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Renonnalization of the long-wave optical phonon spectrum due to the strongly nonequilibrium 
quasimonochromatic distribution of acoustic phonons with a frequency equal to half that of the optical 
phonon is studied. It is shown that long-lived long-wave collective excitations are present in such systems 
of acoustic phonons, and their frequencies are close to that of the optical phonon. These elementary 
excitations are manifest in the optical Raman scattering spectrum and lead to a complex structure of the 
Stokes scattering line. 

INTRODUCTION 

With a high degree of probability, it can be assumed 
as experimentally proven that the creation of distribu­
tions of nonequilibrium short-wave acoustic phonons 
with a small frequency sI>read AW about some central 
frequency Wo is possible. [1,2) Such phonons originate in 
the decay of long-wave optical phonons ,£3,41 which are 
generated by light (usually by beats of two laser beams 
with frequencies 1'1 and 1'2, such that 1'1 -1'2 is close to 
the frequency no of optical phonons with k = O. [1, 5-7). 

It follows from the law of momentum conservation 
that an optical phonon with k = 0 decays into two acous­
tic phonons with opposite momenta q and -q; therefore, 
the energies of the resultant acoustic phonons are iden­
tical and are completely determined by the law of energy 
conservation: Wq = no/2. Thus the spread Awabout 
Wo = n o/2 is determined only by the value of the wave 
vector of the optical photon k f 0 or by an indeterminacy 
in the law of energy conservation. For parallel light 
beams, the momentum of the excited optical phonon is 
k ~ no/c, so that AW ~ noS/c, where s is the sound ve­
locity and c the light velocity in the medium. The inde­
terminacy in the law of energy conservation gives, as 
has been shown previously, [aT AW ~ ro or AW ~ AI', 
where ro is the width of the spontaneous decay of the 
optical phonon with k = 0, and AI' is the spectral width 
of the laser beams. Typical values are no -1000 cm-r, 
r o-l cm-I, sic _10-4 , and AI' -;;, 1 cm-I, so that the 
distribution of acoustic phonons is highly monochro­
matic in any case: AW/Wo _10-3 • For the powers used 
experimentally, [1) the occupation numbers of the acous­
tic phonons reached Nq - 1. 

It is natural to raise the question as to how the pre­
sence of the distribution Nq renormalizes the spectrum 
of the long-wave optical phonons.[9] It is convenient here 
to have the following picture in mind. Let there be two 
branches of optical phonons with close or identical fre­
quencies at k = O. One branch is pumped by the light 
and acoustic phonons are created. The second (control) 
branch is not excited by the light directly, but interacts 
with the created acoustic phonons. It can be verified that 
in such a situation the distribution Nq does not depend 
on the presence of the control branch and therefore can 
be considered as given by the conditions of excitation 
of the pumped branch. On the other hand, the presence 
of the distribution Nq leads to a renormalization of the 
spectrum of the control branch, which can be studied, 
for example, through Raman scattering or absorption 
of light of low intensity by the phonons of this branch. 

In this paper it will be shown that the renormalization 
of the spectrum of long-wave optical phonons, brought 
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about by the quasi-monochromatic distribution of the 
acoustic phonons, is qualitatively different from the 
renormalization in the ordinary case of a broad distri­
bution (AW» r). There are two such qualitative dif­
ferences. First, a new branch of elementary excitations 
of the collective type appears with frequency no and 
lifetime of the order of (AW)"l. For sufficiently large 
Nq this branch mixes with the bare branch of the op­
tical phonon. Second, it turns out that sufficiently nar­
row distributions of acoustic phonons (AW < rol2) do 
not stimulate the decay of optical phonons, as follows 
:'>om the usual representations based on the kinetic 
equations for the occupation numbers, but impede it. 
The qualitative renormalization of the spectrum involves 
a qualitative change in the character of the Raman scat­
tering by the control branch. The basic effect here is the 
splitting of the Stokes lines into a triplet at sufficiently 
large Nq• 

1. DISTRIBUTION OF ACOUSTIC PHONONS 

The distribution of acoustic phonons that arises in 
the decay of the optical phonons has been calculated pre­
viously. [a) It was assumed there that there is a single 
optical branch 0 and a single acoustic branch A. By a 
single acoustic branch is meant the transverse TA 
branch whose short-wave phonons have a long 
lifetime T» r~l [10]. Actually, the optical phonons decay 
not only into transverse acoustic phonons, but also into 
longitudinal ones (LA). However, the number of LA 
phonons that appear is small in comparison with the 
number of TA phonons, because there is a much shorter 
lifetime for the LA phonons and the 0 _2TA and 
o _ 2LA decay probabilities are of the same order of 
magnitude. The decay into longitudinal phonons decreases 
the population of the transverse branch of interest to 
us; however, the corresponding "branching factor" is 
of the order of unity, since the decay probabilities are 
of the same order. 

