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An expression is obtained for the viscosity tensor of a dilute suspension of ferromagnetic particles 
placed in a uniform magnetic field. The independent viscosity coefficients are calculated for particles 
of arbitrary shape by taking into account their rotational Brownian motion. The relation between the 
viscosity coefficients and the particle symmetry is investigated. It is shown that in the general case 
the number of independent components of the viscosity tensor is seven (six of them are even in the 
field and one odd). The nature of the dependence of the coefficients on the value of the magnetic 
field is explained, and it is shown that at large fields all the viscosity coefficients sa,turate. For 
nearly spherical particles, the even coefficients are linear in the asphericity parameter, the odd one at 
least quadratic. 

1. STATEMENT OF THE PROBLEM 

A ferromagnetic suspension is a suspension of fine 
(-100 .A) particles, magnetized to saturation, in a neutral 
liquid. If the external magnetic field H is less than the 
internal anisotropy field and if it is permissible to neglect 
relaxation processes in the solid phase, then the direc­
tion of the magnetic moment IL of an individual particle 
remains constant with respect to the particle (a rigid 
dipole)[ll. 

The field exerts on each particle of the suspension a 
torque (lLxH] that tends to orient the particle. In a ro­
tation of the suspension, this leads to a dissipation of 
energy. From this it may be concluded that in contrast 
to ordinary fluids [2J, the viscous-stress tensor aik of 
a ferrosuspension depends not only on a symmetric 
combination of the velocity gradients but also on the 
anti symmetric 0(1) = ~ curl v. On separating aik 
into its irreducible parts 

(1.1) 

and using the equation of motion of the suspension 

du, a ) 
p-=-cr", divv=O, (1.2 

dt ax, 
one finds that the energy dissifated in the whole liquid 
in unit time has the form (see 2 J , sect. 16) 

(1.3) 

The appeJl.rance of the new thermodynamic force 
0(1) necessitates the introduction of additional kinetic 
coefficients of viscosity. The additional dissipation of 
energy is determined by the way in which the liquid 
stream flows around the particles of the suspension and 
thus depends on their shape. For given particle shape, 
the problem consists in the calculation of the additional 
coefficients of viscosity and of their dependence on the 
field. To find the viscosity tensor of a dilute suspension, 
one uses Einstein's method (see [2\ Sec. 22), generalized 
to the case of particles of arbitrary shape [3 J• In addition, 
because of the smallness of the suspended particles it is 
necessary to take into account also their rotational 
(orientational) Brownian motion. 

When we go over to spherical components of the 
tensors (see Sec. 2), we shall write the relation be-

tween the thermodynamic fluxes a(l1) (1 1=0,1,2) and 
forces 0 (l2) (12 = 1, 2) in the form 

(-l,';;;;m,,;;;;l,) , 
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(1.4) 

where p is the pressure and where 71~;~L is the vis­
cosity tensor to be determined. On decomposing the 

spherical tensor of second rank 71(Ztl2) into irreducible 
parts and on taking into consideration that the tensor 
character of the viscosity is determined by the mag­
netic field alone, we have 

h=H/H, 

where elm is the Clebsch-Gordon coefficient 
l1m 1l2m 2 

and Ylm(h) is a spherical harmonic. Formula (1.5) 
contains sixteen reduced coefficients of viscosity 

(1.5) 

71(ll1l2) (the first index in parentheses shows the parity 
with respect to the field, the second and third the ten­
sor character of the flux and force). As will be shown 
below (Sec. 3), the viscosity tensor of a ferrosuspension 
contains only seven independent coefficients 71(ll1l2); six 
of these, 11(202), 11(011), 71(212), and 71(l22) (l =0,2,4), 
are even in the field, and one, 11(112), is odd. The reduc­
tion of the number of coefficients is due here to the 
Stokesian character of the flow around particles of ar­
bitrary shape; this leads to symmetry of the generalized 
coefficients of friction (Sec. 2). If the particles are sym­
metric, then there is a further decrease in the number 
of independent coefficients; for example, for spherical 
particles (Cf. [4,5J) there remain only two coefficients: 
the ordinary (shear) viscosity 11(022)=4v'51T110(1+%CP) 
(110 is the initial viscosity of the liquid, and cp is the 
volume concentration of particles) and the additional 
rotational viscosity 11(011). 

