
Generation of harmonics during scattering of a high­
power electromagnetic wave by fluctuations of surface 
oscillations 

Yu. M. Aliev, S. Vukovic,1) O. M. Gradov, and A. Yu. KiriT 

P. N. Lebedev Physics Institute, USSR Academy of Sciences, Moscow 
(Submitted June 4, 1974) 
Zh. Eksp. Teor. Fiz. 68, 85-94 (January 1975) 

The spectral correlation function is obtained for the electromagnetic field of surface oscillations of a stable 
plasma subjected to the field of a high-power electromagnetic wave. This is done without assuming that 
this field is weak. The presence of a strong field alters considerably the correlation spectrum and gives rise 
to harmonics of the external wave frequency, which are displaced by amounts equal to the natural 
frequencies of the surface oscillations. The fields of the low-order harmonics are localized near the plasma 
boundary. Spectral fluxes of the radiation emitted by the plasma are found for fields corresponding to the 
fairly high harmonics of the external wave frequency. 

1. A theory of the dispersion properties of an inhomo­
geneous plasma subjected to the field of a strong high­
frequency electromagnetic wave predicts changes in the 
surface oscillation spectra due to the oscillatory motion 
of electrons relative to ions under the action of this 
field. [1-3J Such changes in the surface oscillation spec­
tra should have a considerable influence on the correla­
tion function of the electromagnetic field fluctuations, 
which can be determined directly by experiment. A 
theory of quasistationary fluctuations of a stable plasma 
has been developed only for a homogeneous and unbounded 
plasma. [4,5J We shall obtain the correlation functions 
of the surface wave fluctuations in a plasma subjected to 
a strong electromagnetic wave of frequency wo, which is 
considerably higher than the plasma frequency. We shall 
show that the presence of this strong wave gives rise to 
an anisotropy in the correlation function of the fields of 
high-frequency surface waves so that, for example, the 
spectral correlation function may vanish for certain 
directions of propagation of surface oscillations. We 
shall obtain an expression for the correlation function of 
low-frequency surface waves whose spectrum is gov­
erned entirely by the field of the external wave. We shall 
find the spectral flux of the radiation emitted by the 
plasma as a result of noncoherent scattering of a strong 
electromagnetic wave by quasistatic surface oscillations 
whose wavelength l/kll is considerably shorter than the 
external wavelength wo/c. It is precisely in this case 
that the correlation functions and the spectral flux of the 
radiation emitted by a plasma are strongly nonlinear 
functions of the external wave amplitude. We shall show 
that the interaction between a linearly polarized high­
frequency electromagnetic wave end surface fluctuations 
gives rise to harmonics of the external field frequency 
WOo which appear in the scattered radiation spectrum and 
are shifted by the surface oscillation frequency nwo + w. 
In the case of relatively low-order harmonics, 
n < (wo/k"cf\ the scattered radiation is localized near 
the boundary of a plasma, whereas high-order harmonics 
n > (wo/k ll cf1 are emitted from the plasma. The spec­
tral flux of the scattered radiation is then governed by 
the values of the pair correlation function of the surface 
wave field at the boundary of the plasma. 

2. We shall consider a semi-infinite plasma with a 
transition layer 0 < z < a, where the density of charged 
particles nOa(z) of type ()' varies from zero at z = 0 to 
nOa(a), and is constant in the range z > a. We shall as­
sume that the field of an external electromagnetic wave 
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Eo(r, t)=Eosin (OOot-koz) (2,1) 

is oriented along the plasma boundary and that the fre­
quency of this field is considerably higher than the maxi­
mum Langmuir frequency of electrons wLe(a) 
= (41Te 2nQe(a)/me )1/2, so that ko "" wo/c. 

