea of the calculation of tunnel phenomena in a 
potential field of the type (1.1) is illustrated by the 
method given below for finding the wave functions. We 
write the Schrodinger equation in the form 

[ V' 
-2,;"+V,f(P)6(z)] 1jJ=E1jJ (2.1) 

and seek the wave functions I/I~ and I/I~ that correspond 

to particles with momentum p incident on the 
barrier from the left and right, respectively (Pz > 0 and 
Pz < 0). In first order in l/v (l' 

1 
eiheixp - e-ik'ei., + .j- <jl~-) (f), z < 0 

IjJp' (f) = 1 (+) 0 , (2.2) v. '1', (f), z>O 

where cp~+) are functions that are independent of Yo, 
P = (Ie, k). From the boundary condition at the point 
z = 0, which follows from (2.1)0 

( a8~) ,_+' - ( a8~) ,~-o =2mVo/(p)1jJ(r),_o, (2.3) 

we conclude that 

(+J H ikeh .. 
'1'1 (p, z = 0) = '1'1 (p, z = 0) = - --, 

mf(p) 

whence we get, with (2.1), 

<jll±)(r) = - _,_'k_1 dX'<jl(x _ x')ei"Pe±ik'z, 
(21t)' m ~ 

Here we have introduced the function 

and 

~ ei(x-x')P 
'I' (x - x') = ---dp t (p) 

k'=(x'+k'-x")"', O<arg k'<n/2, 

(2.4) 

(2.5) 

(2.6) 

By the use of (2.2), (2.5), we easily find the trans­
mission coefficient of the barrier in the corresponding 
order in V~l. Denoting the transmission coefficient by 
D1 (P) for particles incident on the barrier from the left, 
and by D2(P) for particles incident on the right, and in­
troducing the additional term -1/2eV sign z into the 
Hamiltonian to take into account the difference in the 
potentials V applied between regions 1 and 2 (Fig. 1), 
we get 

Vcr) 

2 

p,,...,.--.,..--r-r-7"""'7'~'I-__ l ______ ----

FIG,l 
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where 

k/ = (x'+k'-x"±2me V) '/'. (2.8) 

With the help of (2.7), we find the tunnel current be­
tween the metals as the difference I = II - 12' where 

S~ dk S Sdx ek 
[,= n (2n)' -;;-n.(l-np+)D,(p), 

o 
(2.9) 

SO dk S Sdx elkl 
[,= -;- 1211.)' -;;:;-np (1-n.-)D,(p); 

np are the Fermi distribution functions. 

t ± _ 1 2 10 
np= exp{ (e p-"..)IT}+1' np - exp{ (e p±eV-)J.)IT}+1· (. ) 

For a homogeneous barrier (f = 1), we have cp(K) 
= (21T)20(K), which leads, after substitution in (2.7), (2.8), 
to the expressions 

Iklk±' 
D",(p)= (mV,)' k±'=Re(k'±2meV)"'. (2.11) 

For the case eV «j.J., T « j.J., the current is equal to 

[=p~-'SV, (2.12) 

where (see [2J) the conductivity of the homogeneous 
barrier is 

p~ -'=2n'Vo'/c'f.I'. (2.13) 

The formula (2.12) is identical with the well-known ex­
pression for the tunnel current given in [17J. 

3. TUNNEL CURRENT IN THE NORMAL STATE 

1. We derive a formula for the current in an inhomo­
geneous junction, using the Green's-function technique. 
In this section we consider the case of the normal state. 
A generalization to the case of superconductors is con­
tained in Secs. 4 and 5. We shall assume that the voltage 
on the barrier is turned on jumpwise at the time t = 0, 
and calculate the current at times that are much greater 
than the times of the transient processes that arise on 
such a turning on. We define the Green's function of the 
electrons: [19J 

G(x, x') =-i SppT(iji(x)iji+(x')), (3.1) 

where x = (r, t), the operators if, 'i[!+ are the field 
operators in the Heisenberg representation, and p is the 
density matrix. 