Because of the effect of thermal motion, all the 
viscosity coefficients depend on the field through the 
Langevin argument ~ = J..I.H/kT and saturate with increase 
of field. Because of the large value of J..I. (-104 to 105 

Bohr magnetons), saturation occurs at room tempera­
ture in fields H - 103 Oe. 

2. GENERALIZED COEFFICIENTS OF FRICTION 

To calculate the viscosity of a suspension, it is nec­
essary first to consider the auxiliary hydrodynamic 
problem of the flow around a solid particle, of given 
shape, by a liquid stream which at infinity has a con­
stant velocity Vi and constant velocity gradients ot1), 

0t~ (at the surface of the particle, the usual boundary 
conditions of "adherence" are satisfied). In the Stokes 
approximation, the force Fi, the torque Li, and the 

Copyright © 1975 American Institute of Physics 1124 



stress tensor SiWV averaged over the volume V of 
the particle, exerted on the particle by the stream, are 
linear in the differences Vi - Ui and nt 1) - wi and in 
nW (Ui and wi are the velocity and the angular velocity 
of the particle): 

(2.1) 

F, = ~crikn.ds, 8 .. =~ x,cr'jnJds, L.=8. ('.: 

Here O'ik is the stress tensor of the liquid that flows 
around the particle, the integration extends over the 
surface of the particle, and the decomposition of Sik 
into irreducible parts is analogous to (1.1). The gen­
eralized coefficients of friction in (2.1) depend on the 
shape of the particle and on its orientation with respect 
to the flow. As can be shown by use of the general prop­
erties of solutions of the equations of hydrodynamics in 
the Stokes approximation [6J (see also [7 J, Sec. 123), the 
tensors a, b, and c possess the following symmetry 
property: 

(2.2) 

(with appropriate transposition of the lower indices, 
separated by commas); and in addition, they remain 
unchanged under transformations of the group G that 
leave the shape of the surface of the particle unchanged. 

Since inertial effects are being neglected, the condi­
tions Fi = 0 and Li + Ki = 0 (Ki is the torque due to ex­
ternal forces) enable us to express, from (2.1), the dif­
ference OW-Wi (and also Sik) in terms of Ki and 
n(2) • 

ik' 

(2.3) 

On turning now to the main problem, determination 
of the viscosity of the suspension, we note that the 
volume-average stress tensor aik can be expressed 
in terms of the values of Sik and fit~ [2,3J: 

-(2) 
1f .. =-p6 .. +211.Q .. +N8 .. 

(N = cp Iv is the number density of the particles). Thus 
the stresses in the suspension are composed of the 
stresses in a Newtonian fluid and of internal stresses 
in the particles (the latter are caused by the motion of 
the liquid). 

On further averaging uik over orientation of the par­
ticles and on using (2.1) and (2.3), we obtain the effec­
tive stress tensor of the suspension: 

a"'=-p+N (8"'>=-p - ~ (gil) (01)K'>+l1o<P(g::' (02) >Q,~), 

particle, the tensors g(l1,l2) have constant values g(ll,l2) 
independent of the orientation of the particle (hereafter 
a bar over the tensor denotes transformation to the 
system S). In order to establish the relation between g 
and g it is convenient to go over to the spherical com­
ponents of these tensors. We introduce the unitary 

transformation matrix tK~~r (l lower indices), which 
converts an irreducible Cartesian tensor of rank l 
to a spherical tensor of first rank and of weight l (cf. [8J): 

(2.6) 

whe.re n is a unit vector, and where the constant cl is 
determined by the unitarity condition n+ = 1. Spherical 

tensors g~ and g~ given in different coordinate sys­
tems (rotated with respect to each other) are related by 
the transformation [9J 

g (l) = ~D(l.) ( ) -(''> m ~ m m ex gm , (2.7) .. ' 
where D~'m(a) is the finite-rotation matrix, depen­
dent on the Euler angles a = (cp, 0, I/!). The tensors 

g(lll2) are irreducible only with respect to each of the 
sets of indices separated by a comma. Therefore on 
transformation to spherical components they are trans­
formed to spherical tensors of the second rank, which 
in turn can be represented as sums of tensors of the 
first rank 

(ltill =t.(ltmt) ~'llt) tOaml) (I,ll) _ ~ 1m (t) 
gm,ml I ... gl .... t ... B ..• t gm,ml - "'-' C'lmlltmlgm (ltl2). (2.8) 

I 

Formulas (2.8) and (2.7) give the desired relation be­
tween g(lll2) and g(lrl2). 