We shall be interested in fluctuations of plasma sur­
face waves in the field (2.1) and we shall calculate the 
correlation function of the electric field of these waves: 

G,;(r, r', t, t'j =(E,(r, t)Ej(r', t') >. (2,2) 

Here, the angular brackets represent averaging over an 
ensemble. We shall consider steady-state oscillations of 
a stable plasma at times t and t' shorter than the char­
acteristic time of the high-frequency heating of the 
plasma by the field (2.1) and we shall use the invariance 
of the function Gij(r, r', t, t') of Eq. (2.2) relative to a 
simultaneous shift of t and t' by any integral number of 
periods of the field (2.1), expressing the correlation 
function in the form 

G'J(r,r',t,t')= .E e-'n.,'+'m·"·G,~n.,", (r,r',t-t'). (2.3) 
n,m __ "" 

Equations (2.2) and (2.3) yield the following relationship 
between the functions G~~,m) and the amplitudes E1!n) of 

1J 
the expansion of the field E(r, t) in harmonics of the fre­
quency Wo of the wave (2.1): 

Gt·m, (r, r', t-t') =<E,(n, (r, t)E,""" (r', 1') >; 

E(r,t)= L e-'n·"E(n'(r,t). (2.4) 
71 __ <» 

We shall calculate the correlation functions G~~,m) 
1J 

for a nonequilibrium (but stable) plasma with inhomo­
geneous distributions of the particle temperatures and 
we shall do this using the method of phase microdistri­
butions, [6J in which the calculation of the correlation 
functions reduces to the finding of the solution of the 
initial problem for a microfield E(n)(r, t) with specified, 
at the moment t = 0, distributions of the fluctuations 
6Na (r, p, t) = Na(r, p, t) -fa(r, p, t) of the phase micro­
distributions Na(r, p, t) relative to the average value 
fa(r, p, t) == (N a ), which is a single-particle distribu­
tion function of particles of type a. The function (2.4) 
can then be expressed in terms of the Laplace transform 
of the solution of the initial problem 

E(n' (r, (0)= J dt e'·'E(n' (r, t), 1m 00>0 
o 
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in the following way: 

G,~n,m) (r, r', (0) = lim 211(E;n) (r, oo+il1)Et)· (r', oo+il1) >, 
.1.-++0 

(2.6) 

We shall be interested in the case when the thickness 
of the transition layer is considerably greater than the 
Debye electron radius rDe= (Te/41Te2nOe(a»112 and when 
the spatial dispersion and damping of surface waves are 
entirely due to the inhomogeneity of the plasma in the 
transition region and to the high-frequency field. [2,3J 
Surface waves can then be described by the hydrodynamic 
approximation for a cold plasma. Consequently, we shall 
replace the equations for the fluctuations of phase micro­
distributions oNQI(r, p, t) with the equations for the first 
moments of oNa' i.e., of the microdensity oNa(r, t) and 
microvelocity oV Q1(r, t): 

6N. (r, t) = I dp 6N. (r, p, t), 

no. (r, t)6V. (r, t) = I dp (V-VE,. (r, t) )6N. (r, p, t), 

no.(r, t)= Idpf.(r,p, t), 

I (2.7) n,.(r,t)v",.(r,t)= dpvf.(r,p,t), 

which -in the case of a plasma homogeneous along the 
x and y axes and for negligible thermal pressure and 
pair correlation effects-are of the form 

() {} at 6N.(r, t) + a;[n,. (r, t) 6V. (r, t) +v",.(r, t)6N. (r, t) ]=0, (2.8) 

1-; ~V.(r, t) + (vE,.(r, t) :r) 6V.(r, t)+ (6V.(r, t) :J vE,.(r, t) 

= -'::E(r, t) + ~[vE,.(r, t)B]+ ~[IlV.(r, t)B,], (2.9) 
ma. mac mQ,c 

We shall ignore small corrections to the distribution 
function fQl(r, p, t) and the terms in Eq. (2.8) proportional 
to powers of the small parameter vE, Q1/c, which is the 
ratio of the amplitude of oscillations of particles of type 
QI in the field of the external wave (2.1) 
(vE,Q1 = eQlEo/mQlwo) to the velocity of light. The distri­
butions functions can then be described by the expression 

f.(r, p, t) =F.[z, (p-m.vE, .(z, t) ),'], 

e.E, 
VE.(Z, t)= - --cos (oo,t-k,z) , 
'. ma,roo 

(2.10) 

corresponding to the adiabatic application of the external 
field at t = -00, when the particle distribution function is 
of the form 

f.(r, p, /= -oo)=F.[z, p,'], 

We shall solve the initial problem of the perturbations of 
the electric E and magnetic B fields using the Maxwell 
equations together with Eqs. (2.8) and (2.9). Since the 
fields E(r, t) and B(r, t) are governed by the initial 
values of 6NQI and oV Q1' the correlation .functions can be 
expressed in terms of the microvelocity and micro­
density correlators, which-to within unimportant terms 
associated with the pair correlation between the parti­
cles-have the following form obtained using Eq. (2.10) 
(compare with [9J ): 

(bN.(r, t) 6N~(I", t»=6.,11 (r-r') no.(r), 
(bN. (r, t) oV,(r', t»=O, 

, , T ~') (r) 
(oV."(r,t)oV,,,(r ,t»=0.~6'jll(r-r) --(-) , 

ma.noa r (2.11) 

Here, the temperature Tg)(r) is given by the formula 
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no. (r) T ~') (r) =m. I dp(V-VE,. (z, t) ).'!. (r, p, t). 