(3.2) 

The Hamiltonian of the system H = Ho + Hr(t), where 
Ho is the Hamiltonian of the free electrons in the field 
of the barrier (1.1): 

(3.3) 

and Hf(t) is the part connected with the voltage at the 
barrier: 

H,(t) = S dr1jJ+(r)W(r)9(t)1jJ(r). (3.4) 

We shall assume that in zeroth order in the trans­
miSSion, the potential of the electric field is equal to 
(V is the applied potential difference) 

W(z) =-'/,eV sign z. (305) 

The Hamiltonian Hf(t) describes the evolution of the 
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system in time and leads to the generation of a current 
which flows between the metals. We expand the Green's 
function G(x, x') in the eigenfunctions of the Hamiltonian 
H(V which were defined in Sec. 2: 

:Ie J dp J dp' 
1=~.Re (2:1)' (2:1),kk'(kT+kli+2kk') 

x /<p(x-x') /'6(S.-s.+eV) (n.-np') , 
(3.17) 

G(x,x')= EGp:.(t,t')",.'(r)"'p~·(r')' i,k=1,2. 
pp', ilt. 

The current density in the system is 

where, as before, p = (Ie, k) and the integration is per­
(3.6) formed over the region k > 0, k' > O. In (3.17), we have 

introduced the notation 

. ie (~~')G( ') I ](r)=--;;:p-p X,:& "_'+0' 
T'-+1 

(3.7) 

We shall calculate the total current in the first non­
vanishing order in the transmission. It is convenient to 
carry out the calculation of the current in the plane of 
the barrier z = 0, since in this case, it is unnecessary 
to account for the corrections to W(z) due to the finite 
value of D. We integrate (3.7) over the coordinates in 
the plane of the barrier and use Eq. (3.6). In the first 
nonvanishing order in the transmission, we have for 
the total current: 

ie \"' 12 21 • 12 '] 1=--;; ~./p.p(O)[Gpp.(t,t )-G ••. (t,t) 1'_1+0, pp (3.8) 

where 

1i=l'x'+k'-x", 1i'=l'x"+k"-x', Re1i,1i'>O. 

Taking into account that eV « /J., we can write down 
(3.17) in simpler form: 

1- 4:1e J dp J dp' '" , 
-m'Vo" (2:1)' (2:1)' k k 8(k)8(k) 

(3.18) 
x /<p(x-x') /'(n p-np,)6(Sp-s.+eV). 

It is easy to establish the fact that, accurate to within the 
approximations made, the expression obtained for the 
current is equivalent to the formulas obtained at the end 
of Sec. 2. For example, for a homogeneous barrier 
rp(1e -Ie') = (21T)20(1e -Ie'), we get Eq. (2.12) (Ohm's law) 
as before, with Poo expressed by means of Eq. (2.13). 
The above method is much more automatic and enables 
us to carry out a simple generalization to the case of 

(3.9) superconductors, 

We now calculate the necessary Green's function. 
From the equation of motion for G(x, x'), 

[ 
i} ~, 

iTt - :m + I'-V(r)-W(z)8(t) ] G(x,x')=6(x-x'), (3.10) 

we get, using the expansion (3,6), 

(i f)~ - sp) G::;', (t, t')-8(t) E W;;"G;.~p' (t, t')=6(t-t')6"ll p.', (3.11) 
pHm 

where ~p = p2/2m - jJ.. We shall assume t' > O. For 
solution of the set (3.11), it is necessary to impose 
boundary conditions on the function G(t, t'), Two rela­
tions follow directly from Eq. (3.11): 

G(t'+o, t')-G(t'-O, t')=-i, G(+o, t')-G(-O, t')=o, (3,12) 

and a third condition, similar to that obtained in the book 
of Kadanoff and Baym, [19J follows from the analytic 
properties of the function G. We have 

where 
G«t, t') =G(t, t') at t<o, 

G>(t, t')=G(t, t') at t>t'. 