Together with the generalized coefficients of friction, 
the tensors g(l)(lll2) are invariant with respect to the 
group G. By the definition of these quantities, they are 
unchanged under spatial inversion (g(l\lrl2) is a pseudo­
tensor for odd l); therefore all operators of the group G 
in their action on g(l) reduce to rotations. Simply analy­
sis enables us to separate the following possibilities: 

A. Particles of spherical type. The group G contains 
at least two noncoincident axes of symmetry of nth order 
(n > 2). In this case g(l)(lll2) = 0 (l r' 0). 

B. Particles of the solid-of-revolution type. The 
group G contains a two-sided axis of nth order (n > 2). 
In this case only the values of g(l)(lrl2) with odd l 
vanish. 

C. In all remaining cases the tensors of even and of 
odd weight l are different from zero. 

(I) 8 (I) <P 
cr. =N( • >=-V-(K.>, (2.4) 3. ROTATIONAL DIFFUSION 

(2) - (2' (2) <p (20 (22) (2) 
a .. =2I1o(Q .. >+N(8 .. ) = - If (g ... , K,>+l1o<P (g".'m> Q'm . 

Here aik and nt~ now denote the mean values \ailU 
and (fi~~) (angular brackets denote the average over 
angles). For brevity, the values 21Jontk' corresponding 
to the stresses in the liquid in the absence of tp~ yar­
ticles are included in g(22b (2). The tensors g\ 1 2 in 
(2.3) and (2.4) can be expressed in an obvious manner 
in terms of the generalized coefficients of friction 
a, b, and c, and in consequence of their symmetry have 
the properties 

(2.5) 

In a system of coordinates S rigidly attached to the 
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In order to calculate the averages over angles in (2.4), 
it is necessary to know the distribution function W( a, t). 
The product Wda (da = sin OdOdcpdl/!) has the meaning: the 
probability that the direction of the z axis of the coor­
dinate system S (see above) lies in the element of solid 
angle sin OdOdcp and the direction of the x axis in the 
element of angle dl/!. 

As is well known [10], the function W satisfies the 
equation of rotational diffusion 

oW -at + i(Rro) w=o, (3.1) 

where the Hermitian operator of infinitely small rota­
tion R can be expressed in terms of derivatives with 
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respect to the Euler angles, while the angular velocity 
w of the particle is given by the expression (2.3), in 
which the torque K due to external forces is deter­
mined by the sum of the moments of the magnetic and 
the random forces: 

K=kT{[e6l-iRlnW}, e=f.L/Jl. (3.2)* 

On substituting (2.3) into (3.1) and using (3.2), we get 

aw + ii {(I) (12) U) 1 (II) A } iii !. Q. +g.,AI QAI + ~ g". ([esl.-iR.) W=O. (3.3) 

where the constant r = 110 V /kT and coincides in order of 
magnitude with the Brownian time of rotational diffu­
sion. 

In a quiescent suspension, the normalized stationary 
solution of (3.3) is the usual Boltzmann distribution: 

W,= W8n' sh 6)exp(es). (3.4) 

As is evident from (3.3), the relaxation time of W(t) 
to Wo agrees in order of magnitude with the inverse 
coefficient of rotational diffusion gPtYr- g/r, where g 
is a multiplier dependent on the shape of the particles. 
On taking g- 10-1, the volume of a single particle 
V-1O- 18 cm3, 110-10-2 g/cm sec, and kT-4X 10-14 erg, 
we get as an estimate of the Brownian relaxation time 
r/g-lO- S sec. This time is small, first in comparison 
with the hydrodynamic times pl2/11o (l is the hydro­
dynamiC scale of length), and second in comparison with 
the inverse gradient of the hydrodynamic velocity. The 
first fact permits us, in the calculation of the viscosity, 
to use the stationary solution of (3.3), while considera­
tion of the second makes it possible to restrict ourselves 
to an approximation linear with respect to the velocity 
gradient. 

We write the stationary distribution function in a 
moving suspension in the form 

~ (l)A(I)' 
W=Wo(l+x). X=T "-.iXm "m • 

1m 

<x>, = J XW,dcx=O. 

(3.5) 

By substituting (3.5) into (3.3) one can obtain inhomo­
geneous equations for the function xW: 

..... ..... (11) .... 