The homogeneity of the plasma in planes parallel to 
the boundary allows us to use the Fourier transform of 
the correlation function G~~,m) with variables x and y: 

1J 

G ,.,m) ( , ) S dkll 'k "-")G n,m) ( , k ) (2.12) 
ij r,t ,ro = (2n)2 e II ij Z,Z ,~,' 11 t 

and then Eq. (2.6) becomes 

(2n)'6 (kll-kll ') Gif,m) (z, z', 00, k ll ) (2.13) 

= lim 211(E;n) (z, oo+il1, kll)Et)· (z', oo+i~, k ll ') >; 

I dkll ' 
E'n) (r (0) = --e"II'E,n) (z 00 k ) , (2n)' ' , II . (2.14) 

3. In this section, we shall find the solution of the 
system (2.8)-(2.9) together with the Maxwell equations. 
Since the frequency Wo of the external wave (2.1) is as­
sumed to be considerably higher than the Langmuir fre­
quency wLe, we shall consider fluctuations of frequencies 
W «wo. Substituting into the Maxwell equations the ex­
pression for the current, obtained by solving the system 
(208)-(2.9), 

] j(r, t) = ~e.[no. (r) IlV. (r, t) +bN. (r, t)VE,. (z, t) ] 

and neglecting small corrections of the order of w/Wo, 
we find that the electric field amplitudes E(n)(z, w, k ll ) 
are described by the following system of equations: 

c' 
-[ V, (V ,E,n) (z, 00, k ll » -11,E,n) (z, 00, kll) ]_E,n) (z, 00, kll) 
oon' 

-bno [6e$,n) (z, 00, kll) +lleJ08 (z, 00, kll) ] 

rE nroo ... . 
+ie"""-k -I-n 'II,lle/S(z, Ul,kll)=e'"""Q,n); 

utE Wn 

{} 
Uln=nUlo+Ul, V ,=e, ~ + ikll, 11,= V,', (3.1) 

Here, rE = vE e /wo is the amplitude of electron oscilla­
tions in the external field (2.1), the Bessel function I n 
depends on k II r E, and OEa = -wLa(z)/w 2 is the partial 
permittivityo The vector function tS'(z, w, k ll ) is governed 
by a linear combination of the harmonics of the fluctuat­
ing field: 

~ 

8 (z, Ul, kll) = ~ I_.E") (z, Ul, kll)e-'n"'" (3.2) 

and the inhomogeneity of (301) leads to the following ex­
pression for Q(n) to within terms that do not contribute 
to the correlation functions (2.6) of the surface waves: 

4nei nO/(z) 4ne { V ( Ok) Q,n)=_/).o IlV,(t=O,z,k ll)-I_n - n,,(z)6 • t= ,z, n 
0)2 wOO n 

lE nIDo } -i----'II,no.(z)IlV.(t=O,z,kn) • 
klirE Ul 

(3.3) 

It should be noted that terms of the order of vE/c, 
related to the Lorentz force in Eq. (2.9), may give rise 
to a parametric buildup of nonpotential oscillations. [7, 8J 
However, we shall assume that such instabilities do not 
develop because of the finite thickness L of the plasma 
layer, which is assumed to be small compared with the 
characteristic growth distance of waves in such instabili­
ties but much greater than the thickness a of the tran­
sition layer in the plasma. The last condition allows us 
to use the approximation of a semi -infinite plasma in an 
analysis of weakly damped surface oscillations which 
satisfy the condition k II L » 1. 

