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A theory of nonlinear damping (growth) of Langmuir waves in a collisionless inhomogeneous plasma 
is developed for the case when the degree of plasma inhomogeneity exceeds the critical value at 
which particle capture by the potential wells of the waves becomes impossible. An expression for the 
increment of the waves is derived and investigated as a function of the field amplitude and the 
inhomogeneity parameter in the entire regions of these parameters where there are no trapped 
particles. 

1. INTRODUCTION 

As is well known, the Landau-damping constant in a 
homogeneous plasma vanishes in time because of the 
phase mixing in the resonance region of velocity 
space P-3J . In an inhomogeneous plasma, the phase mix­
ing is never complete, since owing to the variation of 
the phase velocity of the wave, the resonance region is 
continuously renovated. As a result of this, the decre­
ment (increment) of the wave never vanishes. 

The characteristic parameter that determines the 
distinctive competition between the nonlinearity and 
inhomogeneity effects for Langmuir waves is the quan­
tity 2\ 01 \ T2, where 01 is the inhomogeneity parameter, 
which is proportional to the phase acceleration of the 
wave: 

w' dk 
a=- 2k'dx' 

(1 ) 

while T is the nonlinear phase-mixing time, which, for 
monochromatic waves, has the form 

1= (mleEk) ", 

E being the wave-filled amplitude: 

(2 ) 

fff(x,t)=E(x,t)cos Uk(X')dX'-wt+'P(X,t)] ; (3) 

E, cp, and k are assumed here to be slowly varying 
functions, k(x) being determined from the standard 
linear dispersion relation for the homogeneous plasma, 
a relation which, for Langmuir waves, has the form 
w 2 = wp (1 + 3k2rb). 

It is easy to verify that the parameter 2\ 01 \ T2 is 
equal to the ratio of the phase acceleration of the wave 

d [ 6l] d [ w ] ul w' dk 
at k(x)' =a;: k(x)- T= -k'"d,;;"" 

to eE/m, the amplitude of the acceleration of the elec­
trons in the wave field (3). For 2\ 01 I T2 < 1 the non­
linear effects predominate over the inhomogeneity ef­
fects. For 2\01 \ T2 > 1 the reverse situation obtains. In 
this case particle capture by the potential wells of the 
wave is already impossible, and this radically changes 
the general picture of the nonlinear interaction of the 
resonance particles with the wave. 

The theory of nonlinear effects in an inhomogeneous 
plasma has thus far been considered for the case 
2\ 01 \ T2 « 1, when the inhomogeneity effects can be con­
sidered to be weak[4-7J. In[7J an attempt was also made 
to consider the case of the highly inhomogeneous 
plasma (2\ O! \ T2 > 1). However, the results of this 
paper have, in our opinion, a very limited region of ap­
plicability. 
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In the present paper we develop a consistent theory, 
valid for 2\ 01 \ T2 ~ 1, of the interaction of resonance 
particles with a monochromatic wave. On the basis of 
this, we compute the increment (decrement) of the wave, 
this quantity being a generalization of the Landau incre­
ment in the case under consideration. We are then able 
to follow the behavior of the increment in the most in­
teresting region where 2101 \ T2 - 1, which is the border 
zone between the cases of strong and weak inhomogenei­
ties. 

2. THE KINETIC EQUATION AND THE EQUATIONS OF 
MOTION OF THE PARTICLES 

We shall assume, as is usually done, that the ampli­
tude of the wave is sufficiently small, so that WT » 1 
and l/T « kVT, where vT is the thermal velocity of 
the plasma. Then the particles that are in resonance 
with the wave (3) and that, as is well known, have a 
velocity v in the interval 

":-61/kl ';;'1/k-r:¢:.v,¢:.61/k, (4) 

fill a comparatively small volume of phase space. This 
enables us to Significantly simplify the general kinetic 
plasma equation, which we write in the form 

!.!..+v!.!...+ ~ !.!.._ ei[(x,t) !!...=O, (5) 
at ax m av m (h; 

where ff is the force due to the inhomogeneity of the 
medium and .f(x, t) is the wave field (3), in which we 
shall drop the phase cp, since the latter turns out to be 
inSignificant in the case when 2\ 01 \ T2 ~ 1. 

Let us now introduce in place of t and v the new 
independent variables ll . 

2s = S k(x')dx' -61t+n, 
o 

2~=k(x) [v-w/k(x) j. (6) 

Taking (4) into account, we obtain the kinetic equation in 
the form (cf.l4J ) 

(7 ) 

where 011 = a - kff/2m. Since the quantity 

k~/2m-v,' (k/w) 'dkldx¢:.a, 

we shall henceforth neglect the difference between 011 
and 01. As will become apparent from the final results, 
we can assume, without loss of generality, that 
01 = const. Furthermore, we shall, for definiteness, 
assume that 01 > 0 (the changes that must be made 
in the following relations for the case of a < 0 
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are obvious). Taking the foregoing remarks into ac­
count, we can write down the ordinary differential equa­
tions corres ponding to (7): 

d~ du Te= u, Te= ~cos2~-1; 

~ . . 
8 =_0:_ J k(x')dx', u =--=.; 

W 0 fo: 

From (8) follows the "energy" conservation law 

e=u'+2~-~ sin 2~. 

