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We show that the propagation of short electromagnetic and gravitational waves occurs as a process 
of successive mutual transformation of these waves into one another, for external electromagnetic 
fields with the principal axes transported parallel along the rays carrying the waves. In this case the 
polarization plane of the waves along the rays does not rotate. An analysis is carried out of wave 
propagation in a Nordstn/m.-Reissner field. In the general case the polarization plane of initially 
linearly polarized short waves does rotate, but the total intensity of the waves along an isotropic 
tube along the ray is conserved. The propagation of short waves in a Kerr-Newman field is 
described. We show that the rotation angle of the polarization plane relative to an isotropic tetrad 
(which is parallel transported along the rays) will be small compared to the rotation of the tetrad 
itself (owing to rotation of the black hole) for large impact parameters of the rays. However, both 
angles will be comparable for near-critical impact parameters of rays not situated in the equatorial 
plane and for finite charges of the black hole. 

Owing to the nonlinearity of the Einstein-Maxwell 
equations gravitational fields in vacuum always interact 
with one another. Of particular interest is the interac­
tion of fields having the character of waves. Wave 
properties are exhibited by solutions having different 
scales of variation in different regions of space-time; 
in this case a region with smooth variation of the solu­
tion is naturally termed background and regions with 
"abrupt" variations of the solution will be called waves. 
If the background is homogeneous, the propagation of the 
waves does not depend on their degree of inhomogeneity. 
This is true of most of the known exact solutions with 
Singled-out algebraic properties. An isolated act of 
transformation of electromagnetic waves into gravita­
tional waves and vice versa, in the presence of a static 
transverse magnetic or electric field has been consid­
ered in r 1-4J. In the general case only solutions which 
vary abruptly compared to the background can make 
their way along null-geodeSics through the inhomogenei­
ties of the background 1). In this case the regions of 
abrupt change of the solution will be concentrated along 
the characteristic isotropic cones with vertices in the 
initial inhomogeneity regions. An example of such solu­
tions are the rapidly oscillating paths of gravitational 
waves or discontinuities of order 2: 1 of gravitational 
fields[7,8,5J. 

For such solutions (of the type of a traveling wave) in 
the absence of background electromagnetic fields, propa­
gation according to the laws of geometric optics along 
null-geodesics in the curved background space is a 
characteristic feature [7,8J. From the "transport equa­
tions" for the wave amplitudes it follows that the inten­
sity (brightness) of the radiation is inversely propor­
tional to the area element of the wave front, area 
element which is determined by the intersection of the 
wave fronts with the same rays. The polarization of the 
waves is covariantly conserved along rays that carry the 
wave and which "generate" an isotropic wave front sur­
face in 4-space. When a small gravitational wave ampli­
tude becomes comparable with the wavelength (in units 
where the vacuum velocity of light has been set equal to 
one), then trains of short gravitational waves start to 
bend the underlying background and it becomes neces­
sary to consider the process of wave propagation 
together with the problem of determining the background 
field. r 8, 9J 
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We show below that in the propagation of interacting 
short gravitational and electromagnetic waves in arbi­
trary external electromagnetic fields there appear 
essentially new effects. Any of these waves causes the 
appearance of the other and the propagation occurs with 
mutual modulation of the wave amplitudes.2) For sources 
of external electromagnetic fields concentrated in com­
pact regions, the waves experience a finite number of 
acts of mutual transformation. 

The total intensity of the gravitational and electro­
magnetic waves obeys a continuity equation with an iso­
tropic velocity field along the characteristic rays that 
carry the wave. In the quasiclassical approximation de­
veloped below one may talk of a gas of photons and, 
gravitons transforming into one another. The total dis­
tribution function of these particles will obey a Liouville 
equation [9J . The Einstein equations for the background 
will involve the energy-momentum tensor of the photons 
and gravitons as the mean-square of the "noise" of the 
waves (Section 1). Therefore the reaction of the waves 
on the background manifests itself in exactly the same 
manner as in the absence of external electromagnetic 
fields [8, 9J . 

Press and Thorne[llJ have qualitatively transferred 
the results of Gertsenshteln [lJ and Vladimirov [2J to 
waves in the field of charged black holes. Section 2 con­
tains a study of the propagation of short waves in a 
Nordstrpm-Reissner field; in particular, we calculate 
the amplitude of the appearing gravitational component 
in the reflected wave as a function of the impact param­
eter of the incident of the electromagnetic wave, as well 
as of the charge and mass of the black hole. 