We shall be interested in the range of relatively short 
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wavelengths of surface oscillations (kllc »wo), whose 
interaction with the strong high-frequency field results 
in very considerable changes in the frequency spec­
trum [3-5] and in the correlation function. The field 
harmonics E(n) of relatively low orders n « kllc/wo are 
then quasistatic. Since the main contribution to the vec-
tor ~(z, w, k ll ) of Eq. (3.2) is made by these harmonics 
[allowance for harmonics of higher orders n > (ckl/wo) 
lead to small corrections of the order of (wo/kllc)], the 
functions E(O) and -; can be expressed in the form 

E(·)--V.«>(·>' ~=-V.«>. 

and the potentials (>(0) and (> are described by the fol­
lowing system of equations obtained from Eq. (3.1): 

8 [ 8 III 81ll(')] 
kn'[<1>(Hlle.)+J.lle,<1>(')l-Tz (Hlle')a;-+Jolle,~ =Q" 

8 [ 8<1>(0) 8<1> ] 
kll '[<1>(O'(Hlle,)+loIle.<1>l-Tz (H/)s,)~+Jo/)e.Tz =Q,. (3.4) 

Here, within terms which do not contribute to the corre­
lation functions G~?'O), the functions nQl are 

1J 
4ne~ 8 

g~ = ---;;-az- n.~ (z)/)v~.,(t=O, z, kll) 

4ne~ 8 (3 5) 
+J'-;ZTzn,,(z)/)V~.,(t=O, z, kll)' ~*a. . 

We shall be interested only in the values of Em) 
related to fluctuations of the surface wave field and we 
shall ignore volume fluctuations of the field assuming 
that Qm) = 0 when n f. O. Bearing in mind that the fre­
quency Wo of the external wave exceeds considerably the 
electron Langmuir frequency wLe, we obtain from Eq. 
(3.1) the following system of equations for Em) when 
n f. 0: 

8'E(ft) 
__ II_+k 'E(ft)=_k 'A(ft) 

8zZ 11 U n U , (3.6) 

Here, the components are E~n> = ei\ • Em), where 
ell = kll /k ll , and e 1 = [e llez l. In solving the system (3.6), 
we shall use the boundary conditions corresponding to 
the investigated case of the scattering of an external 
wave by fluctuations of surface waves and we shall as­
sume that the amplitudes of the waves traveling from 
z = ± GO to the plasma boundary for k~ > 0 and the ampli­
tudes of the waves growing exponentially in the limit 
z - ± 00 for k~ < 0 all vanish. The solutions of the sys­
tem (3.6) then become . . 

E.(ft)=e"" f dz' e--;"" ",.(ft) (t') +e-"" f dz' e"·'· ",~ft' (z'), (3.7) 

"'1I(ft) (z) = (k./2k ll ) e'n"'l- ft V ,/)ei:, k.'>O, 

(n, ()_ roft ' ell[e,rEl J n. ;. 1P.L Z - ----- -n' ,Us"". 
2c' kllk. elllE (3.8) 

If k~ < 0, the expressions (3.7) and (3.8) should be modi­
fied by replacing kn with iKn, where Kn = (_k~)1/2. Thus, 
it is sufficient to find expressions for (> and (>m) in order 
to calculate all the amplitudes Em) • 

As is known, [1-3J there are two branches of quasi­
static surface waves in an inhomogeneous plasma sub­
jected to a strong high-frequency electric field. One of 
these branches is associated with electrons and corre­
sponds to frequencies W close to wLe(a)/~ whereas the 
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low-frequency branch is described by W R: wLi(a) 
x (1 - J~)l/2/~ In accordance with this situation, we 
shall solve first the system (3.4) on the assumption that 
W »wLi (a), ignoring terms of the order of me /mi and 
allowing for the thinness of the transition layer a com­
pared with the wavelengths of the high-frequency surface 
waves l/k II' Applying the solution method used in [9] , 

we obtain from Eq. (3.4) the following expressions for 
(>(0) and (> to within small terms of the order of (k ll a)2: 

J: d's' 
\Il(z)=«>(O)h(z)- S-(: ) S dz"Q.(z"), O<z<a. 