(3,13) 

(3,14) 

We solve Eq. (3.11), using (3.12) and (3.13) by expansion 
i? powers of l/Vo. The function ~~ satisfies the equa­
tion 

[ 
i} e V ] 21 , 21 (o)tl ') 

i~-sp+-9(t) Gpp,(t,t )=Wpp,Gp' (t,t at 2 
(3,15) 

and is ~ l/V 0 (G( 0) is the Green's function of the zeroth­
order approximation in l/V 0)' We write down the solu­
tion of the last equation: 

G" (' )- (np.-n p) [1-exp(-i(sp-sp,-eV)t')] w" (3.16) 
pp' t ,t - . (t t V) pp'. 

,~ bP-lop'-e 

Here w~, are the matrix elements of W(z). It is easy to 
establish the fact that G12 is obtained from (3.16) by the 
substitutions 1 :;::= 2 and eV - -eV. 

We calculate the current by means of Eq. (3.8), using 
the expressions obtained for G12, G21 and the wave func­
tions of Sec. 2. Carrying out the corresponding calcula­
tions, we obtain 
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2, We now investigate the expression (3.18) obtained 
for the current, Integrating over the angles of the vec­
tors p, p' and using the explicit expression for the func­
tion rp(1e -Ie') (2,6), we get 

1- 2e J dp, J dp, Joo 'd J~ "d '( ) 
- (2n)'m'Vo' f(p,) f(p,) 0 p P, P P np-np' 

1 (Sin pp ) (Sinp'p , ) x ~ ---COspp -,--COsp p 6(sp-sp+eV), 
pi pp p P 

(3.19) 

where P = I PI - P21, As V - 0, the current has the form 

[=VIR, (3.20) 

where the quantity R is the resistance of the inhomo­
geneous junction in the zeroth approximation and is given 
by the expression (po is the Fermi momentum) 

-, 2e'p,' J aPt J dp, 1 (Sin pop )' 
R = (2n)'m'Vo' f(p,) f(p,) (1 ----p,p-cos PoP . (3,21) 

In particular for a homogeneous barrier (f = 1), we then 
obtain R = Roo = Pools, where P oo is determined by ex­
pression (2.13) and S is the area of the junction. If the 
junction is a spot of small radius (a «p~I): f(p) = 1 for 
P < a and f(p) = 00 for P > a, an elementary calculation 
according to Eq. (3.21) leads to the expression 

(3.22) 

Consequently, the tunnel current is proportional in the 
given case not to the first but to the second power of the 
area of the junction (8 = 1Ta2): 10:. 82. This is a reflection 
of the diffraction phenomena for apertures of small 
diameter, similar to those which take place in optics 
(see [20J ). 

We consider further a set of apertures of small rad­
ius, located at the points Pi (i = 1, 2, ... , n). By virtue of 
(2.6), we have 

n 

<p (x) = ~ SieiX,oi (3.23) 
i .... 1 

where 8i is the area of the i-th aperture, Using the re­
lation for the current (3.18), integrating over the angles, 
and taking into account that the fundamental contribution 
to the integral for eV « jJ. is given by the vicinity of the 
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Fermi surface (p f':; Po, pi f':; Po), we obtain 

(3,24) 

where 10 is the sum of contributions of the type (3.20), 
(3,22) from the individual apertures, and ~sc and ~sc 
are oscillating interference terms that have the form 
(vo = po/m) 

[' = -!~ '\'1 SS cos(eVlpi-Pil/v,) '¥(X) 
osc pOI> z~ 1 j I I" i] , 

npo i.,j pi-Pi 

x 
'¥(x)=~, 

neVT 
Xij=--,lp,-p,l, 

poVo 

• _ -, 1 L sin(eVlp,-Pil/vo) 
losc-p~_ -- SiSi I I' cos 2polp,-p,I'¥ (Y'i), 

(3.26) 

nempo. . pi-Pi 
,,., (3.27) 

Yii=2nT I pi-P, Ilvo. 

