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The collision of a light particle I with a bound system of two heavy particles (2,3) (m! ";::m23) is 
considered under the assumption that the energy of particle I appreciably exceeds the binding energy 
of the system (2,3), and that the attraction of I to 2 and 3 can be replaced by a zero range 
potential. An approximate solution of the Faddeev equations is obtained and on its basis expressions 
are derived for the effective cross sections for elastic and inelastic collisions and for the 
rearrangement process 1+(2,3)-->(1,2)+3. It is suggested that the expressions obtained may be used 
for calculating the excitation of rotation and oscillations of molecules by electron impact, and also 
the process of dissociative attachment at electron energies of several eV. 

1. INTRODUCTION 

In this paper we consider the excitation of rotational 
and vibrational states of a molecule by electron im-
pact, and also the process of dissociative attachment 
(i.e., a reaction of the type AB + e - A - + B) under the 
following assumptions: 1) the electron energy is sig­
nificantly greater than the dissociation energy of the 
molecule in its ground electron state; 2) the attraction 
of the electron to each of the atoms forming the mole­
cule is replaced by a zero-range potential (or, what 
amounts to the same thing, by the assignment of a log­
arithmic derivative of the wave function at the places 
where the nuclei of the atoms are located). The condi­
tion for applicability of the zero-range potentials limits 
the energy of the electron from above. The range of 
energies defined by these assumptions amounts to sev­
eral electron volts. Just this range of energies is of in­
terest in connection with the existence of broad resonance 
maxima of the effective cross sections of the processes 
mentioned.[!) 

The adiabatic approximation is used for calculation 
of the excitation of rotations and vibrations in the 
range considered, its starting point being the electron­
scattering pattern in the case of a constant distribution 
of the coordinates of the nuclei, characterized by the 
initial wave function 'Po(r ... rn). The amplitude of the 
transition to the state 'Pn(rl ... rn) is calculated by per­
turbation theory and turns out to be proportional to the 
matrix element 

Mno=S CPn·A(r, . .. rn)cpodr, ... dr., (1.1) 

where A(rl .•. rn) is the scattering amplitude of the 
electron for the fixed positions of the nuclei. 

The value of A is not equal to the sum of the scatter­
ing amplitudes from each of the atoms separately, be­
cause of the existence of multiple scattering of the 
electron inSide the molecule. In specific calculations 
of the amplitude A, various models have been used (see 
the review article [2), in which an extensive bibliography 
is included). 

However, the model of zero-range potentials has not 
been used to date for calculation of the matrix element 
Mno, although the expression A(r1r2) is well known in the 
simplest case of two centers and a general method has 
been worked out for the construction of A(rl ... r ).[3) 

n 
This model obviously does not take into account the long­
range interactions brought about by the existence of an 
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electric quadrupole moment at the molecule, or by 
the electric dipole moment induced by the incident elec­
tron. In addition, the effects of other channels with pos­
sible excitation of electron states are not taken into 
account. But in return, this model allows us to take 
the multiple scattering into account in explicit fashion, 
as well as the resonances connected with it, for arbi­
trary number and location of the centersY) Under con­
ditions in which such resonances playa dominant role, 
by determining the order of magnitude of the cross sec­
tions of the processes in which we are interested, the 
use of the zero range potential allows us to obtain a 
simple and effective estimate of the cross section. 

At the same time, the model of several zero range 
potentials has specific features that require special 
consideration before we use it for calculation of Mno. 
The fact is that in a system of three particles 1, 2, 3 of 
which two, say, 2 and 3, interact with 1 by means of 
zero- range potentials, an attraction -c/r2 arises be­
tween particles 2 and 3; here the coefficient c depends 
on the ratio of the masses. This attraction causes the 
particle to fall into the center.[4) The indeterminacy of 
the solution of the integral equation describing the scat­
tering in such a system is closely connected with this 
fact, inasmuch as a nontrivial solution of the corre­
sponding homogeneous equation is found to exist (5). 

It is rather evident that none of these features appears 
within the framework of the adiabatic approximation. 
However, it is nevertheless important to obtain a formal 
proof of the possibility of application of the zero range 
potential within this framework. 

Besides consideration of admissibility problems, it 
is also desirable to broaden the range of application of 
the zero range potentials beyond the limits of the problem 
of elastic and inelastic scattering, and to consider 
dissociative attachment also. With this purpose, we shall 
systematically investigate the interaction of a light par­
ticle with a bound system of two heavy particles, with 
the help of the Faddeev equations. 

