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We consider quasi-one-dimensional structures with a strongly anisotropic dielectric constant (En /El>l). In 
such structures the interaction between electrons and holes located at different filaments gives rise to an 
abundant and unusual spectrum of large-radius excitons. The spectrum is shown to contain either one or 
two oscillatory series with frequencies of the order of tens of reciprocal centimeters. For the lowest 
exciton level the electron-hole binding energy turns out to be of the order of ell-I 12 • As a consequence, the 
forbidden band width A is sufficiently small, and the dielectric state with Ell - 1/ A is unstable against 
transitions to the excitonic insulator phase. We also discuss the stability conditions for the dielectric state 
that results from the Peierls rearrangement of the metallic state of filaments, as well as those for the 
dielectric state of quasi-two-dimensional structures. 

The phYSical properties of systems which comprise 
weakly interacting (in a definite sense) filaments are 
being extensively studied at the present time (for a re
view of these properties see[ I]). In the numerous theo
retical works of this type the largest effort has been 
concentrated around the following questions: what is 
the structure of the metallic state of the filaments, and 
what causes the instability (the Peierls rearrangement, 
etc.). However, it is also of interest to further analyze 
the properties of the dielectric state. In this case, as 
is shown below, the interaction between electrons and 
holes located at different filaments gives rise to a 
spectrum of large-radius excitons which differs 
dramatically in structure from the corresponding spec
trum in ordinary semiconductors. A distinctive feature 
of this spectrum, which is of particular importance re
garding the stability conditions for the dielectric state 
of filaments with a narrow forbidden band, is that it 
depends on various components of the dielectric con
stant tensor of the medium. 

The peculiarity of the situation in hand is associated 
with the quasi-one-dimensionality of the collectivized 
electron motion as well as with the sharp anisotropy of 
the dielectric tensor in the low-frequency region ( Exx 
= Ell » El =0 Eyy = EZZ; the filaments are assumed 
oriented along the x axis). In a uniaxial crystal of the 
type under consideration the interaction between an 
electron and a hole is of the following form[7]; 

e' ( x'y'+z' ) -'I. 
V(x,y,z)=---= -+-- . 

8.L1'8u 811 E.!. 
(1 ) 

If both the electron and the hole are located on the 
same filament (Le., y = z = 0), then the electron-hole 
interaction does not continue Ell, in other words v(x) 
= _e2/ Elx. Inasmuch as El "" 3-5 for the media in
VOlved, we cannot use (1) to calculate the total spectrum 
of the excitons localized on the same filament, since 
this expression is not suitable for small-radius excitons. 

On the other hand, if the electron and the hole are 
localized on different filaments, then 

where d is the distance between filaments, x = xe - xh, 
and e is the electron charge. Consequently, the Hamil
tonian for the system electron + hole, describing a state 
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with a large (along the x axis) "radius," can be repre
sented in the form 

A 11' Ii' 11' d' 
H=----- ___ + V(x) 

2M dX' 2/L dx' , 

where X denotes the x-coordinate of the center of 
mass, M = me + mh is the translational mass of the 
electron, and iJ. is its reduced mass. For states with 
the "radius" 

x,<:d( 8,,/e.L) 'I. 

the function V( x) can be represented in the form of a 
power series 

JlClloZX2 eZ e28Jyi 
V(x)=-V.+-2-, V.=--- w,'---

d(e.!.",u) 'I, ' /Ld'EII" • 

so that the Schr'ooinger equation reduces to that for a 
harmonic oscillator with the frequency Woo In this ap
proximation the exciton energy En is given by 

(2) 

En =d-V,+liw,(n+1/2)+P'/2M, (3) 

where A is the dielectric gap, n is the oscillator quan
tum number (n = 0, 1, ..• ), and P is the momentum of 
the exciton. 