The plots of the "potential energy" P( 0 = 2~ 

(8 ) 

(9 ) 

(10 ) 

(11) 

- J3 sin 2~ for J3 > 1 and J3 < 1 are shown in Fig. 1. We 
see, in accord with the assertion made in the Introduc­
tion, that in the first case there exist potential wells in 
which there are particles trapped by the wave, while in 
the second case there are no trapped particles. 

Let us write the solution to Eqs. (8) in the form 

'I dz J ( 'I =28. 
e-z+~ sin z) • 'I. 

(12 ) 

Under the condition (10), the integral (12) can be ex­
pressed in terms of known functions. For this purpose 
let us set 

(13 ) 

For J3 < 1 the function y( z) increases monotonically 
with inc reasing z, and, consequently, it has a single­
valued inverse function. If we set 

z=y+ EanSinny (14) ._1 
(the coefficients an will be found below), then Eq. (12) 
assumes the form 

Uo-U + ~ ( n2n ) 'I, anlcos ne[C(n"'uo) -C(n"'u) I 
~ (15) 

+ sin nd8(n"'uo) -8 (n"'u) )}=8, 

where C(w) and S(w) are Fresnel integrals. 

Let us now determine the coefficients an. Differenti­
ating (14) with respect to y, we obtain 

Thus, 

2 n dz 2 n 

na,,=- J-cosnydy=-J cos[n(z-~sinz)ldz. 
1[ (l dy Jl 0 

2 
an=-J,,(~n), 

n 

where I n(J3n) is a Bessel function. 

3. THE DISTRIBUTION FUNCTION 

(16) 

The formula (15) enables us to determine the distri­
bution function in the resonance region. From the 

pm 

FIG. I. Plots of the effective potential p(n: a) (3 > 1, b) {3 < I. 
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Liouville theorem we have 

/(x,£,u)=t(O,£o,uo)=/o (:) + 2~Ci(uo_8)/: (:), (17 ) 

where ~ 0 and Uo are the initial values of the generalized 
coordinates and velocities expressed with the aid of (15) 
in terms of ~, u, and x, while fo(v) is the waveless­
plasma distribution function, which we have expanded in 
the neighborhood of the resonance velocity v = w/k, 
retaining two terms. Into the expressions for the incre­
ment and the other quantities connected with the influ­
ence of the wave enters the quantity 

6/=t(x, So u)-F(x,~, u), (18 ) 

where F(x, ~, u) is the unperturbed-plasma distribu­
tion function that satisfies Eq. (7) for T = "" (i.e., for 
If = 0). We can, to the same degree of accuracy as in 
(17), write 

, ( W) 20:';'u '( W ) I< (x, ~,u)=/o k +-k- to k . (19 ) 

Substituting (17) and (19) into (18) and USing (16), we 
obtain 

6t = lk/o' ( :) t (2no:n),/'anlcos ne[C(n'I,u) -C(n"'uo) I 
n=1 

+ sin ne[8(n'''u) -S(n"'uo))}. (20) 

Let us show how the expression for the distribution 
function as given by ordinary perturbation theory is de­
ri ved from this formula. For I u I » 1 and I Uo I » 1, 
we can, using the well-known asymptotic expansions for 
the Fresnel integrals, write 

sign Uo sin nuo 2. 

C(n"'uo)=---2-+ (2nn)"'uo' 

. , 
8 (n'''uo) = sIgn u-"- _ cos nuo (21) 

2 (2nn) "'uo 

and similar expressions for the argument u. It must be 
borne in mind here that perturbation theory is applica­
ble only for sufficiently small e, when the dominant 
contribution is made by the region where sign Uo 
= sign u. 

Substituting (21) into (20), and expressing E in terms 
of u, ~ and Uo, ~ 0 (in accordance with (11)) in the corre­
sponding terms in (20), we obtain for Of, after simple 
transformations, the expression 

fa , ( W ) ~ {Sin[n (2~0-~ sin 2~0) I 
(jl=-/o - L.Jan 

k k Uo 
n=1 

sin[n (2~~~ sin 26)) }. 

(22) 

Taking (13) and (14) into account, we can write 

1: ansin[1t(2~-~sin2~)I=~sin2~. (23) 

Thus, (22) assumes the form 

(j/=~/o' (Sin2so _ sin26 ) , (24) 
k Uo u 

which, when expressed in terms of the ordinary vari­
ables, coincides with the well-known expression that 
follows from perturbation theory. 

4. COMPUTATION OF THE INCREMENT 

We determine the increment of the wave from the 
formula 

16ea.'h ",/2 00 

k'fJeI{)(f)E J ds Jdu(j/cos2~, (25) 
-n/2 _<:0:) 

where aE/aw = 2/w in our case. Substituting Of into 
(25), we obtain 
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16ewCt ( 11 ) 'I, (w ) ~ 
1 ~k~ 2 I" k 1...;, n'I'a n + 

nl' 

. S du S d1;cos21;[C(n'I'uo)cosne+S(n'I'uo)sinne], (26) 
_n/'l. 

where we have dropped the u-odd terms, which do not 
contribute to the integral (26). It is implied here that 
the function Uo = Uo (!;, u, e) is determined from the 
equations of mot'ion. Let us now consider the two most 
interesting limiting cases. 