We draw attention to the analogy of the resulting tem­
perature dependences to the dependences that take place 
in the theory of quantum oscillatory phenomena in normal 
metals [21J , 

3. Going over to a discussion of the physical meaning 
of the results obtained, we note that for a pair of aper­
tures the distance between which is equal to d, Eq. (3.27) 
describes the oscillations of the current as a function of 
the separation distance (d) of these apertures, oscilla­
tions with period Lld2 f':; 7T/Po, The amplitudes of such os­
cillations falloff rapidly with increase in the tempera­
ture and for T > void they become virtually unobserva­
ble. The first expression (formula (3.25)), on the other 
hand, describes oscillations with a large period Lld1 

~ 7TJ..ltPoeV »Lld2, the amplitude of which falls off very 
slowly with increase in temperature, inasmuch as 
Xi/Yij ~ ev/J..l « 1. Considering the range of tempera-

tures void «T «voJ..l/deV, we can neglect the term ~sc 
in comparison with I~sc' and in the calculation of ~sc 
we can assume T = O. The oscillating part of the cur­
rent then takes the form 

I "" Vp:' '\'1 SS cos(eVpi;!vO) 
osC :rtp02 ~ t J Pi/ ' 

i+J 

(3.28 ) 

where Pij = 1 Pi - Pj I. 

The oscillations considered describe interference 
phenomena in the tunneling of electrons through the 
apertures and are analogous to Friedel oscillations in 
metals with degenerate Fermi statistics (see, for exam­
pIe, [lsJ), Generally speaking, the amplitude of the oscil­
lating terms is small, As follows from a comparison of 
(3,28) with (3,22), Iosc /10 ~ 1/(Pod)4, where d is the dis­
tance between any pair of apertures. At pod ~ 10, the 
effect becomes accessible to experimental observation, 
in particular, if automatic differentiation of the volt­
ampere characteristics is possible; this allows us to de­
tect weak departures from Ohm's law. In the case of me­
tals of the bismuth type with small electron groups and 
large de Broglie wavelengths, observation of the effect 
is possible at macroscopic distances between the aper­
tures, d ~ 10-4 cm. 

The nature of the discussed effect is due to the pres­
ence of a preferred momentum po in the distribution of 
electrons in p space and of a maximum transferred mo­
mentum 2po (Fig. 2a), For tunneling of the electron from 
metal 1 with conservation of energy to metal 2 (see Fig. 
1), two preferred values of the momentum appear: 

po=1'2m[1, po'=1'2m([1+eV) 
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lp 
o 0 

FIG. 2 

and the characteristic transferred momenta are 
(Fig. 2b): 2po, 2p~, po + p~, p~ - po. The first three 
combinations correspond to oscillations with small 
period, which, taken together, form the term I~sc in the 
current. The last quantity (p~ - po) is small and leads to 
long-period oscillations, Such oscillations are conven­
iently observed experimentally, inasmuch as the current 
changes not only as a function of d, but also as a function 
of the applied voltage V, For eV « /J., we get Llp =p~ 
- Po ~ poeV/2iJ. = eV/vo, which just corresponds to the 
period of the oscillations in the term If>sc (Eq. (3.25)). 

The considerations that have been set forth applied to 
an impurity-free metal with an infinitely long mean free 
path l. It is clear that to preserve interference with ac­
count of scattering, it is necessary that the condition 
l :;:; d be satisfied. As is clear from the foregoing in­
terpretation, the effect is due to the interference of "hot" 
electrons, whose energy E ~ eV. The path length for 
such electrons, which is governed by electron -electron 
collisions, is equal to l(E) ~ POI(J..l/E)2. Assuming eV 
~ void, we obtain l ~ Pod2, whence the condition for ob­
servability of the oscillations (along with a sufficiently 
long impurity path length) takes the form Pod» L 
Similar discussions in the case of electron-phonon scat­
tering, for which l(E) ~ (vO/wD)(wD/E)3 (wD is the Debye 
energy) lead to the more rigid limitation pod» vo/s, 
where s is the sound velocity, The latter estimate per­
tains to the region of low energies E «wD. For E ~ wD' 
the path length le-ph does not depend on the 
energy, [22,23J and is equal to ~Vo/wD. The condition for 
the existence of the effect in this case takes the form 
pod «vo/s. Thus the effect becomes unobservable only 
in the energy range d ~ do = vowD ~ 10-5 cm. For 
d »do or d « do, the damping of the oscillations due to 
electron-phonon interaction will be small. 