For the special case of constant transverse external 
fields [1-4, 10J the curious effect of rotation of the polar­
ization plane of an initially linearly polarized wave rela­
tive to a tetrad which is parallel-transported along a ray 
is absent. 

In Sec. 3 we describe the propagation of short waves 
in the field of a rotating black hole (the Kerr- Newman 
solution [12 J ), where such an effect occurs. In the general 
case the intensity of the electromagnetic wave is related 
to the rotation of its polarization plane. 

Copyright © 1975 American Institute of Physics 579 



1. DERIVATION OF THE EQUATIONS FOR THE 
AMPLITUDES OF INTERACTING WAVES AND THE 
NONLINEAR REACTION OF THE WAVES ON THE 
BACKGROUND 

We shall search for an asymptotic solution of the 
Einstein-Maxwell equations in vacuum in the form of 
formal expansions of the metric gli and of the electro-

magnetic field bivector (2-form) Fij 
~ 

I (0) ~ I[ (0 (0. 
g" =g" + ~Cll- A" cos(Cllsl)+B" sm(IClls)l. (1.1) 

~ 

F ' F (0) '\1 _I [ (I) (I) • "=,, +Cll~Cll C" cos(lClls)+D" sm(lCllS)]. (1.2) 
1_1 

Here the functions All) B!~) e·(~) and On) are expan-
IJ' IJ' IJ' IJ 

sions in the reciprocal powers of w starting from zero; 
the background fields git and Fa' are expansions in the 
squares of reciprocal powers of w. 

We denote the leading terms in the expansions g!?), 
F(O) A.(l) B(l) ell) 0(1) ti 1 b hlJ 

ij , -lj' ij' ij' ij respec ve y y gij' F ij , ij(1)' 

hij(2)' fij(1)' fi j(2)' Substituting the expansions (1.1), 

(1.2) into the system of Einstein-Maxwell equations, we 
verify its self-consistency, in view of the compatibility 
of the system of equations obtained by equating the co­
efficients of the same harmonics and the same recipro­
cal powers of w. Equating to zero the terms of order w 
of the first harmpnic, we obtain an eikonal equation for 
the function s: glJ s is j = 0 and the following algebraic 
restrictions on hij(~)'\j(A) (A = 1, 2): 

(1.3) 

For simplicity we restrict ourselves in the sequel, 
without contradiction, to the case fi j(1) = hij(2)' which in 
the absence of interaction corresponds to linearly polar­
ized waves, and we omit the additional index A. The 
wave fronts s = const define a family of rays li == s i , 
tangent to the congruence of null-geodesics without rota­
tion in the background space. For our purpose the form­
alism of optical frames of Newman-Penrose[13] is par­
ticularly convenient. We shall assume that in the region 
filled by the rays the field of null-frames is obtained by 
parallel transport along the rays li from the field onto 
arbitrary hypersurfaces, which are intersected only 
once by each ray. The isotropic basis vectors l, n, m, 
m* of the frames satisfy by definition the relations 
l.mi = n.mi = 0 l·ni = -m.m*i = 1. Let the background 

1 1 '1 1 
electromagnetic field have in the indicated field of 
tetrads the components 

(1.4) 

Here 

form a basis in the complex 3-space of self-dual bivec­
tors Fik = Fik + iEiklmFlm/2. 

The function cp 0 characterizes the radiation of the 
external field along rays which carry the short waves, 
since the square of its absolute value is proportional to 
the flux of energy-momentum of the external field along 
the direction li: 

I cpo 1'=4nT,;l'I', 
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where Tij is the energy momentum tensor of the ex­
ternal field. All the peculiarities of behavior of the 
short waves described below are related to the compon­
entcpo. 

As shown in the Appendix, the variation of the argu­
ment of the component cpo along the rays li is expressed 
in terms of the Ricci rotation coefficients of the prin­
cipal axes of the bivector describing the external elec­
tromagnetic field3). It follows from Eqs. (1.3) that the 
coefficients in front of the first harmonic of the pertur­
bations in the basis l, m, m*, n have the form 

h.,=Pm,m,+P·m:m;'+21(,A,,; 1,,=IV,,+c.c. (1. 5) 

Here the functions P and f are the absolute values of the 
amplitudes of the gravitational and electromagnetic 
waves, and their argument characterizes the polariza­
tion of the corresponding waves. The term l(iAj) is re-
lated to the selection of the coordinate grid and can be 
made to vanish by means of the coordinate transforma­
tion xi' = xi - sin (ws) Aiw -1. 