At n = 0, the wave function of the exciton relative 
motion along the x axis extends over the distance Xo 
"'i (fi/iJ.WO)I/2. Hence, the condition (2) is satisfied for 
these states if 

h'//Lde'<: (euie.!.') 'I,. 

For d = 10 A and for iJ. of the order of the electron mass 
in vacuum mo, the left-hand side of the inequality is 
"" 1/20. The right-hand Side for substances of the type 
under consideration is greater than or of the order of 
unity (see[l]; Ell ~ 102_10 8, El "'i 5). This means that 
the above expansion of V(x) can be used to find several 
states with n > 0 as well. Regardless of whether the 
expansion of V(x) in powers of x 2 is justified, the use 
of the initial phenomenological expression for V(x) re
quires that the inequality Xo» do (i.e., n2E~/2/iJ.e2fEl 
» do; see above) also be satisfied, where do is the 
distance between neighboring filaments. Clearly, at 
sufficiently large Ell and EII/ El, this inequality is satis
fied as well. 

Since Wo ~ Eit\ we have A » nwo for large Ell' 
Therefore, in the expression (1) for the interaction we 
must use for the dielectric constants static values, 
whic h are precisely those that have large anisotropy. 
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Due to its quasi-one-dimensionality, the system un
der consideration may also contain more complex col
lective excitated states (biexCitons, polyexcitons, elec
tron + exciton, etc.). Moreover, because of the large 
"radius" of the excitons, many other effects of the 
exciton-exciton interaction can, in principle, become 
Significant even at comparatively low exciton concentra
tions. Without discussing the very interesting questions 
that arise here, we consider the spectrum of a single 
exciton. ' 

In the case when V 0 < A even for the nearest fila
ments, the entire spectral picture can be regarded as a 
superposition of shifted oscillatory series due to elec
tron and hole formation on more and more distant fila
ments, The number of levels of a series that fall into 
the forbidden band equals Vo/nwo and is by no means 
small. For the nearest filaments with, say, do = 10-7 

cm, Ell = 100, and El = 4 this number is equal to five. 
It should be borne in mind, however, that the oscillatory 
series can only exist if the exciton line widths are 
small compared to the exciton vibrational quanta fiwo. 
For example, if the exciton is formed between filaments 
which are nearest neighbors with do = 10 A, Eli = 100 
and E1 = 5, then tiwo R> 30-50 cm-1. For d = 20 A (next 
series), tiwo"" 10-15 cm-1 and so forth. Since at low 
temperatures the exciton line widths can be as large as 
5-10 cm-\ these estimates suggest that only one or, at 
most, two exciton series remain stable against scatter
ing of electrons and holes by phonons and lattice defects. 
It is clear, however, that a spectroscopic observation of 
these series would furnish a new means for studying the 
properties of the systems involved. 

According to (3), the excitation energy of the lowest 
large-radius exciton state (exciton on neighboring fila
ments) is given by 

'I. 
_ hOlo _ e' + he8.L 

Eo(M-6-Vo+-2 -6.- d ( )'1. ;;--dL'I. 'I.· 
o £IiE.L .. oJl Ell 

(4) 

For sufficiently small A, the value of V 0 can exceed A, 
and the energy Eo may become negative. In this case, 
at low temperatures, the dielectric state becomes un
stable against the formation of bound electron-hole 
pairs. It is precisely this type of instability that has 
been discussed by Knox(8] (see also[9,10]). An investiga
tion of this instability may prove useful specifically in 
connection with a number of experimental data (see, 
e.g.,[ll]), which are usually interpreted on the basis of 
the assumption that the dielectric gap is small. 

The difference between the situation at hand and the 
case of an isotropic semiconductor lies in the peculiar 
dependence of the lowest exciton energy on the dielec
tric constant, which, at small A, favors the onset of 
instability. Indeed, for an isotropiC semiconductor the 
electron-hole binding energy in the lowest exciton en
ergy state is proportional to E-2 , where E is the die
lectric constant. Inasmuch as E ~ 1/ A for small A, the 
lowest exciton energy is equal to A - aA 2, where a> 0, 
and therefore, for sufficiently small A, it is always 
positive. In our situation, only Ell depends on the gap 
width A at small A, and one has to !mow this depend
ence in order to find the critical gap width Ao at which 
the dielectric state becomes unstable (Eo (A 0) = 0). 