Differentiating Eq. (3.28) four times with respect to 
V, and assuming the factor in front of the cosine to be a 
slowly changing function of the voltage, we obtain 

d'l osc Vp:' ( e )' '\'1 (leV ) dV'" "" npo' -;,- Re,,", S,Si exp -;;;;-Ip'-Pi l . 
1'9'=j 

(3.29) 

With the aid of this expression, we can consider a num­
ber of problems-for example, a system of regularly 
spaced apertures that forms a two-dimensional or one­
dimensional lattice, etc.3) For a junction of arbitrary 
shape (S), with f = 1, Eq. (3.29) can obviously be rewrit­
ten as 

d'lose f f (ieV ) dV' "" C· Re dp dp' exp -lp-p'l , 
(8) (S) Vo 

(3.30) 

where C is a constant whose form is obvious from (3.29). 
For a circular aperture of finite radius (a »POI) calcu­
lation of the integral (3,30) by the stationary-phase me­
thod gives the result 

d'lose "" C. 4n"a' (2eVa IT ) 
dV' (eVa/vo)'!' cos --;;:---4 . (3.31) 
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We again obtain current oscillations as a function of the 
voltage V, the period of which is ~ (eV) = 27TVo/d (d = 2a 
is the diameter of the aperture). Estimation of the amp­
litude of the oscillations, in accord with (3.31), gives 
(cf. (3.28)): 

d'I fl V 'I. 
(fl V)' d;'sc -10 (V) (Pod)-', (3.32) 

where 10 = ViReo' It is then seen that the smallness of 
the effect is determined only by the factor (ao/d)2, where 
ao ~ POl is the lattice constant. 

4. Up to this point, we have considered interference 
phenomena in the case of point apertures (a « POl) or 
finite regions with a sharp boundary, the diffuseness of 
which is also less than Pol. Given satisfaction of these 
conditions, the oscillations turn out to be undamped as a 
function of the voltage, see formula (3.28). We now 
analyze the extent to which diffuseness or "imprecision" 
of the apertures affects the phenomenon considered. As 
a model, we use the case of a "Gaussian" aperture, the 
height of whose potential is described by Eq. (1.2), 1/f(p) 

2/ 2 = e-P fa , where the quantity a has the meaning of the 
effective radius of the aperture. For a system of Gauss­
ian apertures, we put . 

/-' (p) = 1:)", exp( -lp-p.I'la,'). (3.33) 

Substitution of (3.33) in (2.6) gives 

IP(x) = ts,e,x."exp{- ! a,'x'} , (3.34) 

and Si = 1TaiAi has the meaning of the effective "area" of 
the i-th aperture (cf. (3.34) with (3.23)). Substituting 
(3.34) in the formula for the current (3.18) and repeating 
all the calculations that lead to Eq. (3.28), we obtain 

I "" Vp:' ~s.s. cos(eVlpi-p;l/vo) {_ (ev )'(.' .')} (3 35) 
ose , £... ' , I I' exp 2 a, +a, . • 

rrpo i"",) pi-P; Vo 

This formula is applicable for (poa)2 «Pod, where 
a = max (ai, aj)' The difference of (3.35) from the ex­
pression (3.28) developed earlier consists in the pres­
ence of the additional exponential, which diminishes with 
increase in V. The oscillations now become damped in 
their amplitude as a function of V, and the number of ob­
served periods is, in order of magnitude, ~N ~ d/a. 

4. STATIONARY JOSEPHSON EFFECT 

We now calculate the current of an inhomogeneous 
junction in the superconducting state for a zero differ­
ence in potentials between the metals (stationary Joseph­
son effect[4J ). We carry out the calculation of the cur­
rent in a way similar to the microscopic calculation for 
a homogeneous junction. [2, 7J 

The current density in the superconductor-insulator­
superconductor system is determined by the tempera­
ture Green's function[ 22J 

j(r)=- ~ T1:[(V,,-V,)G.(r,r')J,,_,. (4.1) 

As in Sec. 3, it is convenient to calculate the total cur­
rent through the barrier in the plane of the junction z = 0: 

1= 5 j(p,z=O)dp. (4.2) 