It is shown how the adiabatic approximation arises as 
the ratio of the mass of the light particle to the reduced 
mass of the heavy particles approaches zero. It is found 
that the transition to the zero range potential in this 
limiting case is entirely correct from the mathematical 
viewpoint. An expression is obtained for the amplitudes 
of the elastic and inelastic scattering and dissociative 
attachment. 

Copyright © 1975 American I nstitute of Physics 18 



2. THE FADDEEV EQUATIONS AND 
THEIR TRANSFORMATION 

The Faddeev equations [6J are formulated for three 
parts into which the wave function is split: 

and have the form 
",,,=-Go (Z) T" ("".+",,,), 

",I,=-Go(Z)T13("',,+"''')' 

",,,=ID-Go (Z) T" (",,,+,,,,,). 

(2.1) 

(2.2) 

The function q, describes the free motion of particle 1 
and the bound state of the system (2, 3); 

G.(Z)=(H.-Z)-t, 

Ho is the operator of the energy of free motion of all 
three partic les; 

Z=E+iO; 

(2.3) 

(2.4) 

E is the total energy of the system, equal to the sum 
of the binding energy of particles 2, 3 and the kinetic 
energy of particle 1; Taj3 is the transition operator of 
the pair (a, {3) in the absence of interaction with the 
particle y. 

For our purposes, it is convenient to transform Eqs. 
(2.2) to a more suitable form. We set 

>pt2=-GoF" >pt3=-GoF,. (2.5) 

We then get the following set of equations for F2 
and F3: 

[l-T13GoT"GolF,+ [T 13G,-Tt3GoT"GolF,=T,,!D, 

[T"Go-T"GoT"GolF,+[l-T"GoT"GolF,=TtzCll, 

and the equation for zJ; is given below in terms of F2 
and F3: 

(2.6) 

>p= (t-GoT,,-GoT13) ID-GoT"Go (F,+F,) -GoT"GoF, (2.7) 
-GoT"GoF,-Go(T,,+T,,) GoT"Go (F,+F,). 

This expression appears at first glance to be cum­
bersome and difficult to understand. Actually, the 
structure of (2.7) and the meaning of the individual 
terms become clear if we take into account that the 
residue of an expression of the type GoT a{3GoF at the 
poles of Ta{3 represents (accurate to within a coeffi­
cient) the amplitude of one of the possible processes of 
excitation or redistribution, and the residue at the pole 
of Go gives the amplitude of the disintegration. [7 ,8 J 

Leaving aside for a time from the last term in (2.7), 
the second term in (2.7) gives the elastic-scattering 
amplitude or the excitation of the system (2, 3), and the 
third and fourth terms give the amplitudes of the reac­
tions 1+(2,3) -(1, 2)+3 and 1+(2,3) -(1,3)+2, re­
spectively. The last term gives contributions to all 
amplitudes and at the same time takes into account the 
mutual effect of these processes on one another. 

In what follows, we shall consider (2.6) and (2.7) in 
the momentum representation. We shall denote the 
momenta of the particles by ka and assume that the 
center of inertia of all three particles is at rest: 

Lka=O. (2.8) 

Then the wave functions depend on the two vector vari­
ables ka{3, ky, where 

ka,= (m,ka-mak,) I (ma+m,) (2.9) 

a, (3, 1'=(1,2,3), (3, 2, 1), (2, 3, 1). We can use any 
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sequence (a, {3, 1') as the arguments of the wave func­
tions, but the combinations 

>pa' (ka" k,). 

turn out to be the most convenient. 

The connection of the momentum and coordinate 
representations is given by the relation 

>p(rU'loPT)= (2~)' f exp i(ka,ra,+kTPT)>P(ka" kT)dk",dkT, (2.10) 

where 

(2.11) 

In order not to encumber the formulas, we shall not 
write out Planck's constant, Le., we shall assume ti= 1 
(in the final formulas, it is an easy matter to restore 
the necessary power of ti). The function q, is given by 
the expression 

ID=CPo(k,,) I>(k,-po), (2.12) 

where <;OO(k23) is the wave function of the initial state of 
the system (2, 3). 

