
Two-dimensional and layered crystals 
v. P. Mineev 

Institute of Solid State Physics. USSR Academy of Sciences 
(Submitted May 22, 1974) 
Zh. Eksp. Teor. Fiz. 67, 1894-1902 (November 1974) 

A two-dimensional atomic system is considered by means of the method developed in the theory of 
strongly anharmonic crystalsYl It is shown that although long-range order is absent in such systems at low 
temperatures, there exist elastic moduli, including the shear modulus, and their behavior as functions of 
temperature is determined. The long-range crystal order which arises in a stack of such layers is studied as 
a function of the interplane interaction constant. The resonance frequency in inelastic scattering of thermal 
neutrons by a two-dimensional lattice is the branch point for the dynamic structure factor. The 
temperature dependence of the order of the branch point is calculated. 

1. INTRODUCTION 

It is well known that there is no long-range order in 
two-dimensional systems at finite temperature. As noted 
already by Peierls r1J, the absence of crystalline order­
ing in the two-dimensional case at finite temperature 
follows from the divergence of the mean-squared devia­
tions of the atoms from the equilibrium position with in­
creasing sample dimensions. Namely, in the harmonic 
approximation we have 
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Here m is the mass of the atom, wA (k) is the frequency 
of the A -th mode of the oscillations, a is the average 
distance between atoms, u is the average speed of sound, 
v is a geometric factor equal to unity for a square lattice 
and to 13/2 for a triangular lattice, and R is the dimen­
sion of the sample. Outside the framework of the har­
monic approximation, the impossibility of the existence 
of two-dimensional crystals was proved by Mermin [2J. 

However, if the mean-squared deviation of the atom 
from the equilibrium position diverges logarithmically 
with increasing sample dimenSion, then the mean squared 
difference of the deviations of two atoms 
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is finite for each finite value of the distance Rij between 
them. At large ~J" equation (1) behaves asymptotically 
like 

2Ta'v R,j 
--In-
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Comparing this quantity with a2, we find that for sections 
with dimensions smaller than 

p"'a exp (nmu'/2vT) (1.3) 

it can be assumed that the crystal retains the memory of 
the long-range order that was present at zero tempera­
ture1) • 

This circumstance leads to a power-law decrease of 
the correlator of the position of two particles 

(exp[iq(r,-rj) 1 > -R~"·. (1.4) 

Here q is the reciprocal-lattice vector, and t:. 
= vTa2q2/41Tmu2. It follows from (1.4) that in the two­
dimensional case, below a certain temperature T c 
= 41Tmu2/va2q2 the static structure factor becomes infinite 
with increasing sample dimension R (see [3, 4J): 

N-t(p(q)p(_q»_R,(t-",>. (1.5) 

For T > Tc' the structure factor becomes finite, as is as-
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sumed also in the case of liquids. Berezinskii' [5J has 
demonstrated that in the two-dimensional case there oc­
curs in the low-temperature phase a "transverse rigid­
ity" (shear modulus for a crystal), which is here an 
order parameter, and indicated the connection between 
the exponent t:. and this quantity. 

All the results [3-5J, however, were obtained in the 
harmonic approximation where, as is well known, there 
is no temperature dependence of the interatomic dis­
tances and of the force constants, and consequently there 
is no melting. Pokrovskii' and Ui'min [6J have developed 
a self-consistent method of summing the anharmonicities 
for the calculation of the dependence of the "transverse 
rigidity" on the temperature in the model of a flat planar 
magnet. In this paper, using a self-consistent procedure 
similar to that used in [6J, we investigate the behavior of 
flae) and layered crystal structures, with weak interac­
tion between layers, below the phase transition tem­
perature T m' The question of the character of the tran­
sition and of the temperature dependence of the thermo­
dynamic functions near the transition point remains open 
and will not be discussed. 