If we assume that Ell = fiwp/A, where wp is some 
frequency of the order of the plasma frequency (see 
also[l]), then Vo ~ IA and the instability always arises 
if A < A 0, where A 0 "" 10-2 e V. If, however, the dielec-
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tric state itself results from the Peierls instability of 
quasi-one-dimensional metallic filaments, then, as was 
shown by Rice and strassler[ 6], the dependence of E II on 
A is essentially different in various temperature re
gions (Ell ~ 1/A for A < T, and Eli =fi2Wp/A2 for 
A » T)l). Therefore, as can be seen from (4), in the 
limit of low temperatures and small A, the instability 
can arise only if the condition e 2/ do -rEi. > tiwp is satis
fied. 

For ordinary three-dimensional superconductors, 
the instability of the dielectric state against formation 
of bound electron-hole pairs has been analyzed in[9,10]. 
It has been shown there that the proper allowance for the 
electron-hole interaction leads to a renormalization of 
the ground state, which leads in turn to formation of a 
dielectric state with a wider forbidden band. These re
sults are rather general and remain valid in our case of 
quasi-one-dimensional structures as well. For struc
tures of this type, the elementary excitation energies 
after rearrangement can be again assumed to depend 
only upon the longitudinal component of the wave vector 
Px , and, therefore, the equation derived in[9,10], which 
determines the new value of the gap width, becomes 
one-dimensional. On transforming to the coordinate 
representation, we can subject this equation to an analy
sis similar to that given by Kozlov and Maksimov[ 9] for 
ordinary semiconductors. From this analysis it is in
ferred that the electron-hole interaction changes (en
larges) the gap width at for parameters values for 
which the initial excitation energy of a lowest-energy 
exciton is nonpositive. 

In conclusion, we note that similar excitons and in
stabilities can occur in quasi-two-dimensional systems 
as welL In this case again a macroscopic description of 
the electron-hole interaction in the spirit of (1) proves 
possible only if the dielectric constant in the direction 
along the flat layers greatly exceeds the transverse 
dielectric constant. If the z axis is perpendicular to the 
layers and Exx = Eyy == Ell» E1 == EZZ, then, for an 
electron and a hole localized on the same layer[ 7] we 
have V(p) = _e21 E1E II p. 

Two-dimensional excitons with this type of interac
tion have often been considered in literature. It has 
been shown (cf., e.g.,l12]) that they correspond to a 
spectrum of the form 

Rfl ( 1 ) -, En=6.---- n+- , 
8118.LmO 2 

where R is the Rydberg constant for hydrogen, /J. is the 
effective mass, and n = 0, 1, .... It is essential that in 
the presence of a small (straight) gap, when Eli = tiwpl A 
» 1, the energy Eo can become negative only if 

y = 4R/J./moEltiwp > 1. This suggests that, in contrast to 
the case of ordinary semiconductors, for quasi-two
dimenSional structures with small values of the dielec
tric gap and y > 1, there must again exist a limiting 
value of the gap A 0 below which the dielectric state is 
impOSSible. 

The above considerations may prove useful in a dis
cussion of the ever increaSing number of works on the 
properties of quasi-one-dimensional and quasi-two
dimensional structures. 

The authors are grateful to V. L. Ginzburg and the 
members of his seminar for discussions. 
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I)The fact that the contribution of the above-considered excitons was 
ignored in [6] in the evaluation of ell, can hardly be significant, since 
these states correspond to relatively small oscillator strengths (because 
of the small overlap of the wave functions of electrons at different 
filaments ). 
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