I=Wo-' R.Wog". R •• 

N(I)=Wo-' iI'tWo=[eSl. 
(3.6) 

~ On taking into account the hermiticity of the operator 
Ri, we have for arbitrary functions X and !; 

<xh>o = -<g." (R.X) (l1,~) >0. 
whence, on noting the symmetry of the dimensionless 
diffusion tensor g(lll (see (2.5», we find that the "colli­
sion operator" I has the property <XI!;)o = <fIx)o. This 
enables us to prove the equality 

(3.7) 

In order to prove (3.7) it is necessary to multiply 
equation (3.6) for l=ll and l=l2 by X(l2) and X(ll) re­
spectively and to subtract one from the other, using the 
symmetry property of the operator I indicated above. 

On noting that K=-kTfRx and allowing for (2.5) and 
(3.5), one can rewrite the relations (2.4) in the form 
(1.4), where the viscosity tensor is determined by the 
expression 

Here N(O) = g~ll(Ol)NP); the coefficient klll2 is zero if 
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II or l2 has an odd value, and otherwise kZ1lz = 1. 

From (2.5), (3.7), and (3.8) it is easily seen that the 

viscosity tensor is symmetric: 11~{;M2 = 11~2;~1; this 
automatically guarantees fulfillment of Onsager's prin­
ciple. The latter fact requires explanation. As is well 
known, in the presence of a magnetic field Onsager's 
relations have the form 

1']""')(f.L. H) =1']""') (-f.1. -H). 

But because of the fact that the field dependence of the 

quantities N(ll) and X (l2) (and along with them of the 
viscosity tensor) occurs only through the function Wo 
(see (3.6», which does not change with reversal of Sign 
of the field and of the magnetization, Onsager's prin­
ciple can be formulated here in simpler form (without 
the substitutions Il --Il and H --H). 

By using the symmetry of the viSCOSity tensor and 
the permutation properties of the Clebsch-Gordan coeffi-

cients, we have from (1.~) 11(llll2) = (-1)l+ll+l211(ll2l1) ' so 
that for II = l2 and for odd l the reduced viscosities 
vanish; that is, coefficients odd in the field can relate 
only fluxes and forces of different tensorial character. 
Furthermore, since Nl) 1 h, it can be seen that the 
corresponding solution X(l) of equation (3.6) is also 
perpendicular to the field. This means that the role of 
thermodynamic force is actually played not by the angu­
lar velocity itself, but only by its projection Oil) =0(1) 
-h(O (ll h) on a plane perpendicular to H. The same ap­
plies also to the flux (J(ll, as can be seen from (1.4) and 
(3.8). One can arrive at this conclUSion also from phYSi­
cal considerations: for HIIO (ll no additional diSSipation 
mechanism operates as a result of the orienting effect 
of the field on the particle (see Sec. 1). Hence it follows 
that 11(101)=0, whereas the viscosities 11(211) and 11(312) 
are expressed linearly in terms of 11(011) and 11(112) 
respectively. Thus is turns out that in the general case 
the viscosity tensor possesses seven independent co­
efficients. Returning to Cartesian coordinates, we can 
write the stress tensor (1.4) in the form 

0(0)=-p+3~h.h.Q,~') • 

0:1) =41']RQl'/ +4 ['( le.Alh.hm +'(, (h,hm-Il'm) h,l Q~~ • 

0.':) =2[ '(I (h.eAlm+h.e"m)hm-,(, (h.Il Al +h.Il,,) lQl:) (3.9) 

+2 (21],-1]1) Q:;) +2[ (1'],-1]1) h,hmll .. + (I]I +1],-21],) (h.llm. +h.Il'm) h, 

+(I]I+I],-21],)h,h.h,hmlQ,~) . 

The independent viscosity coefficients (3, l1R, 'Yl, Y2, 
111,112, and 113 introduced here are expressed linearly 
in terms of the reduced viscosities 11(llll2). The quan­
tity l1R (proportional to 11(011» relates the asymmetric 
parts of the stress tensor ((J(ll) and of the velocity­
gradient tensor (0 (1» and therefore can be called the 
rotational viscosity of the suspension. The coefficient 
(3(-11(202» is a cross-coefficient between shear and 
volume effects of viscous friction, 1'1 and Y2 (propor­
tional to 11(212) and to 11(112) respectively) between 
rotational and shear. Here 1'1 is even in the field, Y2 
odd. The shear viscosities 111, 112, and 113 coincide with 
those introduced in [11) and are linear combinations of 
the quantities 11(l22)- with even l (l = 0, 2, 4). 