2. TWO-DIMENSIONAL CRYSTAL 

We consider a system of atoms on a plane; these 
atoms interact with one another via paired central forces. 
The Hamiltonian of this system is 

Ii' 1 
H= 1: (- 2m V;) +21: v(r,-rj). (2.1) 

i+j 

A t zero temperature, the system of atoms in the plane 
forms a crystal lattice. As follows from (1.1)-(1.3), at 
nonzero temperatures the main contribution to the break­
ing of the crystal order is made by long-wave fluctua­
tions, It can therefore be assumed, in the limit of long­
wave fluctuations, that the system is described by a cer­
tain harmonic Hamiltonian 

Hh= \'" (-~ V;) + ~ \'" ~ u,;"(D ,i"'u;;', 
£...J 2m 2 £...J 2 ,,.,,j 

.,' 
1L!j"'=1J'ir1.-ut'=rt-r/,"-Ri r; rt., ~=x, y, z; 

(2.2) 

where Rij = Ri - ~ is a certain average distance between 
the i-th and j-th atoms. As already noted in the intro­
duction, for large differences i - j the distance is not de­
fined, but if we take into account the interaction of a 
given atom only with sufficiently near neighbors, then 
we can introduce an average distance between close 
atoms. 

The force constants if??:{3 are chosen such that at a ' 
given temperature the ha~monic Hamiltonian (2.2) ap-
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proximates in the best manner the initial Hamiltonian 
(2.1). This problem was solved by various methods in 
the theory of anharmonic crystals (see, e.g., [7J, where 
it is solved by a variational principle). For the fre­
quencies w,\ (k), for the mean-squared deviations Dijf3 

= < uijufl ), and for the force constants <Pij , we obtain the 
following self-consistent system of equations 

w.'(k)e,"(k)= ~I, (1-exp(ikR'j)e,'(k)~,;"', 
, 

D"'=~ ~ (1- ('kR) e,"(k)e.'(k), thliw.(k) 
0, mN ~ exp I 0, w. (k) C ----zr-, 

k,' 
(2.3) 

w,j(r)= 1 Sd'Uv(r+u)exp{,-~U"(D .. "')-lu'} 
[(2rc)'detD,;",J'" 2'" 

Here e,\ (k) are the polarization vectors. We note that in 
the derivation of (2.3) we did not use anywhere the as­
sumption that the atoms form a regular lattice. We use 
throughout not the absolute positions of the atoms Rt, but 
the distances between atoms 1\" The possibility of 
diagonalizing the quadratic forJ (2.2) in order to derive 
equations for the frequencies is due to the fact that <p~~i 
depend only on the differences i _ j. 1] 

Assume that at zero temperature the lattice was tri­
gonal with distances ao between neighboring atoms. For 
simplicity we assume also that only the nearest neighbors 
interact. Then (2.3) can be rewritten in the form 

w"(k)=~ ~ (1-e"a) (e,(k)a)' ii'w(a) 
m 4.. a2 8a2 ' . 

D. = D."'a"a' = _Ii_I, (1_e;k.).~e.(k)a)' cth liw,(k) (2.4) 
a' mN kl 'a'w, (k) 2T' 

w(a)= L J d'uexp ( - ~') v(a+uD."'). 

We now define the average equilibrium distance be­
tween the nearest neighbors, at a given temperature, as 
the distance over which the bonds between the atoms are 
not stretched, i.e., 

w'(a) =0: (2.5) 

We shall solve the system3 ) (2.4). We specify the inter­
action between the atoms in the form 

v(r) =vo[exp[ -2a(r'-ao') ]-2 exp [-a(r'-a,')]]. (2.6) 

A potential in the form (2.6) is chosen exclusively for the 
sake of making the integration convenient and of being 
able to carry through the solution to conclusion in analy­
tic form. 

From (2.4) and (2.5) we have 

w (r) =exp( -4a'D"a,')vo(exp[ -2a(r'-a') ]-2exp[ -a(r'-a')]), (2.7) 

(2.8) 

Expressions (2.7) and (2.8) were obtained under the con­
dition O!Da « 1, and this will be shown below to be valid 
always at O!a~ » 1. 

From (2.4) we can also obtain 

(2.9) 

Here Z is the number of nearest neighbors, Z = 6 for a 
triangular lattice. Equation (2.9) will be solved in two 
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limiting cases: a) T »e; b) T « e. The Debye tem­
perature is e ~ 3t'i(w"/m)ll2. 

Case a). In this case [4J we can use the high -tempera­
ture expansion of the cotangent. We have 

ZVo exp (-4a'D.ao') ·8a,'D.a'=4T. 