Equating to zero the totality of nonoscillating terms 
with zero power of w in the Einstein equations Rij = K Tij 
(here Tij is the energy-momentum tensor of the elec­
tromagnetic field) into which the expansions (1.1) and 
(1.2) have been substituted, we obtain 

R;;=xT;;+s"s,,( I~I' + ~ III')' (1.6) 

where G is the gravitational constant. Equation (1.6) 
describes the curving of the background along which the 
short waves travel. In order to close the system (1.6) it 
is necessary to obtain equations for the complex ampli­
tudes P and f. For this purpose we equate to zero in the 
Einstein equations the coefficients of the first harmonic 
and zeroth power of wand then take its tetrad component 
(m*, m*) (Le., we carry ,?ut ~ contraction of the equa­
tions so obtained with m*lm*J). Using 

(T,/ -Ti,) m'im""" (4n) -'/cp,", 

we obtain easily 

(1. 7) 

In the same way, equating to zero the coefficients of the 
first harmonic and the zeroth power of w in the Maxwell 
eq uations 'V lij = 0 we take the tetrad component m *, 
obtaining 

(1.8) 

From (1.7) and (1.8) it is easy to derive the continuity 
equation for the total brightness (energy) of the electro­
magnetic and gravitational waves: 

V,[l'(e'IP'! +4GI II') 1 =0. (1.9) 

In the isotropic-geodesic system constructed on the rays 
li: 

dS'=2dsdct.+ gods,+g., (ds"+g..ds) (ds'+ids); J!, v=1, 2 

(0' is the affine parameter along the rays li), it follows 
from Eq. (1.9) that 

e'!P'I+4GI/!'=(g)-'/'o(s, s', s'). 
Therefore along the rays the following quantity is con­
served 

(ei IP'I +4Glfl') l'gds'ds'. 

But v'gd~ Ide has the meaning of the elementary area of 
the wave-front surface subtended by the same rays. 
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Therefore the total intensity of the waves is inversely 
proportional to the elementary area of the wave front. 
The continuity equation (1.9) for the total intensity im­
plies that mutually related rays of electromagnetic and 
gravitational waves act on the background in the same 
manner as "pure" gravitational waves in the absence of 
external electromagnetic fields [8,9]. As was shown 
in [9], in this case one can introduce for the null-parti­
cles a distribution function that is subject to a Liouville 
equation. 

The largest intensity (brightness) is attained by the 
waves in focal points (on caustics), where g = 0 (focal 
points appear unavoidably as a consequence of the 
Einstein equations for any normal conffuence of null­
geodesics with nonzero convergence [15 , the so-called 
Landau-Raychaudhury effect). At focal points the geo­
metrical optics approximation becomes useless, since 
it leads to fictitious singularities for the wave ampli­
tudes. The leading terms of the asymptotic behavior on 
the caustics for large w can be obtained in the following 
manner. The algebraic conditions (1.3) for the leading 
terms of the expansions (from which we.will now not 
separate the rapidly oscillating factor e1WS) will be con­
sidered valid as before. In the appr9ximation of geome­
tric optics the operator llVi + %Vill which occurs in the 
left-hand sides of (1.7) and (1.8) is equivalent to the 
D' Alembertian, however the latter is meaningful also on 
the caustics, where the former loses its meaning. . 
Therefore, near the caustics the leading terms of the 
asymptotics for large w will be determined by means of 
expansions in fractional powers of the wavelength l/w 
from the equations 

4G 
DP=7w!cpo", Dj=cpowP. (1.10) 

The character of interaction of the waves, according 
to (1.10), near simple focal points as well as near multi­
pIe foci (unstable closed light rays) is described on the 
example of waves propagating in the Nordstr,6m­
Reissner field in Section 2. 

2. PROPAGATION OF SHORT WAVES IN THE 
NORDSTR"M-REISSNER FIELD 

On account of Eqs. (1.7), (1.8) a change of the phase of 
cpo induces a self-consistent change of phase of the func­
tions f and P, i.e., a rotation of the polarization plane of 
the electromagnetic and gravitational waves. The condi­
tion that the argument of cpo be constant along each null­
geodesic imposes restrictions on the structure of space­
time (cf. the Appendix). 