1) e « 1. In this case the integral (26) is most 
easily evaluated in the following fashion. Using the fact 
that dud!; = duoli!;o and that!; =!;o + uoe for small 
values of e, we can write this integral in the form 

- S duo d1;o sin 21;0 sin(2u08) [C(n'l,uo)cos ne+S (n'l,uO) sin ne], (27) 

where we have dropped the uo-odd terms, which make 
no contribution to the integral. We note further that for 
e « 1 the dominant contribution is made by the region 
where Uo» 1, so that we can use the asymptotic ex­
pressions (21). As a result, the integral (27) assumes 
the form 

.. te/2 

2 S duo sin (28uo) (sin nuo '- cos nuo ') S d1;o sin 21;0 sin [n (21;0-~ sin 2\;0) J 

( 2 ) ',', S~ sin (28uo) n/2 
+ 2 - duo f sin 21;0 sin[n(2so-~ sin2s,) J. (28) 

nn u Uo 0 

The Uo integral in the first term is equal to 

( ;n) '(,{ sin : [ S ( :" ) - C ( :1, )] + cos : [C ( n~/' ) + S ( ,~ )]}. 

For e « 1 this integral is of the order of &, and 
therefore it can be neglected. The first integral in the 
second term in (28) is equal to rr/2. Now substituting 
(28) instead of the integral into (26), taking into account 
the foregoing remarks, and noting that according to (13) 
and (14) 

ft.' 
we find that in the case under consideration 

J'//'L 
Z 

I I 
1 1 

! I 
! 

r--+- I 
I_-Lr-

, 

.. I , 
, 

, 

. 

I 

---, 

/ 
FIG. 2. Plot of the increment for 0 .;;; 

f3';;; I. 

rt ' ~'.-:--
1 

O. 

.x 
O.J (J I 

and S in (35) by their asymptotic forms (21), which 
yields 

1=lL~-' Lnan'(~). (36) 
n=1 

Let us now investigate the expression for y. To esti­
mate an for n » 1 (and any (3), we can use the relation 
(see, for example,[aJ) 

1 (2 'I. 2n' 'I. 

Ift(~n)"" h Tn) Ai [(-~ ) (t-~)], (37) 

where Ai( z) is the Airy function, which has the asymp­
totic form 

. {211-'I'Z-'I' exp (_'I,Z'I,), z>O 
Al(Z)= " , 

11- l'lzl- I. cos ('I,lzl /'-11/4), z<O (38) 

It follows from (16), (37), and (38) that the series 
Lna~ converges for all {3, but that for {3 ~ 1 this con­
vergence is very slow: 

{ n-'exp[-'/3(2n'/~)'I'(1-~)'I'], ~<1 
na 2,..... 

n n-''', ~~1 
(39) 

It follows from this, in particular, that for {3 « 1, it is 
sufficient in computing y to take only a few terms of the 
series into account. As a result, for sufficiently low 
values of {3 we obtain 

1~1L (1 +'/,~'+tl/,,~') (40) 

(for (3 = 0.5 the error in (40) does not exceed 5%). On 
the other hand, it follows from (39) that 

dl(~) I ~OO (41) 
d~ p~, . 

l~lL' 
(30) The graph of y ({3) is shown in Fig. 2. 

where yL is the increment of the linear theory: 

1/.~ 2:~~ 10'( =). (31) 

2) Let us now consider the opposite limiting case 
when 

8»1. (32) 

Since I u I ~ 1 in the resonance region, we can, as can 
be seen from (15), set in this case 

(33) 

Substituting this into (26) and using the relations 
cos ne~cos nu' cos(2n1;-~n sin 26) -sin nu' sin (2n1;-~n sin 26), 

sin ne~sin nu' cos(2ns-~n sin 21;) +cos nu' sin(2n1;-~n sin 21;), (34) 

:lIZ 

f ds cos 2s cos[n(2s-~ sin 26) J~~ln(~n)= ~naft, 
-nl' ~ 2~ 

we obtain 

(35 ) 

On account of the condition (32), we can replace C 
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In conclusion, let us discuss the results of the 
paper r7J , where the expression (in our notation) 

[ 3l'n (0' 0' )] "(="(L 1--4-~'O sin2"-cosz (42) 

is obtained under the condition (32) after very tedious 
calculations (the physical meaning of the last term in 
the square brackets is not discussed by the authors). 
Comparison with the foregoing shows clearly that the 
expression (42) is valid only for very small values of 
{3 (in this case it is obvious that we can neglect the 
term containing e). But for {3 « 1 the result y "" YL 
can be obtained by a considerably simpler method than 
was used in[7J. 

The authors express their thanks to Ya. N. Istomin 
for useful discussions. 

l)Such a change of variable is convenient in the "spatial Landau damping" 
problem, which is the problem we are considering here. 
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