As was noted in [2, 7J, the problem is Simplified in such a 
method of calculation, inasmuch as there is no need to 
calculate the corrections to the parameter of order ~ 
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due to the finite transmission (D). In zeroth order in the 
transmission, ~ can be chosen in the form 

fl(r)={fle"", z<O. 
fle"', z>O 

(4.3) 

In the calculation of the Green's function, we shall start 
out from the Gor'kov equations, [22J which can be repre­
sented in integral form: 

U. (r, r') =G." (r, r') - 5 dr, J dr,G.' (r, r,).1 (r,) G_." (r" r,) L'I.' (r,) G. (r" r'). 

(4.4) 

The diagram Fig. 3a is to be compared with the equation 
just written. In this case, the single line corresponds to 
the Green's function of the normal metal (Gn ) and the 
double line to the Green's function of the superconductor. 
By regrouping the terms of the series which corresponds 
to Eq. (4.4), we can represent Gw in another way that is 
more convenient for calculation of the current. The 
corre~ponding equation for Gw is shown in Fig. 3b or, 
analytIcally, 

G. (r, .') =G. '(r, r') - J dr, J dr, G.' (r, r,)fl (r,) G_. (r" r,) fl' (r,) G.' (r" r'). 

(4.5) 
Substituting (4.5) in (4.1) and (4.2), we obtain 

1= ~ T 1: 5 dp Sf dr, dr, L'I. (r,)L'I.' (r,) G_. (r" r,) 

x [( a:' - a: )G.n(r,r,)G."(r"r') L~, . 
Using the equation satisfied by Gn : w 

(4.6) 

[iW+Il+V'/2m-V(r)]G.n(r, .')=6(r-r') (4.7) 

and the Green's function, we obtain the following expres­
sion for the current [2, 4J : 

I=-ieT 1:5 dr, fdr,(signz,-signz')L'I.(r,)L'I.·(r,)G.n(r"r,)G-.(r"r,). 

(4.8) 

Tl,1is formula is a general one and is valid for any in­
homogeneous barrier. It follows from (4.8) that in the 
calculation of the current with accuracy ~ 1/v~ it is 
necessary to use the Green's functions of first approxi­
mation Gill and G 1 ,where the index 1 denotes the first w -w 
order in 1/Vo. On the basis of (4.7), 

G." (r, r') = G."O(r-r')+ Vo 5 dp, G.,O(r-p,)/(p,)G:(p" r'), (4.9) 

where G~O is the Green's function of free electrons. [22J 
Writing down the solution (4.9) in the form of a series in 
1/Vo, we easily obtain, in first order, 

nl I _ 1 d nO " 

G. (p,r)-- mVo/(p) dlz'l G. (p-p,z). 

Substituting this expression in (4.9), we obtain 

G:~ (r,r')=G;' (r_r')_G:o (p-p', Izl+lz'l) 

(4.10) 

(4.11) 

(Gnoo is the Green's function for an infinitely high bar­
w 

rier). Using (4.9), (4.10), we find the expression for G~ 
with the accuracy necessary for us: 
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1. tI' J' dp, no ) n' ( 'j G.n(r,r')"",G:~ (r,r')- 'V -( -)-G. (r-p, G. p,-r . 
m 0 dlzldlz'l I p, (4.12) 

We can represent the Green's function of the supercon­
ducting state G~ graphically, as is done in Fig. 4. The 
light line denotes ~1 and the heavy line the Green's 
function of the superconducting halfspace. In zeroth 
order in 1/Vo, we obtain (compare with (4.11)) 

Gw~(r, r')=G.'(r-r')-G.'(p-p', Izl+lzl'). (4.13) 

A similar formula also holds for the Gor'kov functions 
Foo(r, r/). Carrying out further operations, we obtain the 

w 
following expression for G~: 

'(' 1 d'S· dp, G' ( ) G '( ') G. r,r)= -~ dlzldlz'l f(p,) • r-p, • p,-r 

( 4.14) 
1 d' S dp +ei("-")"gn, --'-F.'(r-p,) F.O+ (p,-r') . 