If we introduce the symbol x = 40!2Doa~, then at (a - ao)/ao 
« 1 (see below) this expression can be written in the 
form 

We see that real solutions of (2010) exist only at suffi­
ciently low temperature. The transition temperature can 
be obtained from the condition that at T = Tm the left­
hand side of (2.10) is equal to the right-hand side at the 
point of its maximum, whence 

(2.11) 

Let us verify the satisfaction of the employed inequal­
ity O!Da «1: 1 = max(0!2Daa~), whence O!Da « 1 at O!a~ 
» 1, and consequently 

( a-ao ) 3 
max -- "'" --, ¢: 1. 

ao 4aao 

The elastic constant w", which is the order parameter 
in the two-dimensional crystal structure, 

(2.12) 

changes by a factor e when T changes from zero to T m' 
The shear modulus is IJ. = za2w". 

Case b). We obtain from (2.9) 

2Zvoxe-x ='1,8+19.2T'/8'. (2.13) 

Since at r = ao Eqs. (2.6) and (2.7) yield (a -ao)/ao« 1, 
w" = e-Xy", it follows that e = e-x/ 280, where eo is the 
Debye temperature in the harmonic approximation. Thus, 
we can rewrite (2.13) in the form 

xe-z.-ye-""=14.4y (TIe,) " 

y=28013Zv,. 
(2.14) 

The solution of (2.14) even at T = 0 exists only for not 
too large y. For SimpliCity we assume that y « 1 (the 
mass of the atom m is large). Then Xo ~ y at T = O. In 
analogy with case a), we obtain the transition point: 

(2.15) 

The elastic constant (2012) decreases when the telI).Fera­
ture changes from T = 0 to T = Tm by a factor ell: -yo 

It is easy to verify that the inequality (a - ao)/ao « 1 
holds true up to the transition point at O!a~ » 1. 

In accordance with (1.5), (p(q)p(-q)/N becomes in­
finite at T < T c with increasing sample dimensions. Let 
us estimate Tc = 41Tmu2/lla2q20 If Uz and Ut are the longi­
tudinal and transverse sound velocities, then, using (3.2), 

2u,'u( 3Za'w" (a) 
u'=--=-~--

ut'+u,' 32m 

3nZ '( ')' -x T,=-( -)-, aa, voe . 
v aq 

It is easy to see, since a ~ 21T and O!a~ :~ 1, that T m 
«Tc in cases a) and b). 

Thus, in the entire region of the stability of a two­
dimensional crystal (and T m is the upper bound of this 
region) the correlator of the position of two particles 
and the static structure factor are given by expressions 
(1.4) and (1.5), while the exponent ~ is given by 
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v (aq)'Te" 
A ~ -::-~-'-;-;--:;--

3nZ (aao') 2V , 

~ note that up to T m we have D. « 1. 

3. LAYERED CRYSTAL 

(2.16) 

We consider a system of atoms consisting of mon­
monatomic plane layers that are equidistant from one 
another. As already noted, at such an arbitrarily strong 
interaction between the atoms that are situated in one 
plane, there is no long-range crystal order. However, 
turning on an arbitrarily weak interaction between the 
layers makes the system three-dimensional and leads to 
the appearance of crystal ordering in the planes. 

The task of the present section is to establish how the 
degree of ordering in the plane depends on the constant 
of the interplanar interaction at a given temperature. To 
this end, we consider a hexagonal lattice, the interaction 
between the layers of which is much less than the inter­
action inside the layers. As shown by I. Lifshitz [10J, the 
spectrum of the oscillations of such a lattice can be 
written in the long-wave limit in the form 

Wt2=UtZX2+U32kz2, WZ2=U2ZX2+U32kz\ 

W32=U32X2+U",2kz2+SXi-. 

The z axis is directed here perpendicular to the layers, 
K2 = ~ + k~, and U3 .;:; U4 « U1 "" U2, Oscillations whose 
displacement vector lies in the XOY plane correspond to 
the first two modes W1,2. The last mode corresponds to 
flexural oscillations of the planes. 

Since we are interested only in the establishment of 
order in a plane, we consider a crystal model in which 
only oscillations with a displacement vector lying in the 
XOY plane are allowed. Such a crystal has a simple 
hexagonal lattice, with interaction only between the near­
est neighbors, such that in the plane the atoms interact 
via the central potential v(r) (r = (x, y)), and between the 
planes they interact by a noncentral potential f(r).5) For 
this crystal, the spectrum of the oscillations takes in the 
long-wave limit the form 

where 

1/3U,'~u,'~Za'w" (a) 116m, u,'~c'g" (O)/m, (3.2) 

a is the distance between the nearest neighbors in the 
plane, Z = 6 is the number of nearest neighbors in the 
plane, w" (a) is the strength constant in the plane, c is 
the distance between layers, g" (0) is the strength con - _ 
stant between layers, m is the mass of the atom. 