If there exists a decay 0 - TA + LA, then this leads 
to the generation of TA phonons with frequencies near 
Wo f no/2. Such a distribution of phonons renormalizes 
the spectrum of optical phonons into a nonresonant and 
much weaker one, and therefore does not have to be 
taken into account. 

In order to use the results of the previous research/a] 
it must be shown that the distribution of acoustic phonons 
does not depend on the presence of a control branch of 
optical phonons. This actually occurs for those pump­
power restrictions assumed in[a]. 

We write down equations of the type of (1.14) from (a] 
for both optical branches; the pumping branch (index 1) 
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and the control (index 2), neglecting, in accord with the 
assumption r- I « r o, the widths of the acoustic phonons: 

~A. S d'q 6 (Q-ro.-rok-.) [N.Nk_.-n. (k) (N.+Nk-.+1) ]=-G(k), 
2 (1.1) 

! A,S d'q 6 (Q-ro.-rok-.) [N.Nk_.-n,(k) (N.+Nk_.+1) ]=0. (1.2) 

Here G(k) describes the pumping of branch 1 by light, 
n(k) == n(kO) is the occupation number of the optical 
modes, and Al and A2 are the corres~Onding' constants 
of the decay 0 - 2A. It was shown in a] that the term 
with NqNk-q is small in comparison with the term which 
contains G. If we assume that Al ~ A2, it then follows 
directly that n2(k) « nl (k). Thanks to this inequality 
we can neglect in the balance equation of acoustic 
phonons [(1.11) of [a]] the contribution from the control 
branch, and the distribution Nq thus turns out to be 
independent of the presence of the control branch. 

It was similarly shown that if the pumping has a 
Lorentzian spectral shape, then the distribution Nq also 
has a Lorentzian shape for both strong and weak pump­
ing. For Simplicity, we assume that the pumping is 
exactly resonant, Le., Wo = 0 0/2, and that the shape of 
Nq is always Lorentzian: 

N.=No (hro/2)' 
(ro.-roo) '+ (t.ro/2) ' (1.3) 

We can hope that the latter assumption has no strong 
effect on the qualitative character of the subsequent 
results. 

In what follows, we shall not consider the pumped 
branch, assuming that its role reduces to the regulari­
zation of the parameters No and ~W. For weak pumping, 
when No « 1, the quantity ~W is determined by the 
smaller of the values of ~v and ro; for strong pumping, 
when No» 1, we always have ~W ~ ~v. [a] 

2. SPECTRUM OF THE ELEMENTARY EXCITATIONS 

The spectrum of the long-wave elementary excita­
tions is determined by the retarded Green's function Gr 
of the optical phonons with k = O. The polarization op­
erator Pr(O), which corresponds to this Green's func­
tion, can be computed with the help of Eqs. (2.1) and 
(2.2) from[a], where, we substitute for Nq the distribu­
tion (1.3). Near the bare poles ± 00 the polarization op­
erator can be computed in explicit form: 

P (Q) = ~ ( ±i+4N Qot.ro ) 
, Qo 0 Q'-Qo''f'2iQot.ro ' (2.1) 

where the upper and lower signs correspond to the cases 
1m 0 2 < 0 and 1m 0 2 > O. The Green's function 

G,(Q) =Qo'[Q'-Qo'-Qo'P,(Q) ]-. (2.2) 

has poles when analytically continued through the cut 
0 2 > 0 from each of its edges; the corresponding con­
tributions are complex conjugates. 

We now give the equation for the determination of 
the poles near +00 : 

[Q- (Qo+irol2)] [Q- (Q.+it.ro) ]-Norot.ro=o. (2.3) 

This equation recalls the equation for the mixing of two 
branches, and the coupling coefficient is proportional to 
No. Its solution gives rise to the critical value 

N;=(a-1)'/Sa, a=2t.ro/ro. 