We represent the energy level of the system (2, 3) in 
the form 

En= -",'12m". 

the quantity Kn characterizes the scale of momentum 
distribution in the state <;On. Thus, Z in Eqs. (2.2) is 
represented in the form 

Z=po'/2n ,+",'/2m,,+iO. (2.13) 

The operators Go and Ta{3 are integral operators 
in momentum space, and their kernels have the form 

where 

G k k k ' k' Z _ l>(k,,-k,,')I>(k,-k:) 
o ( Z3, " '" " ) - k '/2 +k '/2 -z' 

mamfJ 
mcr.I'=---, 

ma+m", 

23 mZ3 I n l 

nT 
mT(m,+ma) 

ma.+mtl+mT' 

Ta,=ta, (ka', ka,', Z -.!!i) I> (kT--k,'). 
2nT 

(2.14) 

(2.15) 

(2.16) 

In the zero range potential approximation, the ta{3 
do not depend on the k a{3 and have the form [6 J 

(2.17) 

where the quantities aa{3 represent the inverse scatter­
ing lengths: 

3. TRANSITION TO THE ADIABATIC APPROXI­
MATION AND THE ZERO RANGE POTENTIALS 

(2.18) 

We shall consider the operator GoT23Go which enters 
into (2.6) and show that the result of its action on an 
arbitrary, sufficiently smooth function F(k23 , k1 ) vanishes 
in the limit nl/m23 - 0 under the condition that the Kn 
are fixed (Le., that the form of the functions <;On remains 
unchanged). Inasmuch as the function F can be expanded 
in a series in the eigenfunctions 

it is sufficient to consider the effect of the operator on 
the function <;Onfn. 
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Taking into account that 

GoT"Go~Go-G, 

where 

and also that ifJn is the eigenfunction of the operator 
k~3/2m23 + V23 with the eigenvalue- KV2m23 , we get 

(GoT"G,)<pn/n~ [( k,' + ~:, k"'-Z) -, 

- (k" - ::, Xn'-Z) _1] 2n,<pn/n. 

(3.1) 

It is evident from this expression that as njm23 - 0 
and for Kn fixed, the right side vanishes. Thus, Eqs. 
(2.6) in the limit n/m23 -0 take the form 

F,+TI3G,F,~TI3Il>, T"GoF,+F3~T"Il>. (3.2) 

Our approximation is that for finite but small values 
of n/m23 we determine F2 and F3 from the system (3.2), 
in which njm23 = O. 

We draw attention to the fact that for fixed Kn and 
m23 -00, all the energy levels of the system (2, 3) tend 
to zero. For finite m23, however, the binding energy is 
different from zero. Therefore, use of (3.2) will be a 
reasonable approximation only if the presence of 
coupling in the system (2, 3) does not playa significant 
role in elastic scattering of particle 1. But this only 
can be the case when the energy of the incident particle 
appreciably exceeds the value of the binding energy. 

Formally, all this can be seen from Eq. (3.1). To 
be preCise, if we assume that p~/nl »K~/m23, we get 

(G]23Go)<pn/n~ [ (k,,-po'+ ::, k,,') -, - (k,'-Po')-'] 2n,<p./n. 

Through the entire important range of variation of 
k23 (which is determined by the rate of decay of the func­
tion ifJn as k23 - 00 ) 

G T G) n,' k,,' 
( , " 0 <pn/. - (k' ')' <pn/n, 

mZ3 I-PO 

i.e., it is a small quantity, the order of smallness of 
which is determined by the parameter njm23' An ex­
ception is the region close to the poles, the width of 
which in the momentum scale -(njm23)k~3' 

Inasmuch as the width of the interval is small, it does 
not playa Significant role in the equations (but for calcu­
lation of the amplitudes, it is preCisely the behavior of 
GoT23Go that is important near the poles; therefore we 
keep the term GoT23Go in the expression for I/J). 

Neglect of the operator GoT23Go is equivalent to re­
placement of 1/J23 by cI> in Eqs. (2.2). Hence it follows 
that the set of Eqs. (3.2) describes the scattering of 
particle 1, just as if the distribution of the momenta of 
particles 2 and 3 were to keep its initial value ifJo in the 
scattering process. 

Such an approximate description of the scattering 
process lies at the base of the well-known momentum 
approximation. Thus, in the problem cons ide red , the 
scattering of a light particle by a system of heavy par­
ticles, the terms "adiabatic approximation" and "mo­
mentum approximation" are related to one another as 
the Fourier transform and its original. 