To calculate the force constants, we use a system of 
self-consistent equations, analogous to (2.4). We have 

w(r)~ 2~ J d'uexp (- ~2) v(r+uD~'), 

g(r) ~ 2~ J d'u exp ( - ;2) 1 (r+uD;' ); 

D.~_li_~ (i-e'"') (e.(k)a)'cth liro,(k) 
mN~ a'ro,(k) 2T' 

D,~~~ 1-exp(ik,c) cth liro,(k)_. 
mN";:::' ro,(k) 2T 

(3.3) 

(3.4) 

The distance a is determined from the condition Wi (a) 
= O. 

For v(r) we use expression (2.6), and we take f(r) in 
the form 
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I(r)~-I, exp(-~r'). (3.5) 

Then from (3.3) and (3.5) at aDa « 1 we have again 
formula (2.7) for w(r), and 

10 [ ~r'] 
g(r)= - 1+2~D, exp - 1+2~D, . (3.6) 

From the condition Wi (a) we obtain a2 = a~ + 6a~aDa' 
and from (2.7) and (3.6) we get 

we recall that x = 4a2Daa~. 

(3.7) 

(3.8) 

To find Da and Dc' it is necessary to substitute (3.7) 
and (3.8) in Eqs. (3.1), and these in turn must be substi­
tuted in (3.4). We thus obtain a system of two equations 
with two unknowns, Da and Dc' We note that to solve the 
first of these equations we can use the fact that, by as­
sumption, the coupling between layers is weak, i.e., 
U3 «U1' We then have in the zeroth approximation in U3 

(3.9) 

From (3.9), from the first equation of (3.4) and also from 
(3.7) we obtain Eq. (2.9) for the pure planar case. Thus, 
the force constant w" (a) is given by expression (3.7), and 
the temperature dependence of Da was investigated in the 
preceding section. 

The second equation of (3.4) cannot be treated in this 
fashion, for if we take the frequencies in the form (3.9), 
then the sum over k begins to diverge at small k. There­
fore it is necessary to substitute in the second equation 
of (3.4) the exact expression for the frequencies (3.1), 
with allowance for the already known force constant 
w" (a). The second equation of (3.4) will be investigated in 
two limiting cases: a) T »e and b) T « ®; ® is the 
Debye temperature in the plane, ® "" 3h(w"/m)1/2. 

Case a). Carrying out the high-temperature expansion 
of the cotangent, we have 

Here KD = 81f/3112a 2 and kZD = 21f/c. Retaining in the 
integration only the large logarithms, we obtain with 
logarithmic accuracy 

(3.10) 

We note that in the temperature region where the real 
Da is determined (see (2.10) and (2.11)) the solution of 
(3.10) always exists (see (3.2), (3.7), and (3.8)). Conse­
quently, if we confine ourselves, as before, to the zeroth 
approximation in U3 to determine Da, then the transition 
temperature in the layered case remains unchanged in 
comparison with the pure two-dimensional case. It is 
easy to write out the solution for Dc in the case Dci3 
« 1. Namely, from (3.10) we obtain with logarithmic 
accuracy 

nv3 T (v,a'a"e-") 
Dc;::::: --'-2 In . 

9Zv,a a, lo~ 

As is well known, the order parameter for the crystal 
is the mean value of the Fourier component of the den­
sity: 

j {Ii 1: (qe,(k»' liro,(k) } 
-(p(q»~exp --- cth--- . 
N 2mN ro,(k) 2T 

k,' 

(3.11) 

Here q is the reciprocal-lattice vector. This is a 
directly-measurable quantity, since it yields the inten-
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sHy of the maxima of elastic scattering of x rays by the 
lattice (see, e.g., [12 J ). For vectors q lying in the XOY 
plane, the quantity (p(q)/N yields the degree of order­
ing in the plane. At T »8, carrying out a high-tem­
perature expansion of the cotangent and calculating the 
integrals, we obtain with logarithmic accuracy 

~( ( »"" ( 16nvg"~)' (3.12) 
N P q Zw" (a) . 