If we introduce ~ = No/Nit, we can write the roots of 
(2.3) in the form 
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(2.4) 

1 - 1 (2.5) 
s>1: ReQ •.• =Qo±'4ro(c.-1)l's-1, ImQ"'=T r o(a+1). 

It is also instructive to write out the corresponding 
residues: 

.6<1: 
s-2'f'2l'1-s 

ResG,(Q •. ,)=Qo , 
2s-2=F21'1-s 

(2.6) 

s>1: ResG,(Q •. ,)=Q. s-2±2il'H . 
2s-2±2il's-1 

The motion of the poles with increase in ~ in the com­
plex plane is shown in Fig. 1. The merging of the poles 
corresponds to ~ = 1. For small No, one of the poles 
(01 , upper sign) describes an optical phonon with spon­
taneous decay, while the second pole (0 2, lower sign) 
describes a new long-wave elementary excitation in 
the system of phonons with frequency 0 0 and lifetime 
1/2~w. It is obvious that this elementary excitation 
is long-lived only for quasimonochromatic distributions 
of the acoustic phonons. 

The new elementary excitation can be interpreted'as 
a collective excitation in the system of acoustic phonons, 
since the corresponding pole is also present in the two­
particle Green's function of the acoustic phonvns, Here 
the optical phonons play the role of intermediate par­
ticles in the interaction between the acoustic phonons. 
The simplest vertex corresponding to this case is pro­
portional to roo If ro - 0, then the direct interaction be­
tween acoustic phonons is cut off. At the same time, the 
location of the new pole remains completely determined: 
O2 - 0 0 + i~w. In this case the situation very much re­
calls zero sound (if we disregard the fact that the law 
of dispersion does not have an acoustic character). 

When No increases, remaining less than the critical 
value Nit, only the widths of the elementary excitations 
change, and the frequencies are identical and equal to 
Go. Here the widths come closer together, approaching 
the mean arithmetic value of the bare values of 0*, 
which is achieved at No = Nit. In the subsequent increase 
in No, the widths of the excitations do not change; how­
ever, the frequencies of the excitations chang~they lie 
symmetrically on opposite sides of 0 0 and the splitting 
of the frequencies increases with increase of No. It is 
obvious that the origin of the elementary excitations is 
lost in the region No ;:: Nit. 

3. RAMAN SCATTERING 
The complicated structure of the spectrum of elemen­

tary excitations with k = 0 can be discovered with the 
help of Raman scattering of the weak light signal which 
does not create an additional non-equilibrium phonon 
distribution. For this purpose, it is necessary to study 
the shape of the lines of Raman scattering with frequency 
shift v - v' == Ii ::::: ± 00. However, it must be kept in mind 
that usually the characteristic momentum ko at which 
the spectrum differs materially from the spectrum at 

@ 
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k = 0 is the dimension of the Brillouin zone, i.e., 
ko ~ Oo/s. This momentum is always greater than the 
momentum transfer f = f -f' in the scattering of light 
from f into f' . Therefore the scattering of light at any 
angle usually probes the spectrum at k = O. If the same 
spectrum is renormalized because of the interaction with 
the narrow acoustic distribution, then ko ~ t:..w Is, which 
is comparable with f ~ vic in the scattering of visible 
light through n12. Therefore, forward scattering is 
preferable for probing the spectrum at k = 0, when 
f ~ Oolc and can be made smaller than ko ~ t:..W Is. 

Assuming that one can set k = 0, we find the following 
expression for the probability of scattering into the com­
plete solid angle and in the frequency range dv' = dii in 
the Stokes region ii "'=l +00 : 

w.('ii)d'ii =-;-~{[n(Q)+1)Im G, (Q) )0_'. (3.1) 
231Q. 

and in the anti-Stokes region P "'=l -00 : 

W., ('ii)d'ii=-~{n(Q) 1m G,(Q) )0--;. 
2nQ. 

(3.2) 

Here Wo is the total probability of spontaneous Raman 
scattering; n(O) is the occupation number of the n(k) 
state with k = O. The presence of n(O) reflects the fact 
that the given stationary distribution Nq not only renor­
malizes the spectrum but also leads to a certain filling 
of the states due to the sticking of the acoustic phonons 
to the optical ones. 