We now write down the system (3.2) in the momen­
tum representation, taking into accou ... "l.ll the assump­
tions that have been made: 
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F,(k, k)+ 2m, Sdk' !.0.k" k-k',~)F,(k-k',k') 
, (k-k')'-p,'--iO 

~tl2(k"Po,Z)<po(k-~Po), 
mZ+m3 

F (k k)+2m Sdk' tl3(k"k-k',Z)F3(k-k',k') 
(3.3) 

"" (k-k')'-po'--iO 

~ t 13 (k"po,Z)<po (k+~Po), 
mz+ma 

We now make the transition to the zero range poten­
tial. Inasmuch as t12 and t13 do not depend on k12' k23 , 
the functions F2, F3 will depend not on two but on a single 
vector variable. 

The limiting expressions for t12 , t13 as nj m23 - 0, 
which should be substituted in (3.3), have the form 

t,,~[ (211)'m, (Ct12+ipo) ]-', 

tl3~[ (211) 'm, (Ct13+ipo) ]-'. 

The following set of equations is obtained: 
. S dk'F, (k') (m,) 

F,(k)+2t"m, '" . ~t12<PO k----Po , 
(k-k ) -po -,0 m,+m, 

S dk'F, (k') (m,) 
F,(k)+2t"m, '" ~tl3<po k+---po . 

(k-k ) -po -to m,+m, 

(3.4) 

The homogeneous equations which are obtained by 
discarding the right-hand sides do not have nonvanishing 
solutions, since t12 , t23 are complex numbers. 

Equations (3.4) are solved exactly by means of the 
Fourier transform, i.e., by transition to the coordinate 
representation. After a Simple calculation we get 

4. AMPLITUDES AND EFFECTIVE CROSS SECTIONS 

The amplitudes of the processes of interest to us are 
determined from expression (2.7) for the wave function. 
In the approximation used here, the last term can be 
neglected (which means neglect of the mutual effects of 
the scattering processes and dissociative attachment). 

Then the amplitude of each of the processes is deter­
mined from an expression of the form GoT Q!(3GoF; we 
shall not assume njm23 = 0 in the operators T12 and 
T 13, but shall use the exact expressions (2.17). 

The determination of the amplitudes is carried out 
according to the following scheme.[7,8] Near the pole 
which corresponds to the bound state of the system 
(Q!, (3), we have 

t (k k ' Z-k '!2n ) ~ (k.,'!2m.,-e n) (k.,"!2m.,-en) 
., ." ." " Z-k,'!2n,-e n (4.1) 

x <pn (k.,)<p: (k.,') + (smooth part) 

where ifJn is the wave function of the bound state and 
€n the energy of the system (Q!, (:l). 

Therefore the expression GoTQ!(3GoF can be repre­
sented as the product of three factors: 

(4.2) 

The middle factor describes the free motion of the 
particle y relative to the system (Q!, (:l) (this corre­
sponds to a diverging wave in the coordinate represen-
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tation). It is then clear that the factor M (which is 
expressed in terms of an integral of the product of the 
function 'Pri and F) represents the amplitude. 

In addition, there also is the amplitude connected 
with the pole of Go. It corresponds to dissociation of 
the molecule, and all the particles are found to be in 
the continuous spectrum. All three operators contribute 
to this amplitude. 

In view of the fact that all the necessary calculations 
were carried out in detail in [8], we give only the final 
result here, with account of the fact that the energies of 
all the bound states are small in comparison with the 
energy of the incident particle. 

The amplitude of the excitation in state n is equal to 

M"o = (2n) 2m , S [ cp,,' (p' - m':~3 p) F, (p') 

( 4.3) 

and p = po accurate to the discarded terms -I EnlE I. 

Transforming to the coordinate representation, we 
get 

M"o=(2n)'m, Scp.-(r) [exp (i~pr) F,,(r) 
m,+m3 

( 4.4) 

In particular, for the case of identical particles 2 
and 3, we have 

M"o=2 Scp,: (r) [ cos (~r/2) cos (Po~l2) + sin (pr/2) sin (porl2) ] cpo (r)dr. 
a+1p,+r-' exp 1por a+zpo-r' exp 1por 

The effective cross section is 

doldQ= 1 Mno I'· 

( 4.5) 

( 4.6) 

The amplitude of the redistribution process 1 + (2, 3) -
(1, 2) + 3 is equal to 

MD = (2n)'m" S cp,; (p' - 11 :': p )F2(p')dP' (4.7) 

(P"'PO). Transforming to the coordinate representation, 
we have 

MD = (2n)'m" S cp,,'(r)exp (i 11 ::3 pr) F,(r)dr, (4.8) 

where 'P12 is the wave function of the system (1, 2) in 
the zero range potential approximation: 

1/ a 1 
cp,,(r) = V--exp(-ar). 