4. CALCULATION OF VISCOSITY COEFFICIENTS 

In order to calculate the viscosity tensor (3.8), it is 
necessary to find the "nonequilibrium" corrections to 
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the distribution function Wo; they must satisfy the kinetic 
equation (3.6). If the suspended particles possess sym­
metry of type B (cf. Sec. 2), then in the expansion (2.8) of 
the tensor g(12) , which determines the inhomogeneity 
N(2) , g(l)(12) and g(3)(12) are absent, but g~(12) 
= g(212)Y2m(n) (n is a unit vector directed along the 
axis of symmetl'j'). In this case it is appropriate to 
seek a solution of Equation (3.6), with 1 = 2, in the form 

(I) _ ~ _I') {D(I) ( ) <D(') ( »} l", - £....J am' m'm ex - m'm ex. o· (4.1) .. ' 
We substitute this function in (3.8) and find that in 

this case the coefficient odd in the field, 1/(112), van­
ishes. For this purpose we note that the cross part of 
the viscosity tensor 1/( 12) can be rewritten in the form 

_1_ (u) = _ <N(I) ('I > = <iRA (1) (') > 
Tlmlmt m, 'Xm. 0 m, Xm, 0 

tj,q> 
(4.2) 

(here R~ is a spherical component of the vector oper­
ator R), and the mean is 

(I) 4n , 
<Dm'm(a:»'=2l+1 (_1)m L,(S)Y,m'(e)Y,m(h), 

L,m =(P,(eh) >'=/'+'1. ('s) 1/'1. (S). 
(4.3) 

6' ( l ) L, (6)= (2l+1)!I 1- 3(2l+3) 6' +... (6<1), 

L'(6) =1+0(6-') (6)1). 
(4.4) 

where Pl(x) is a Legendre polynomial and Il+1I2(X) is a 
modified Bessel function of half-integral index (the bar 
over the tensor Ylm(e) means, as usual (see Sec. 2), 
that we are taking its constant value in the system S). 
As is well known, the operator R when it acts on a func-

tion D~'m(a) interchanges only its components with 
different values of the index m, leaving unchanged its 
tensorial character l. According to this principle, on 
substitution of (4.1) in (4.2) 1/(12) is expressed in terms 
of the mean of D~'m and contains only the even function 
Y2m(h). Thus we arrive at the important conclusion that 
for particles with symmetry of type B, viscosity 'Y2 odd 
in the field is absent. 

The vanishing of some of the reduced coefficients of 
viscosity can be understood also from the following con­
siderations. As is evident from formulas (3.4) and (3.6), 
e and h appear simultaneously in all expressions. In 
the end this leads to the result that a kinetic coefficient 
1/(lhl2) with given 1 (see (1.5)) is proportional to 

gases [12]. We shall seek a solution of equations (3.6) 
in the form of finite truncations of series in the func-

tions D~'m' In the Simplest approximation we have 

(I) ~ 'm Y ()-(l)(ll ) {D(') D(I) >} 
Xm =.i....J Chnutma 11m, h am.' it £ m.'ml-< m,'m, 0 • 

The unknown coefficients a:l 1)(lll' ~) (hereafter we 
shall denote them by a(ll1)), in accordance with the 

1 

(4.6) 

usual variational procedure [12], are found by solution of 
the system of linear algebraic equations 

(4.7) 

where 1 = 1, 2 and the following notation has been intro­
duced: 

(0) (11) (L, ) (1) Ll (tt) 
Iilf. =e(Plgl.m ~l)pq+L2epeq eqm1" Jilt =Teiltlg,.ReRt 

/,~)= +e/p, gi,~) [( 1- ~' ) I)p,-L,epe,1 eqm.; 

lV/tO) = N;U) = 0, Nj(tl) = e~Lh 

(21) 1 (IZ) ( L') Ni =2e(rIKI, pq eq L,e,eq+T{)rp t 

(4.8) 

'(II) t (n) (n) 
N, =TL,(e,g",p-gp",e,)ep, 

(:') 1 (12) 
N, = 10 e,oI g"p, e,r iOL,e,e,+(2L,-3L,) I),p]. 

In (4.7) and (4.8), for simplicity of writing, the bar indi­
cating transition to the system S has been omitted over 
the tensors; the functions Ln=Ln(~) are defined in (4.4). 