It follows from (1.2) at k = 0 that 

n(Q) = {N.'I (2N.+1) ) •• _0.1'. 

n(m +1={ (N.+1) 'I (2N.+1) ) •• _0.". 
(3.3) 

(3.4) 

The characteristic width of these functions is t:..w. For 
a wide distribution (t:..w » ro and No ~ t:..w Iro), it fol­
lows from the results of the previous discussion that 
1m Gr(O) is a Lorentzian peak of width ro(2No + 1), 
centered about 0 0• Within the limits of its width, we 
can neglect the change in the functions (3.3) and (3.4) 
and set 0 = 00. Here n(Oo) becomes the ordinary occu­
pation number no of the state k = O. It is thus seen that 
for broad distributions, (3.1) and (3.2) transform into 
ordinary formulas for Raman scattering with account 
of line broadening. We note that there is no frequency 
shift because of the symmetry of the distribution Nq 
relative to 0 0/2. 

For narrow distributions t:,.w S r the situation 
changes radically-the shape of the line is determined 
not only by the Green's functions, but also by the filling 
factors (3.3) and (3.4). For convenience, we reckon P 
from the "normal" center of the line ii = ± 0 0 : P 
= ii - 0 0 for the Stokes line and - Ii = ii + 0 0 for the anti­
stokes line. 

We consider the limiting case in which the effects 
associated with the narrowness of the distribution of 
acoustic phonons are more clearly expressed: 

t,,,,«r.. N.»No'=r./St,,,,. (3.5) 

Here 

(3.6) 

i.e., the splitting of the frequencies of the elementary 
excitations is greater than their width. This means that 
1m Gr(O) has the shape of two isolated peaks corres­
ponding to ii = ± rov'f/4. 
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We now consider the frequency dependence of the 
filling factors. It is easy to see that n(n) gives a peak 
of width t:..w about ii = O. Thus, we can generally expect 
the appearance of three peaks in w(ii). In order to de­
termine which of them appear, we must estimate their 
heights. In the region of the peaks 1m Gr(O), we have, 
for ii ~ rov'r, 

1m G,-r.-'. N.-a«1. n-a'. n+1",1. (3.7) 
In the region of the peak n(O), for ii 'So t:..w, we have 

(3.8) 

It follows from these estimates that there is a central 
peak in the Stokes region for Ii = 0 of width t:..w and 
height of the order of (t:..Wfl and two lateral peaks at 
p = ± rov'f/4 of width ro/2 and height of the order of 
1/ro• The central peak is higher and narrower, the 
lateral ones are lower and wider, but the areas of all 
peaks are of the same order. In the anti-Stokes region, 
the location and widths of the peaks are the same; how­
ever, the height of the lateral peaks decreases by a fac­
tor of (l!2 in comparison with the height of the central 
peak, which is the same as in the Stokes region. 

4. THE GEOMETRY OF THE PUMPED AND CONTROL 
BRANCHES IN CRYSTALS OF THE DIAMOND TYPE 

A situation with two branches of optical phonons 
(pumped and contro) can be realized by using, for ex­
ample, the presence of different polarizations of the op­
tical phonons. We consider a crystal with diamond sym­
metry, in which the interaction of the light with the op­
tical phonons is described by the following Hamiltonian: 

E,EvW,+E,E,w.+E,E.w,. (4.1) 
where E is the field of the light wave and w is the relative 
shift of the sublattices. Let the pump fields El and E2 be 
polarized in the xy plane. Then only the component Wz 
is directly pumped by the light and the components Wx 
and Wy can be regarded as controls. 

With such an approach, the question still arises as 
to the diagonality of the Green's function of the optical 
phonon relative to the polarizations. If there is no 
such diagonality, then it is not possible to consider 
the different polarizations independently. When pumping 
is absent, then diagonality follows from the cubic sym­
metry 0h, since w is transformed according to F2g' 
and the symmetrized product {F2g x F2g} contains 
the trivial representation A1g only once. In the pre­
sence of pumping, the symmetry is reduced and the 
appearance of non diagonal components is possible in 
principle. We shall show that this does not occur if the 
pump fields El and E2 lie in the xy plane. In this case, 
the excitation of the phonons is determined by the quan­
tity 

E.E,= (E"+E,,J (E,y+E,y) =E,.E"+E,.E,,. (4.2) 

Here we keep only the terms that are important for 
pum~ing, with the frequency difference v 1 - V2. In fact 
(see 8]), if the beams consist of a large number of lon­
gitudinal modes with random phases, then the excitation 
is determined by the square of the quantity (4.2). It is 
easy to prove that this square is invariant to a transfor­
mation of the subgroup D4h with the z axis. Therefore 
the system of phonons has the symmetry type D4h in the 
considered excitation. Upon the reduction ~ -~, we 
have 

F" .... E.+B,.. w .. wy-E.. w,-B". (4.3) 
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Further, Eg x B2g does not contain A1g; therefore, 
there are no Green's functions connectmg the pumped 
polarization Wz with the control polarizations Wx and 
wy. The product {Eg x Eg} contains Alit once; therefore 
there exists just one Green's function of the control 
phonons. Thus the considerations advanced show that in 
the chosen pump geometry we can consider two indepen­
dent branches-pumping and control, which justifies the 
model used above. 