In Eqs. (1.7) and (1.8) we make the substitution 

f = (:~ ) 'f, ~(g)-"', P=[JJ(g)-"', cp=cpo( ~, )"'; 

we then obtain 

(The complex number A and the phase shift y are con­
stant along a fixed ray.) From the form of the solutions 
(2.2) it follows that the amplitudes of the electromagnetic 
and gravitational wave turn out to be sinusoidally modu­
lated with a frequency which can be determined from the 
equation 27T = J cpdQ'. Before reaching the region with a 
strong electromagnetic field Icpl ~ 1, the gravitational 
and electromagnetic wave from a single source propa­
gate independently, having identical wavefronts, but in 
general different polarizations. Then in the region Icp 1 

~ 1 these waves suffer only partial mutual transforma­
tions, with the polarization plane of each suffering a 
rotation relative to a tetrad which is parallel-transpor­
ted along the rays. Formally this corresponds to com­
plex phases in the expressions (2.2). The case of real y 
corresponds to the fact that either the polarization plane 
of the gravitational and electromagnetic short waves 
coincides before entering the region with Icp 1 ~ 1, or 
initially only one of these waves was incident. In this 
case the solutions (2.2) characterize the complete mu­
tual transformation over a length of the period J cpdQ' 
= 27T. If cpo is real along the rays that carry the wave, the 
behavior of the" short waves at the focal points is des­
cribed in a particularly simple way. In this case the 
equations (1.10) decompose into two independent equa­
tions of second order for the linear combinations 
f ± (C"Y4G)1I2p == X±: 

(2.3) 

In the case of a charged black hole without rotation 
(the Nordstr,6m-Reissner solution) the only nonvanishing 
component of the electromagnetic field is FOr = e/r2, 
where e is the charge of the black hole. The Nordstr,6m­
Reissner metric takes the form 

dS'=Adt'+ A -'dr'-r' (de'+sin' edcp'), 

A =1-r./r+Ge'/c'r'. 

It is easy to verify that in this case the component cp 0 of 
the electromagnetic field is real for any geodesic. 
Therefore 

<p'=4nGc-'T,/li=Gc-'e'Ar-6 [ (s .• ) '+ (s .• ) '/sin' e]. (2.4) 

The eikonal equation in the Nordstr,6m-Reissner metric 
admits a complete integral of the form 

s=t±R(r)+Ijl(e)+Ncp, R(r)= Ski (1-1>.'Alr),I'dr, 

Ijl(e) = S (1).'-N'/sin' e) '1, de. 

From (2.4) it follows that 

'1'= {G1>.e1c'r3• (2.4') 

The affine parameter (}' is conveniently replaced by 
the ~adial coordinate r by means of the equation gijs'j 
= dx1/dQ', hence 

da=dr(1-A1>.'/r') -'I,. 
d d 

-[JJ=cp'~' -~=-cp[JJ 
da ' da ' 

where Q' is the affine parameter along the ray. 

(2.1) Therefore the period of the modulating sinusoid can be 
determined as a function of the radius from the equation 

In those cases when the principal axes of the external 
electromagnetic field do not rotate along the ray~ that 
carry the waves, one can use the rotation mt = e1Xm to 
make the function cpo real everywhere along the ray with­
out violating the parallel-transport property of m along 
the ray. In this case the solution of the system (2.1) is 
of the form 

~=A cos (S <p da+r ), [JJ=A sin (S 'I' da+1 ). (2.2) 
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2n = S <pda=e1>.l'Gc-' J drr-'(1-1>.'A/r')-"'. (205) 

It follows from this equation that the mutual transforma­
tion effect depends on the impact parameter of the ray. 
The waves captured by the black hole have impact 
parameters such that the equation 1 - AA 2/r2 = 0 has no 
real roots. The corresponding values of A satisfy the 
inequality A < Acr: 

1>.cr'=r/[x'+'/,+1'1 +8x'+ (8x') -I 0'1 +8x'-1)]' 
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x'-1-Ge'/M' 

(for e = 0 we have Acr = (27)1t2rg /2 for eGl12 = M we 
have Acr = 2rg)' 

At A > Acr the short waves are reflected ideally 
from the first turning point r1 which they encounter, 
where r 1 is a root of the equation 1 - AA 2/r2 = O. If an 
uncaptured electromagnetic wave is incident with ampli­
tude B on the black hole from + 00, after suffering several 
acts of mutual transformation into gravitational waves 
in the field of the black hole this wave will go off to in­
finity in the form of an electromagnetic wave and a pro­
duced gravitational wave with the amplitudes given 
respectively by 