m'V, dlzldlz'l f(p,) 

This expression differs from Eq. (4.12) only in the pres­
ence of a second term which contains the F functions of 
the superconductor. (22J Nevertheless, the structure of 
the phase factors in the second term of (4,14) is such 
that this term turns out not to make a contribution to the 
current. Substituting (4.14) in the formula (4,8), we 
finally obtain 

1=1, sin (<p,-<p,), 

1 - tl.'e T n S· dp, S dp, , ) 
,- Yo' ..:- I(p,) I(p,) ([). (p,-p, , 

where <pw(p) is the following function: 

¢ .. (p) = ~ (::)' eixP
[ (1 +v w': tl.') A,. ~ A,.+ 

+ (1 ~) A"~A.-]. 

(4.15) 

(4.16) 

(4.17) 

A.=1'2m(;-iw) , A.±=[2m(£±il'w'+tl.') p, ;=x'/2m-1L (4018) 

(that branch of the root is chosen for which the real part 
is positive), Carrying out integration over and summa­
tion over w, we obtain the following simple expression, 
with account of the condition w « J.L: 

n tl. tl. 
1'=z-;Rth2f' (4.19) 

Here the role of R is played by the dynamic resistance of 
the inhomogeneous junction for the case of a zero volt­
age, which was calculated in Sec, 3 and is expressed by 
the relation (3021), Formula (4.18) agrees with the well­
known result of Ambegaokar-Baratoffo [24J It follows 
from the derivation just given that this formula holds 
for any inhomogeneous barrier. 4) 

5. NONSTATIONARY JOSEPHSON EFFECT FOR 
INHOMOGENEOUS JUNCTIONS 

1. The scheme of calculation of tunnel phenomena for 
inhomogeneous systems developed in Sec. 3 can be trans­
ferred to the case of superconductors. Introducing the 
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+ 

time-dependent Green's function of the type (3.1), we ob­
tain 

[i :t -H,-W(z)8(t) ]G(x,x')+tl.(x)F+(x,x')=6(x-x'), 

[i :t +Ho+W(z)8(t) ]F+(x,x')+tl.·(x)G(x,x')=o, 

where 

tl.·(x)=iF+(x, x). 

(5.1) 

(5.2) 

(5.3) 

Boundary conditions similar to those discussed in Sec. 
3 should be added to Eqs. (5.1). For G(x, Xl), these con­
ditions are identical with (3.13), (3.14). In a similar way, 
we get for the F functions 

\ 
F+(t'+O, t')-F+(t'-O, t')=o, F+(+O, t')-F+(-O, tl)=O, 54 

F+<(i~, t')=-F+>(O, t'). ( • ) 

Further calculations are entirely analogous to those 
given in Sec, 3, although they are very cumbersome. 
The current is finally represented in the form of a sum: 

1=1,+1" (5.5) 

where 11 is the single-particle (or quasiparticle) cur­
rent, 12 the current of Cooper pairs (the Josephson 
superconducting current), The expressions for 11 , 12 
have the following form: 

11, S dp S dp' {( ;p;p' ) 1,=-- -- .--App· 1+-- (np-np') 
m'Vo' (2n)3 (2n)3 epep' 

x [6(e p-ep·-eV)-Il(e p-fp· + eV)]+ (1- ;p;p' ) (1-n p-np') (5.6) 
8 p Ep' 

(5,7) 

where 

(5.8) 
App·=k'k"I<p(x-X') 1'8(k)8(k'J, np =(e",+1)-'. (5.9) 

In the case of a homogeneous junction, Eqs. (5.6), 
(5.7) give the well-known results obtained by the method 
of the tunnel Hamiltonian, [25, 26J At T = 0, formulas 
(5.6), (5.7) take the form 

1 ne S dp J dp' A (1 £p£p.) 
,= m'V,' (211)' (2n)' pp' - fpe p' 

(5.10) 

1,=_e_Im{ei·(I)S~S~App.~ 
m'Vo' (2,.,)' (2n)' epep' 

x ( fp+ep.~eV+ill + ep+ep.~eV-it'l )}. 