In the process of probing the control branch, we 
must use a polarization that would not be scattered by 
the pumped phonons wz , and observe a scattered-light 
polarization in which the pump beam is not scattered. 
This can be aChieved, for example, in the case in which 
the pumps EI and E2 are polarized along (110), the pro­
bing field Eo along (001), and the scattered field E' 
along (110). 

5. DECAY OF OPTICAL PHONONS 

In connection with experiments on the direct measure­
ment of the lifetimes of the nonequilibrium optical pho­
nons, [7,11,12] it is interesting to consider the nonequili­
brium aspect of the problem, i.e., to ascertain how the 
presence of a narrow fixed distribution of acoustical 
phonons affects the decay of a given initial distribution 
of optical phonons. It should first be stipulated that such 
a statement of the problem differs materially from 
the experimental situation, where the distribution of 
the acoustic phonons is not fixed by the external con­
ditions, but arises in the process of decay of the op-
tical phonons. However, it can be hoped that some quali­
tative aspects are preserved in the assumed setup. 

There exists an opinion that the diagram technique 
developed by Keldysh[13] is applicable only to the solu­
tion of problems in which the initial conditions are for­
gotten. In fact, as can be seen from analysis of this 
work, the conditions of applicability of the technique are 
much broader: it is sufficient that a moment of time 
exist at which the state of the system is such that Wick's 
theorem holds. If this moment is taken to be the initial 
moment, then the technique allows us to investigate the 
nonstationary development of the system from this mo­
ment. It is easy to see that for a phonon system, Wick's 
theorem holds if the different phonon modes are uncor­
related and each of them is in a state of "thermodynamic 
equilibrium" with an arbitrary temperature. The arbi­
trariness of the temperature means that the degree of 
excitation of the different modes is arbitrary and the 
state of the entire system is nonequilibrium. Thus there 
always exists a broad class of nonequilibrium states, 
the relaxation of which can be studied with the help of 
the Keldysh diagram technique. 

On the basis of the foregOing, we solve the following 
problem: The state of the acoustic phonons is given and 
is determined by the distribution (1.3). At t = 0, we ex­
cite only the optical mode with k = 0 with the occupation 
number no(O) and seek the occupation number n(t) of this 
mode at the subsequent instant. The set of equations for 
the Green's function of the optical mode with k = 0 can 
be written down with the aid of the Keldysh technique in 
the time representation. It is merely necessary to be 
integrated with respect to time not between t = _00 and 
t = +00, but between t = 0 and t = +00. 

It is convenient to use the retarded function 

C.(.x, x')~-iA(t-t')<[¢(x), ¢(x')]> (5.1) 
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and the statistical function 

C,(x, x')~-i<{\)l(x), \)l(x')}>, (5.2) 

where [ •.. ] and {. .. } denote the commutator and the 
anticommutator. Similar functions Dr and Ds for acous­
tic phonons are in fact given by Eqs. (1.1) and (1.2) 
of[al. We then have 

~ 

G;-'(t)C,(t,n~6(t-t')+S dlP,(t-t)C,(l,t'), (5.3) 
o 

~ w 

150-' (t)C,(t, t') ~ J dl P,(t-t) c. (t, t') + J df P,(t-t)C,(t', f). (5.4) 
o 0 

Here 

GO-I(t) ~-(Qo-' o'lot'+1). (5.5) 

Further, Pr(t) is the time representation of the polari­
zation operator Pr(O), which arises when we consider 
the spectrum 

., d'q 
P,(t)~!a S (2n),D,(q, t)D.(q, t), (5.6) 

Ps(t) is obtained from the same formula by the substi­
tution DrDs - (DrDr + DaDa + Il; Os )/2. The coupling 
constant a 2 is proportional to roo From the equations 
we get 

C.(t, t)~-iQo[2no(t)+I]. 