(2.6) 
" 

P=2c-'BG'" sin (2eAG'I'C-' J dr r' (1-A'A/r')-'h ). (2.7) 
" 

The expressions (2.6) and (2.7) diverge when 1 - A2A/r2 
= 0 has a multiple root, i.e., when A = Acr ' The corre­
sponding value of the impact parameter belongs to a ray 
which winds itself onto an unstable limit cycle: a closed 
circular orbit of particles of mass zero, with radius 

rer =r,(3+l'1+8x') 2-' 

(for e = 0 the radius rcr = 3rg/2, and rcr = rg for eG1/2 
= M). 

In the neighborhood of the limit cycle the geometrical 
optics approximation becomes invalid, there occurs a 
penetration of the short waves through the potential bar­
rier with comparable reflection and transmission co­
efficients [16J . 

Equations (2.3) for the Nordstr~m-Reissner field be­
come, after expanding in spherical harmonics YZm(e, cp) 
and a Fourier transform with respect to time, 

a ({J ) [ ( (/+1) 1 (G ) 'I. eAm )] A- A-r'x± +rx± w'-A --=F - -- =0, 
{Jr {Jr r' c' r' (2.8) 

Theratio((z+ 1)l)lk/w has the meaning of an impact 
parameter A. Near the turning points r1, Eqs. (2.8) re­
duce to the Airy equation 

r.' d' + ,[( )4r1'-2J.'r1+r,A' (G )'/ BA ]-0 
7-;[;'zx± X±(i) 7-r1 rtf. ± 7 Ti'OO -. 

Therefore on the simple caustics the amplitude of the 
wave increases W 1/ 6 times compared to the ordinary 
points, where the l.iry functions go over into the WKB 
solution of the appropriate equation of (2.8) by means of 
the stationary-phase method (the general case of the be­
havior of waves near simple caustics, in particular the 
field discontinuities, is described by means of solutions 
of the Tricomi equation, solutions which for periodic 
waves go over into Airy functions [17 ,5J ; cf. also[14J, 
Sec. 59). 

For rays with a near-critical impact parameter 
I A - A rl ~ O(1/w) near the closed ray Ir - rcrl 
~ O(11w 1i2 ), Eqs. (2.8) reduce to the parabolic cylinder 
equation: 

2 (G)'''eAcr] + -(Acr-A) ± --. --, = O. 
Acr c wr er 
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The parabolic-cylinder functions can be expressed in 
terms of confluent hyper5eometric functions, which 
allow one to prove (cf. [m ) that the amplitudes of the 
incident, reflected, and transmitted waves are in the 
ratio 

1:[Hexp(-na±) ]-'1,: [Hexp(na±) ]-'1'=1: IR± I: I T ",I, 

a",=2WAcr (6rcr '-Acr') -'n (A-Acr ± -V ~ _B_). (2.9) 
C Acrr crOl 

Near the limit cycle r = rcr the wave amplitude in­
creases by a factor of W 1/ 4 compared to the regular 
points where geometric optics is valid. This property 
is characteristic for wave amplitudes near the "return 
wedges" of the caustic surfaces, also in the general 
case. 

Assume that an electromagnetic wave with impact 
parameters of the rays close to the critical value is 
incident on the black hole: 

/=Ar- 1 exp[iw (t+r)]. 

The gravitational wave which appears during reflection 
will take, according to (2.9), the form 

P =' M.~ exp[iw (t-r) I {JR+J exp [2t s· (l'cD+-W~) dr' + '1'+] 
2nc {Jr' 2 

Re1', 

(2.10) 

Here 

is the root of the equation 

AA' as (G ) 'I, eAw 
1---;:;-=0, cD±=w'a;::-± -;j TA, 

( 1 ia", ) a± a± I a± I 
'Y±=argr 2+'"2 +2-21n-2-' 

If there is a finite difference between A and Acr and 
A > Acr the "height" of the barriers for the uncaptured 
short waves becomes impenetrable, so that a± becomes 
of order w. In this case 

'Y ± .... 0, exp (-na±)-+O, 

-.' as _ (G )'/' BAA ( as )-'" l'cD",-m-- - -- -- , 
(Jr' c' r' ar' 

and we again arrive at Eq. (2.6). 