(5,11) 

2. We now find the oscillating increment to the quasi­
particle current for the system of point junctions (3.23). 
We shall consider only the oscillating current terms of 
the type (3.25), assuming that the "fast" oscillations 
analogous to Eqs. (3.27) have small amplitude and can be 
neglected (see the discussion in Sec, 3). We have, by 
virtue of (5.10), 

, p~ -, SiS; ~ ~ '( 
lose"" --, Re 1:--, S d; S d; 1 

4,.,epo Ipi-P;I 
i=l=i _00 _oc 

££' 
l' tl.'+£' 1" tl.'+r' ) 
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xexp{ i(S-n~:i-pjl }6(1~2+s'+l'L'.'+s'2-eV). (5.12) 

Calculating the integral asymptotically for eVdNo » 1, 
we get, for a pair of apertures located at a distance d 
from one another, an oscillating term of the form 

, const ( Vo ) 'f, [ d n] 
Iosc= (Pod)' eVd cos 1(eV)'-(2L'.)'-;'--T (5.13) 

where the constant depends on the ratio v = eV /26. and 
becomes infinite as v - 1. The result of the expression 
(5.13) refers to the case eV > 26., inasmuch as the cur­
rent II vanishes at eV < 26., in accord with (5012) (it is 
understood that this is a consequence of the condition 
T = 0; for nonzero temperatures but T «6., the current 
II will be exponentially small at eV < 26.)0 The equation 
(5.13) is valid for eV ;(: 26.; therefore it does not go over 
into (3025) in the limit 6. - 0 (at the same time, expres­
sion (5.12) has the correct limiting form for the normal 
state, 6. - 0). 

The oscillation effect (5.13) has the same origin as 
the current oscillations in the normal state, discussed 
in Sec. 3, with the added account of the specifics of the 
superconductor spectrum. By virtue of the presence of 
a gap, the difference PI - P2 in the momenta of the elec­
trons in the two metals (see Fig. 5) is determined by the 
equations (at eV > 26.) 

J.t1-€Pt=J.tz+epl! 
f.I,-f.l,=eV. (5.14) 

The oscillation term in the current will be 
~cos (PI - P2)d; it is determined by the maximwn value 
of PI - P2 for the condition 

l'L'.'+sp.'+"~'+s,,'=eV, sp=v,(p-Po). (5015) 
It is easy to see that the maximum of PI - P2 is achieved 
at ~p1 = -~p2' and is equal to 

(p,-p')mox=v,-'r (eV) '- (2L'.) ']'I', (5.16) 
which corresponds exactly to formula (5013)0 Equation 
(5.13) is similar to the expression for oscillations in the 
Tomasch effect [27, 28J , which are due, however, to 
another factor, namely, the singularities of the density 
of states due to the so-called Andreev reflection of the 
excitations at the interface from a perturbation of the 
parameter of the order of 6.0 [29J 

3. In conclusion, we consider the oscillations of the 
Josephson component of the current b The oscillations 
as a function of V in Eq. (5.11) appear only in terms 
containing 15 functions and describing the dissipative 
part of the current I~ (sometimes called the current of 
interference of quasiparticles and pairs, see, for exam­
ple, [30J). The current component of interest to us has 
the form 

, (const)' ( Vo )'f' . [ d n] 10sc=--- -- cos(cp-2eVt)sm Y(eV)'-(2L'.}"-+- . 
(p,d)' eVd Vo 4 

(5.17) 
In conclusion, the authors thank 10 Ko Yanson for his 
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considerable help in setting up the study and for dis­
cussion of the results obtained. 

')Reference is made to the quasiparticle current. 
2)Private communication. 
3)Upon replacement of transparent apertures by impenetrable ones 

(spots), located against the background of a transparent screen, a 
principle similar to the Babinet principle in optics holds for the in­
terference contribution (see [20]). 

4)In the case of several apertures, the quantity R oscillates as a function 
of their mutual separation distance. However, the period of these 
oscillations _p-I; therefore, observation of the effect is not of in­
terest (even without mentioning the fact that in experiment the 
quantity d for the junction is fixed and the junctions themselves are 
not strictly point junctions). 
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