From (5.3) it is immediately seen that Gr depends 
only on the time difference and is the Fourier trans­
form of (2.2). Substituting the thus-found Gr in (5.4), 
we obtain an inhomogeneous equation for Gs with the 
same operator as for Gr , and therefore Gs can be ex­
pressed in terms of Gr. Omitting the details of the 
solution, we write down the answer 

no(t) =no(O) t(t) +8(t). (5.7) 

The first term describes the relaxation of the initial 
excitation of the mode k = 0 due to decay of the optical 
phonon into two acoustic phonons, and the second des­
cribes the excitation of this mode due to merging of 
two phonons from the given distribution into a single 
optical phonon. This term is not of interest to us and 
therefore we shall not write it down in explicit form. 

The decay law takes the form 

tit) =Qo-'[C,'(t) +Qo-'(o,C,(t) )'J. (5.8) 

If we write 

C,(t)~-QoA(t) sin (Qot+<p(t)), t>O, (5.9) 

then, in the absence of decay we have A(t) = 1 and 
cp(t) = 0, and after turning on the decay A(t) and cp(t) 
are slowly changing functions of time. It is then seen 
that the decay law is 

f(t)~A'(t), (5.10) 

i.e., it is determined by the slowly-varying factor in 
Gr(t). In the spectral representation, this means that 
the rate of change of f(t) is determined by the shift of 
the poles of Gr (0) from ± 0 0• 

We first consider the case of a broad distribution, 
~w » roo Then, for ~« 1, the decay law f(r) is deter­
mined by the pole nl for which we obtain ImOI =ro(2No 
+ 1)/2. This corresponds to the rate of induced decay 
obtained from the kinetic equations for the occupation 
numbers. As is now seen, the criterion for the appli­
cability of this result is not only ~w » ro but also 
No« ~w/ro. 
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The rate of induced decay of the phonons is larger 
than the rate of spontaneous decay-the broad distribu­
tion of acoustic phonons stimulates the decay. It is seen 
from the location of the poles that this property is pre­
served even for narrow distributions with aw > ro/2. 
However, for aw < ro/2, the situation changes; the in­
crease in No leads to the result that the imaginary parts 
of both poles turns out to be less than ro/2 and there­
fore f(t) will decay less rapidly than exp(- rot). This 
means that such a distribution of the acoustic phonons 
delays the decay. For very narrow distributions, 
aw « r o, an increase of No to the critical value Nit 
= ro/8aw leads to a decrease in the rate of decay by 
a factor of two: r* = ro/2. 

In order to connect these results with the experi­
ments of [11, 12], we estimate No in these experiments. 
By assuming the concentration of acoustic phonons to 
be of the order of the concentration ii of optical phonons 
and that aw ~ r o, we find 

No-iiQo/Moro, (5.11) 

where Mo is the number of modes in 1 cm3.ln[12], 
ii ~ 1017 cm-3 Mo -1023 cm-3 , na/ro ~ 103 , so that 
No ~ 10-3• It is not surprising that in this case the rate 
of decay is identical with that of the spontaneous decay. 
In the experiments of Alfano and Shapiro, (11) the laser 
power was one-and-a-half orders of magnitude greater, 
which corresponds to an increase in ii in the regime of 
Raman scattering by three orders of magnitude; this 
gives No ~ 1. In these experiments, a slOWing down of 
the decay in comparison with the spontaneous by a fac­
tor of two was noted. Finally, this agreement with theory 
should not be ~iven excessive importance, but it is pos­
sible that a qualitative comparison is meaningful. 

6. CRITERIA 
The polarization operator {2.1) corresponds to a dia­

gram of lowest order ([ in Fig. 2). Therefore, one should 
indicate the conditions under which diagrams of higher 
order (II and ill in Fig. 2) can be discar~ed. It will be 
shown that this condition is the sufficient smallness of 
the number of acoustic phonons per unit cell 

(6.1) 

where Nis the concentration of acoustic phonons. 

In this connection, we note that the limitations on the 
pumping power set forth in [8] automatically lead to 
satisfaction of (6.1), because it is seen from Eqs. (3.19) 
and (4.2) of this paper that 

(6.2) 

If we take T ~ 10-9 sec, as in[8], and typical values for 
the other parameters, then the limitation on the pumping 
means N < 10-2, while the criterion (6.1) means N« 1. 
It should be kept in mind that the smallness of N does 
not mean smallness of No, since 

(6.3) 

The limitati-on on the pumping means No S H>; the criti­
cal value NJ' ~ 1 can~hen be achieved and exceeded. 
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For what follows, it is also useful to recall a result 
that follows from [8]: 

(6.4) 

where Ii is the number of optical phonons in a unit cell. 