211 r 

The effective cross section is 

doDldQ=(m,!m,,) '/, IMD I'. 

(4.9) 

(4.10) 

U sing the optical theorem, we get the total cross 
section at of all processes (including dissociation and 
dissociative attachment). If the system (2, 3) does not 
have spherical symmetry in the ground state, then we 
must average at over all possible directions of the 
initial momentum Po. In particular, for the case of 
identical particles 2 and 3, we have 

4n S {[ (ar+cos por ) '] -, <0,)=-, drlcpol' 1 + . 
po por+slll por (4.11) 

+ [1 + ( ar-cos por ) 2] -, } . 
por-Slnpor 

The expression in braces, together with the factor 
41T/pg, is identical with the averaged cross section of 
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scattering by fixed centers as calculated by Demkov 
and Rudakov Y] 

5. DISCUSSION 

The expressions given in Sec. 4 for the effective cross 
sections reproduce the principal characteristic features 
observed in the interaction of electrons with molecules 
at energies of several eV. [1] We shall demonstrate this 
with the simplest example of molecules conSisting of 
identical atoms. 

Let us consider the expression 

(5.1) 

which enters into the denominators of the functions F2 
and F3 of (3.5). 

For fixed values of r and varying po, cases in which 
the real part of J ± vanishes are possible, i.e., 

ra±cos por=O. (5.2) 

These points correspond to resonance maxima of the 
functions F2 and F3 , and this leads to resonance max­
ima in the cross sections of all the processes, and also 
in the total cross section (at). Integration over r, which 
is provided for in the corresponding formulas, will 
spread out these maxima. 

Furthermore, the presence of ,; m23 in the exponent 
in the formula (4.7) for the amplitude of dissociative 
attachment leads to the appearance of a significant iso­
tope effect in the cross section of this process, which 
is also observed experimentally. 

In the present paper all these features have been ex­
pressed in terms of the multiple-scattering picture, the 
effect of which is characterized by the term r- 1 exp(iPor) 
in the functions F2 and F 3. 

The traditional interpretation of resonance phenomena 
in the interaction of electrons with molecules is based on 
the picture of quasistationary terms of the negative mo­
lecular ion AB- . [1] In particular, the isotope effect in the 
process of dissociative attachment was predicted by 
Demkov[9] in just such an approach. 

A connection can be established between these two 
pictures of the phenomenon if it is noted that the imag­
inary zeroes of the expression for J±(po) give the terms 
of the system A; in the Firsov-Smirnov model, while 
the complex zeroes correspond to the continuation of the 
terms into the region of quasistationary states. [10] 

The problem of the quantitative agreement between 
the measured absolute values of the cross sections and 
those computed from the equations ()f Sec. 4, can be 
solved only as we accumulate specific numerical calcu­
lations. The problem of the choice of values of a should 
be discussed in this connection. 

It would be simplest to take quantities that correspond 
to the scattering of atoms that are not free. Here, if the 
atoms have nonvanishing spins (which, as a rule, is the 
case in molecules), it is necessary to take into account 
that the scattering length depends on the total spin of 
the electron and atom, and to carry out the appropriate 
averaging over the spin variables. One can obtain a more 
flexible model by considering the a as empirical 
parameters. 

The model of the zero range potential can be general­
ized within the framework of the adiabatic approximation 
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to any polyatomic molecule. The expression for (at> is 
generalized most directly and simple, viz., 

(0,)= J dr, ... drnl<pol'a(r, ... rn), (5.3) 

where O(rl ... rn) is the scattering cross section for a 
system of fixed centers, averaged over all directions 
of the momentum of the incident electron. The general 
method for calculation of a is developed in [3]; CfJo is 
the wave function which describes the motion of the 
nuclei in the polyatomic molecule in the ground elec­
tron state. 

In conclusion, I express my gratitude to L. D. Faddeev 
for numerous discussions and valued observations, and 
also to Yu. N. Demkov for a discussion of the work 
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