For I A - Acr I ~ O(1/w) the total intensity of the elec­
tromagnetic and the produced gravitational waves will 
make up a finite part of the initial intensity 

lout =A2lh( IR+ 1'+ IR_I'). 

The number of acts of mutual transformation of waves is 
comparable to one only in the case of large charges 
e ~ G-lt'.!M and small A: A ~ rg (M is the mass of the 
black hole), which follows from (2.6) and (2.10). 

In the same manner as in the case of the uncharged 
black hole [16] in the region Ir - rcrl ~ O(1/w) a peculiar 
halo (an "aureole") is created on account of the strong 
scattering of the incident waves, so that the black hole 
becomes a "source" of secondary radiation. Such a 
situation can be realized in a double system, one com­
ponent of which is a black hole and the other, a source of 
high -energy electromagnetic radiation [16J. 
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3. PROPAGATION OF SHORT WAVES IN THE 
KERR-NEWMAN METRIC 

Here we consider the general case when the argument 
of the tetrad component <p 0 varies along the rays !\,hich 
carry the wave. We represent <p in the form I<p le1V and 
introduce in place of the affine parameter a the variable 
m: dm = Icplda. Eliminating Yfrom Eqs. (2.1) we obtain 

d'fF dv dtT 
-+fF-i--=O. (3.1) 
dm' dm dm 

Equation (3.1) describes the change in amplitude of 
the electromagnetic wave self-consistently with the 
change of its polarization plane. We note that in the ab­
sence of the electromagnetic background the polariza­
tion vector of the rapidly oscillating electromagnetic 
wave is parallel-transported along the propagation ray 
of the wave: the structure of the wave is described by 
the equation Fij = fijeiWS, where s = const describes the 
wavefront, and the amplitudes fij satisfy the relations 

1"s"g"=O, 2s"g'JV;/"+I,,os=0. 

In the special case of an uncaptured ray in the gravita­
tional field of a rotating body, a tetrad which is parallel­
transported along this ray will turn out at the "exit" of 
the ray from the gravitational field to be rotated relative 
to its position at the "entrance" (one can assess the ro­
tation of the tetrad by means of a parallel transport to 
pseudoeuclidean infinity). This fact was noted by 
Skrotskir[lsJ (cf. also[l9]). According to (3.1) the polar­
ization plane in the presence of the electromagnetic 
background will rotate relative to a parallel-transported 
tetrad, so that the effect noticed by us has an essentially 
different nature than in [lSJ . 

In the sequel we restrict our attention to the investi­
gation of Eq. (3.1) for the case of a charged rotating 
black hole. The Kerr-Newman solution has the metric 

( r r-Gc-' e' ) 
dS' = 1-' T, dt'+2T,-'asin' a (r,r-Gc-'e')dtdcp 

Making use of the expressions (3.3) and (3.4) we find 

S,(m)""s"m'=[12 (r+ia cos e) ]-'[ ",(a)+i(a sin e+Nlsin a) j, 

s.(n)""'s,n'= (2~) -, (r'+a'+aN-tl dR), (3.6) 
dr 

S,(l)""s,I'=Ll-' (r+a'+tl ~~ +Na). 

For the Kerr-Newman field which has Petrov type 
D [2lJ, the rotation coefficients k, v, A, a of the tetrad 
vanish. Therefore Eq. (3.5) takes the form 

dv 3 
""dr; = Ti[s,(m) (n+.·) -S,(m') (n'+.) +S,(.) (p-p') -S,(I) (I-'-J,l') J. (3.7) 

Using the definitions of 11, T, p, Il, we have 

n+r·=m"(n'O.I'-l'a.n') =Y2ira cos a~-'(r-ia cos 8)-', 

p-p'=m'm"(0,1,-0,1.) =-2ia cos e~-', 

/1-/1'=m'm"(o,n.-o,n,) =-ia cos etl~-'. 

We now use the equations 

~=-T,-'~ !.!:-=-Ll~-'~ 
da. d8' da. dr 

(3.8) 

and substitute into (3.7) the expressions (3.6), (3.8). We 
then obtain 

v=-3arctg (ria cos 8). (3.9) 

For a charged black hole with rotation in the tetrad (3.4) 
the background electromagnetic field has the form 

FH=2-'I'e (r-ia cos a) -'M,,+c.C. 