Here t:. is determined by (2.16). We note that (p(q)/N 
tends to zero when g" (0) tends to zero, as it should. 

Case b). Separating in the second equation (3.4) the 
temperature-independent terms, we obtain 

XD hZD/2 

ftc' {I 
D, =-k--' S xdx S k,'dle, ( , '+ 'Ie ')'" 

m zDXn v -kl D/2 U t X Us z 

x[ t + exp[ft(u"x,+:,2k,')"'IT]-t ] + (U,'x2+~,:k,')'" (3.13) 

x[ 1 + exp[ft(u,'x2+:"k,')"'IT1-t ]). 

We can integrate (3.13) in two limiting cases, 
tiu~zD/T « 1 and tiu3kzD/T »1. The second case 
actually means T = 0, and we therefore consider only 
the first. In (3.13), the temperature-independent terms 
can be integrated at U3 = 0, and in the temperature de­
pendent terms we can retain only the large logarithms. 
With logarithmic accuracy, we obtain 

D,"" (1+Y3)n'ft -~ln:( ftU,k'D). 
313 mXDU2 9~XD'U,· 2T 

(3.14) 

Equation (3.14) determines Dc (see (3.2), (3.7), (3.8)) in 
the entire region where Da exists (see (2.14) and (2.15)). 

Analogous calculations yield (p (q) /N for the 
reciprocal-lattice vectors q lying in the XOY plane: 

(p(q» ""ex [_ (1+13)ftqd"'][ nft(g"(O»"']' (3.15) 
N P 2(2mT)'" mT . 

Just as in the preceding case, (p(q)/N vanishes together 
with g" (0). 

Thus, an arbitrarily weak three-dimensionalization 
of the system leads to the appearance of long-range 
order in it; the degree of this order is given by expres­
sions (3.12) and (3.15). 

Mikeska [13J considered inelastic scattering of thermal 
neutrons by a two-dimensional lattice, and showed that 
the resonant frequency is a branch point of the dynamic 
structure factor (see also [H, 15J): 

[ (ux)' ] 1-" 
S(q+x,w)- w'-(ux)' (3.16) 

Here q is the reciprocal-lattice vector and K' a « 1. 
Expression (3.16) can be used also for a layered crystal, 
if it is noted that the time of establishment of the three­
dimensional order is T ~ C/U3, and the frequencies are 
W ~ U1,2K. Consequently, when the condition WT » 1 is 
satisfied, i.e., U1,2CK/U3 » 1, relation (3.16) holds. The 
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last inequality is perfectly feasible, for although Ka « 1, 
on the other hand U1 ,2 »U3 and c »a. 

In conclusion, I wish to note that the topic of this 
paper was proposed by Y. L. Prokovskir and discussed 
with him many times, for which I am most grateful to 
him. I am also indebted to G. Y. Urmin, D. E. 
Khmel'nitskH, and A. P. Mineev for interest in the work. 

OWe disregard throughout the possible precence of dislocations and 
vacancies in crystal, since their production calls for a finite energy, 
and consequently, their concentration is negligible at sufficiently I 

low temperatures. 
2)The terms "flat crystal structure" and "two-dimensional crystal" are 

used throughout in accordance with Berezinsku 's definition, i.e., there 
is a shear modulus but there is no long-range order. 

3)The system (2.4) was solved in order to ascertain the conditions for the 
stability of the anharmonic crystal in the one-dimensional case in [8] and 
in the three-dimensional case in [9]. Allowance for the anharmonicities 
with the aid of the self-consistency method, as used in [9], makes it pos­
sible to calculate the temperature dependence of the frequencies, of the 
force constants, and of the mean-squared displacements far enough from 
the melting temperature, but there is no justification whatever for calcu­
lating the singularities of the thermodynamic functions at the transition 
point itself with the aid of this method (see [9]. 

4)If the atom mass is large enough, then this "classical" region can include 
also arbitrarily low temperatures, 

s)The simplest of the layered crystals, graphite, has a much more compli­
cated structure (see, e.g., [liD, but since we are interested in the establi­
shment of the order in the plane, it suffices to consider such a simple 
model in order to obtain qualitatively correct results. 
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