On substituting (4.6) in (3.8) and using formulas (2.7), 
(2.8), and (4.3), we find 

~=tj.q>(L,ei" gi') (01)e,a~") + 'I,L,g;:) (02)e,e.). 

lln=I/"f)ocpLla~1t) ej, 

It=-'1211ocpL t a/ Z3
) ei, "(2=-1/211ofPL,a?2) eit 

in the coefficients 1/n (n = 1, 2, 3) it is convenient to 
separate the part that is independent of the field: 

tjn='l,+~tj.+~tj", ~tj,=tj.q>g('), 

~tj,=2tj.q>(N,<2I)ai("I+L,g(2)+3/.L.gl<». 

~tj2=tj,q>(N:·l)a,<")+·I.L.g\<». 

~ tj,=tj.q> (N,'''la/''l _'I 2N/") a~"l +L,g(2)_L,gU». 

(4.9) 

(4.10) 

,"""'-(l)-* (l) Here 
irfPMYlm(e), where the tensor Pm is determined solely 

by the shape of the particle. It is clear that if the sym-
metry group of the particle does not allow the existence 
of such a tensor, having the corresponding rank and 
parity, then this kinetic coefficient vanishes. 

Now let the suspended particles have symmetry of 
type A. In this case N(2) = 0, which leads to X (2) = 0, so 
that for such particles there remain only two indepen­
dent coefficients: 1/(011) and 1/(022), corresponding to 
rotational and shear viscosities; and the stress tensor, 
just as for spherical particles, takes the form 

The exact function X(!) (and in the general case X(2») 
can be described only in the form of an infinite series 
in the generalized spherical functions D(l), (a). For 

mm 
our purposes an approximate solution of equations (3.6) 
is sufficient. It is convenient to apply a variational 
method similar to that used in the kinetic theory of 
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g(O)=tl 5gi~'~~' gUO= '/7 (3g~j~0 eie,,-5g(O»), 

g(~)=gi~~~~ e j e"e/em-2(g(2)+g(O»). 

The solution of the system (4.7) has a simple form if 
the suspended particles are magnetized along a direction 
that coincides with one of the principal axes of the dif­
fusion tensor g(ll). On denoting the prinCipal values of 
the tensor g(ll} by g1, g2, g3 (the last corresponds to 
the direction of magnetization), we have, for example, 

1 L"6 
tja=Ttj,q> (6-L.) (g,+g,) , 

(4.11) 
L,,£N/23l e, 

12=-tj.q> (,£-L,) (g,+g,) . 

As can be seen from (4.7)-(4.11) and (4.4), all the 
viscosity coefficients saturate at large fields. From a 
physical point of view, this is explained by the fact that 
in a strong field the magnetic moments of all the par­
ticles are oriented along the field direction, and the flow 
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around the particles encounters maximum obstruction. 

In the absence of a field, all the viscosity coefficients 
(except 1)(022)) vanish, and the stress tensor takes the 
form (4.5) with 1)=1)o+A1)o and 1)R=O. It should be noted 
that the correction to the shear viscosity A1)o can be 
calculated exactly if one takes into account that at H = 0 
the exact solution of equation (3.6) with l = 2 has the 
form (4.1): 

(4.12) 

where the irreducible tensor of second rank a(2) is de­
termined by solution of the equation 

p;~l (12) =g<:: (12), p<:,~, =g;',:l (e".a,<,'l +e",a.<:\ 

here p(2)(12) is expressed in terms of p(l2) just as 
g(2)(12) is expressed in terms of g(l2). 

5. DISCUSSION OF RESULTS 

Formulas (4.7) enable us, for given generalized co­
efficients of friction, to find the independent viscosity 
coefficients of a suspension of ferromagnetic particles. 
A calculation of the viscosity for the case of particles 
in the form of ellipsoids of revolution was carried out in 
a paper of the author [133 (in the classification adopted 
here, such particles belong to type B, and for them the 
coefficients )'2 odd in the field vanish). 

We turn now to the important case in which the sus­
pended particles are nearly spherical. Let the form of 
the surface of the particles be given by the equation 

~ <I) 
r=r,[He/(9,<p)], /(9,<p)= ~/m Y'm(9,<p), (5.1) 

1m 

where E is a small asphericity parameter and f(O, cp) 
is an arbitrary function. In the approximation linear in 

E, the tensors g~(lll2) (l '" 0) are proportional to the 
coefficients f{l). Since among these quantities there are 

m 
no pseudotensors of odd rank, in this approximation the 
viscosity coefficients odd in the field vanish. In the next 

approximation, the tensors g~ are combinations of quan­

tities EC~~1l2m2f~1;f~; and an odd coefficient may 
turn out to be different from zero. 