We now proceed to estimate of diagrams of different 
orders for the polarization operator. Diagram ITI of 
Fig. 2 corresponds to the renormalization of the Green's 
function of the acoustic phonon, a function assumed to 
be given; therefore, this diagram is unimportant. The 
required criterion will be obtained from a comparison 
of diagrams IT and I. The expressions for the polariza­
tion operators of the first two orders in terms of the 
Green's function take the form 

I - 2S d'q J doo P,(Q) =ta {2n)' z;-D,(q,oo)D,(q,Q-oo), 

P,(Q)" =-~a'S~S ~S d'q' S doo~_ 
2 (2n)' 2n (2n)' 2n 

x {lD,(q,oo}D,(q, Q-oo}D.(q', oo')D.(q', -Q-oo') +rsar] 
-G. (q+q', 00+00') + [rssa+rsas+rrar] r}, 

1 
P.(Q)'-i -2"a'(rr+aa+sB), 

p.(Q)" =- ~a'{[ rssr + : (rraa+aarr+rrss+ssrr) ] s 

+ [rsaa+rsss+ srrr+rrsr+aars+ssrs 1,. } 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

Here the Green's functions and all the arguments are 
not written out comp1etely where these are clear. and 
only the lndices of these functions are shown in the cor­
responding linear combinations. 

The distinguishing feature of our problem is the ex­
istence of the narrow distributions Nq and nk. which are 
present only in Ds and Gs ' Therefore, the terms which 
do not contain these functions are estimated in the usual 
fashion: 

PIlI pI - r o/~~o. (6.9) 

We first consider the estimate of ~. Because of the fac­
tor Nq in Ds, the essential Wq lie in an interval of the 
order of Aw near Wo = 0 0/2. Because of o(w ± wq) which 
enters into Ds ' the essential ware in an interval of the 
order of aw around ± 00/2. The values of 0 of interest 
to us li.e near ± 00; therefore 0 -w is near ± no/2 and 
the denominators in Dr turn out to be small. They are 
estimated by the value of aw in place of the ordinary 
estimate Q o• Integration with respect to q in place of 
the ordinary q~ gives NoQ.~ aw Ina. As a result the -es­
timate of p{. differs from th~ usual one by the factors 

(~(iJ/Qo) -I (No~(iJ/Q.) -No. (6.H») 

We now proceed to the estimate of ~. We first es­
timate the term [rssa]r. It is easy to see that in this 
case both the functions Dr and Da contain smalldenomi­
nators. The energy parameter w + w' in Gr can be close 
to ± 00; however, this fact has no value if the dispersion 
of the opticalphonons is significant, ilecause the direc­
tions of q and q' are never connected and therefore 
lq + q', ~llo. Thus~ the ~stimate of this term differs 
from the usual one by the factors 

(doo/Qo) -, (Noil",/Qo) '=No'. {6.ll) 

-It is obvious that the term [rsas}r is-Of the same order, 
and the term [rrarJr is unimportant, as was pointed-out 
a.bove. 
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In the estimate of the terms of P¥ which contains 
Gs , it is necessary to keep in mind that G consists of 
two parts: one does not contain nk, and the second is 
proportional to nk. In the first case, the estimate of Gs 
does not differ from the estimate of Gr and then it is 
easy to prove that the terms [rrsa]s and [rsar]s are 
estimated by the additional No. In the second case, 
q + q' = k ~ O. This has no effect on the estimate of 
the functions Dr and Da , but decreases the phase vol­
ume from q~~ to q~3, where k3 is the volume around 
k = 0, where the distribution of nk is concentrated. After 
these observations, it is clear that the factor 

nkqo 3ku ~/qo 3qo 2--iiau "--ij (6.12) 

arises in addition to No. Summing uf all the estimates 
made, one can see that the ratio p1/11 can differ from 
the usual estimate (6.9) by the factors No and ii. If (6.1) 
is satisfied, then it follows from (6.3) and (6.4) that 
this ratio is small. The estimate of the ratio If IP~ 
is obtained similarly. 

The authors express their gratitude for discussion of 
particular aspects of this research to L. P. Gor'kov and 
E.!. Rashba. 
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