Using the transformation formulas for the tetrad com­
ponents of the electromagnetic field [20J, we obtain 

1'1'0 I =~-·"e1't..'+2aN. 
Finally, making use of the expression for the argument 
of cpo, (3.9) we obtain for the tetrad component cpo the 
elegant expression 

'l'0=el'A.'+2aN(r-ia cos a) -'. (3.10) 
drT, -7- T, da'-dcp' T,-' sin' a( (r'+a')'-tla' sin' a); (3.2) At a = 0, Eqs. (2.4 /) and (3.10) coincide and the varia-

~=r'+a' cos' a, tl=r+a'-r,r+e'Gc-'. 

The eikonal equation in this metric admits a complete 
integral of the form 

where 

s=t±R(r) ±",(a) +Ncp, 

R(r)= S [(r'+a')'+2aN(r,r-Ge'c-')+a'N'-t..'LlJLl-' dr, 

",(a) = S [t..'-N'lsin' a-a' sin' a]'" da. 
(3.3) 

In the metric (3.2) the principal axes of the bivector 
of the electromagnetic field are given by the components 

. (r+a' a ) 
{l'}= ~' 1,0, t: ' {n'}=~-' 2-' (r+a', -Ll, 0, a), 

(3.4) 
{m'} =[l'2(r+ia cos a)]-"'(ia sin 8,0,1, ilsin 8). 

(the distinction from the "uncharged" Kerr model con­
sists only in a different expression for t., see (3.2), 
cf. [20J). In the general case (cf. Appendix) the expres­
sion dv/dCl! is given by 4) 

dv [ s.(o) 8,(m') 
- = 3 1m s,(m)n-S.(m')'+S,(o)p-s,(I)/1 - --- k 
da. S,(l) 

(3.5) , , 
+ s,(1)s,(m) + 8,(m') S.,m) ,] 
---v --0---" . 

S,(n) 8,(1) S,(n) 
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ble m is related to the radius r in the following manner: 

m-eG"· c-'1't..·+2aN S T,-'''tl-'(dRldr)-' dr. (3.11) 

Therefore the function dv/dm which occurs in (3.1) is 
given implicitly in terms of m by means of the formulas 
(3.11) and (3.12): 

dv, 1 dR d"') c' -=3a~-I'e-'(t..'+2aN)-"· tl-cos8+rsin8- -=-. 
dm dr da 1'G 

(3.12) 

As in the case of a nonrotating charged black hole the 
largest number of acts of mutual transformation and 
rotation of the polarization plane by 1800 is suffered by 
waves along rays which wind onto a limit cycle, the 
radius of which is a multiple root of the equation 

(r'+a') '+2aN (r,r-Ge'c-') +a'N'-t..'Ll=O. 

This root yields the radius of a closed trajectory of 
null-particles. For trajectories situated in the equa­
torial plane e = 11/2 there is no rotation of the polariza­
tion plane. In this case the period of the modulating 
frequency can be determined from Eq. (3.11) by setting 
in it e = 11/2. The mutual transformation of waves will 
not occur in the equatorial plane for rays with N = -a. 

A second interesting case is formed by the trajector­
ies which wind themselves onto the cone 
e = arcsin (iNla- 1) (for INI < a and A2 = 2aN). In this 
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case, for trajectories with N < 0, there is no mutual 
transformation of waves, since cpo = O. 

The general solution of (3.1) admits the following 
series expansion for large r 

fT-C, 1-- +___ + _ { 1 (G"'el'A.'+2aN)' 2iacos 80 ( G"'el'A.'+2aN )' _ } 
2r' 2c' 51"' 2c' ... 

+C,{~- 2iacos80 +'A.'-2a'-10a' cos' 8, ~(2aN+'A.' 
r' r' r' r' 5 

4acos8, ) } - i --5-(3a' cos' 8.+2a'-'A.') + .. , . 

Therefore, if a ray approaches a charged rotating body 
to the maximally close distance R »rg, the polariza­
tion plane of the wave rotates relative to the tetrad 
(parallel-transported along the ray) by an angle Ii: 

In conclusion we note that for rays with large impact 
parameter A or in the case of a small charge of the 
black hole, the rotation of the polarization plane of the 
wave due to the interaction will be much smaller than 
the rotation of the tetrad which is parallel-transported 
along the ray; the ratio of the respective small rotation 
angles for A »Acr is of the order e2M-1c-2R-1• Both 
rotation effects of the polarization plane become com­
parable for A ~ Acr and e2 ~ GM2, i.e., when the mutual 
transformation of tlie waves is not small (cf. Sec. 2). 