We pass on now to an explanation of the role of these 
viscosity coefficients in the hydrodynamic flow of the 
suspension. The equation of motion (1.2) with allowance 
for (3.9) can be written in the form 

dv, fjp A 

P-d = --fj' +T"v., 
t Xi 

(5.2) 

where the operator Tik' by virtue of the symmetry of 
the viscosity tensor (see Sec. 3), is symmetric in the 
indices i and k. The action of this operator (in its 
tensor part) reduces basically to Similarity transfor­
mations and rotations through certain angles of the 
coordinates (r - r') and the velocities (v - v'), differ­
ent for each of these quantities. The parameters of 
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these transformations are determined by the field and 
the viscosity coefficients. For certain simple flows, 
Tik can be reduced to the usual form 1)'OikA' [143, with 
corresponding change of the boundary conditions. 

It is well known that a dependence of the viscosity on 
the field is observed also in molecular gases (the 
Senftleben-Beenakker effect [a,12,153). But in a paramag­
netic gas the coefficients 1)R, )'1, and )'2 are small 
(since they contain high powers of the nonlocality 
parameter (cf. [a3)) and are usually neglected. On the 
other hand, in a' gas it is necessary to allow for a con­
nection between the magnetization and rotation of the 
molecules (unimportant for the case of a suspension), 
and this leads to the occurrence of shear-viscosity co­
efficients 1)4 and' 1)5 odd in the field [a,ll,m. Thus a 
ferromagnetic suspension in a magnetic field behaves 
similarly to a paramagnetic gas (the differences indi­
cated above are unimportant and of purely quantitative 
nature). 

In closing, the author expresses his gratitude to G. Z. 
Gershuni and M. 1. Shliomis for discussion of the paper 
and to L. A. Maksimov for valuable comments. 

*[e~l =e X ~. 

1M. A. Martsenyuk, Yu. L. Raikher, and M. 1. Shliomis, 
Zh. Eksp. Teor. Fiz. 65, 834 (1973) [Sov. Phys.-JETP 
38,413 (1974)]. 

2L . D. Landau and E. M. Lifshitz, Mekhanika sploshnikh 
sred (Mechanics of Continuous Media), Gostekhizdat, 
1953 (translation: Fluid Mechanics, Pergamon Press 
(Addison-Wesley), 1959). 

3H . Brenner, Chern. Eng. Sci. 27,1069 (1972). 
4M.1. Shliomis, Zh. Eksp. Teor. Fiz. 61, 2411 (1971) 
[Sov. Phys.-JETP 34, 1291 (1972)]. 

5A. C. Levi, R. F. Hobson, and F. R. McCourt, Can. 
J. Phys. 51, 180 (1973). 

6H. Brenner, Chern. Eng. Sci. 19,631 (1964). 
7 L . D. Landau and E. M. Lifshitz, Statisticheskaya fizika 
(Statistical Physics), Nauka, 1964 (translation: Per­
gamon Press (Addison-Wesley), 1969). 

ayu . Kagan and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 
51,1893 (1966) [Sov. Phys.-JETP 24, 1272 (1967)]. 

9A. R. Edmonds, Angular Momentum in Quantum Me­
chanics, Princeton, 1957. 

10L . D. Favro, Phys. Rev. 119,53 (1960). 
11S. R. de Groot and P. Mazur, Non-Equilibrium Thermo­

dynamiCS, North-Holland, 1962 (Russ. Transl., Mir, 
1964). 

12yU . Kagan and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 
60,1339 (1971) [Sov. Phys.-JETP 33, 725 (1971)]. 

13M. A. Martsenyuk, Zh. Prikl. Mekh. i Tekhn. Fiz. 
14, No.5, 85 (1973). 

14M. A. Martsenyuk and V. 1. Chernatynskil, in the col­
lection Gidrodinamika (Hydrodynamics), 5, Perm', 
1974, p. 265. 

15J . J. M. Beenakker and F. R. McCourt, Annu. Rev. 
Phys. Chern. 21,47 (1970). 

Translated by W. F. Brown, Jr. 
233 

M. A. Martsenyuk 1128 