The author thanks A. A. Starobinskil for remarks 
which required the inclusion of some additional research 
in this paper. 

APPENDIX 

Here we derive Eq. (3.5). 

As is well known, the six-parameter group of Lorentz 
rotations which preserves the orthogonality relations of 
l, m, m*, n decomposes into the product of three Abelian 
subgroups [22 ,23]. Let l, m, m*, n denote the tetrad in 
which the bivector of the external field takes on the 
canonical form in the nondegenerate case: Fij = cp 1Mij 
+ c.c. We first rotate the vector 1 in such a manner that 
it becomes tangent to the given congruence of null-geo­
desics without rotation: 

n' =n, l' =Z+am'+a'm+ I a'i n, m' =m+an. 

We then stretch the vector l' so that it becomes self­
parallel-transportable: 

n"=A-ln', 1"=Al', m"=m'. 

Then along the geodesics a and A will satisfy the usual 
equations 

D (aA) =Am,Dl'+ AI a'i m,Dn'+aAm,Dm", 
(A.1) 

D(A)=-[An,Dl'+aAn,Dm"+Aa·n,Dm'). 

In these equations the operator D denotes the covariant 
derivative along the geodesic l". 

We now rotate the vector n" in such a manner that it 
becomes covariantly constant along the geodesic l": 
n'" = n" + Ibl 21" + bm"* + b*m", ... (the condition on b 
is determined from the equation Dn'" = 0). Finally, we 
rotate the vector m'" conserving the direction of the 
vectors l'" = l" and n"': 

m=ei8 m''', fi=n"', l=l"'. 

From the condition that m be covariantly constant along 
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the given null-geodesics we derive a condition on (): 

iD8=m;'" Dm""=m .. Dm'+a'n,Dm'+am,·Dn'. (A.2) 

Thus the tetrad l, m, m *, n, which was discussed in 
Secs. 1-3 has been constructed. In this case the tetrad 
component cpo of the electromagnetic field has the form 

(A.3) 

It follows from the Maxwell equations Vi(CP1Mij) = 0 
that 

IJ (In <P,) =2A (m,Il'Z'+ I a l'm/lln'-a·Z,Am'-an,Dm"). (A. 4) 

With the help of Eqs. (A.l)-(A.4) we obtain the law of 
variation of cpo along the congruence of null-geodesics: 

D(ln ijl,) =Aa- I (k+3Ial'-r+3ap+a'cr) -a'(3n+ la'lv+3f-ta·+a'A.). (A.5) 

We now use the condition of absence of rotation of the 
null-geodesics. Then li = GiS. Therefore A = S,ini, Alail 
= s, (I)' Aa = s, (m)' Separating the imaginary part in Eq. 
(A.5) we obtain Eq. (3.5), as required. 

A necessary condition for the absence of rotation of 
the polarization planes of originally linearly polarized 
short waves consists in the equations (the Petrov type D) 

p=p', f-t=f-t', n+-r'=O, k=cr=v='A., 

If the electromagnetic field is degenerate then we 
have for some tetrad Fij = Uij + C.c. Computations 
analogous to the ones above yield 

DOn ijl,) =2[es,(nl+(r-V)S'('I-S.(m·I~+S.(ml (n-a) 

+ (S.(ml/S.(nl) (S,('IV-S.(ml'A.) ). 

[)The wave properties of the solution are determined by its differential 
but not algebraic structure: the algebraic degeneracy manifests itself 
as a property of only the principal terms of the asymptotic expansions 
of solutions of the traveling-wave type [5J or of the type of waves far 
from the "island" source (the Sachs splitting theorem [6]), 

2)Through the kindness of L. p, Grishchuk, I have recently become 
acquainted with a preprint by Zel'dovich [lOJ, which deals with 
periodic mutual transformation of electromagnetic and gravitational 
waves in a constant transverse magnetic field against the background 
of flat space; the causes of violation of the mutual conversion are 
shown to be the presence of plasma and pair production in mag­
netic fields. 

3) A distinction must be made between two cases: I) both invariants are 
equal to zero: FikFik = 0 (the so called pure-radiation state); 2) at 
least one of the invariants differs from zero. In either case, there is 
a certain reference frame in which the electromagnetic-field bivector 
~sumes a canonical form: in the former case Fij = Uij, in the latter 
Fij = CMij, where C2 = 2(E2 - H2 + 2iE' H) (cf. [[4]), 
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