8 Z , ro . . 
(3.9) 

(3.10) 

Here, the value of (>(0) and the function h(z) are of the 
form 

<1> (z=O, ro,k ll )= D(l k) j_(dZ) jdz'Q.(Z'), 
00, II II B Z co 0 

(3.11) 

• dz' 'dz' S' '" " 
h(z)=HkIlS-(-,-) + S-(-,-) dz kll e(Z ,oo), 

o BZ,(Jl ofZ,ffi o 

and the condition that the dispersion function 

1 S· dz k" S· DhC(ro,kll)=l+-(--)+kll -(-)+-(--) dze(z,ro) (3.12) 
8 a, W 1/ e z, ro e a, W 0 

should vanish, to within nonpotential corrections of the 
order of w2/k~C2 and terms proportional to me/mi' de­
termines the spectrum of high-frequency quasistatic 
surface waves in a plasma subjected to a high-frequency 
electric field. [2,3] In this case, the quantity 'V'z I) f:e 1', 
which determines-in accordance with Eqs. (3.7) and 
(3.8)-the amplitudes of the electric field harmonics, is 
given by the following expression obtained from the sys­
tem (3.4): 

(3.13) 

Consequently, in the low-frequency limit when 
W « wLe(a), the functions -; and (>(0) are related by the 
follOwing expression obtained from Eq. (3.4) 

- 1 V ,/)s,(!= - ~I,[I.Ll,<1>(o'+Q.+loQ.], 
1- 0 

(3.14) 

and the expression for (>( 0) and DLf can be obtained from 
Eqs. (3.10) and (3.12) by the followmg substitutions: 

<1>-+<1>(0), 

s(z, ro)-+e,(z, ro) ",d+ (1-10')/)ei(z, ro), 

(3.15) 

The expressions obtained for the amplitudes Em) allow 
us to calculate the correlation functions 
Gw,m)(z, z', w, k rr ) and the energy fluxes of the radia-

tion of frequencies nwo + W emerging from the plasma. 

4. We shall first calculate the correlation functions 
Gij,m) for harmonics n, m « ck rr /wo when the oscilla-

tions of frequencies nwo + W are quasistatic. The tensor 
correlation functions can then be expressed in terms of 
the derivaties of the scalar functions 

G(~, m) (r r' 0.,) - ~ \' ~ eik II (r-r')G(n, m) (z z' ro k ) 
., ., W - BriBr; J (2n)' ' , • II 

and-as can be shown using Eqs. (3.7) and (3.10)-the 
functions Gm,m)(z, z') are expressed in terms of the 
values of these quantities corresponding to z = z' = 0, in 
the same way as in the absence of an external field. [9J 
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For example, outside the plasma (z, Z' < 0), we find 
from Eq. (3.7) that 

The correlation functions at the plasma boundary 
G!ll,m)(w, kll) == Gm,m)(z = Z' = 0, w, kll)' obtained from 
Eqs. (3.6), (2.9), and (3.10), are of the form 

(4.1) 

where the high- and low-frequency values of the quan­
tities 11 m,m) are given by 

In,"') I-n/-", In,"') [I>n,-I.'-n][6""-I.I-,,,) (4.2) 
tlhf =----y;::-' tllf (i-I,')' 

The correlation functions G(O,O) of the surface wave 
potential are obtained, to within corrections of the order 
of me;lni, from Eqs. (2.11) and (3.9)-(3.15): 

GC"Oj () 4JC/,' S" ,C'I 
hf w,kll =iwllDhf(W+ii~,kll)l' 0 dz6(e(z,w»1, (z); 

(4.3) 

(4.4) 

The expression (4.3), describing fluctuations of the elec­
tron surface oscillations, reduces to that obtained in [9J 

for Eo = O. It is clear from Eq. (4.3) that the application 
of a high-power external field to a plasma gives rise to 
an anisotropy of the correlation function of the high­
frequency surface waves, in spite of the fact that the 
frequency of these waves changes by a value of the order 
of me Imi' The relationship (4.4) describes the correla­
tion of the potential of the low-frequency surface waves, 
whose frequencies are close to wLi(a)(1 - J~)1/2/v'2. Such 
oscillations exist only in a sufficiently strong external 
field when its pressure exceeds the thermal pressure, 
Le., when rE »rDe' It should be noted that, in the 
short-wavelength limit IkllrEI - 00 the low-frequency 
fluctuation correlation (3.10) is identical, to within the 
mass ratio mc Imi' with the high-frequency surface os­
cillation correlator (4.3) in the absence of the high­
frequency field if the electron parameters are replaced 
with the ion parameters. The spectrum of the high­
frequency surface fluctuations is then characterized by 
the frequency wLi(a)/v'2, which corresponds to independ­
ent oscillations of ions against a homogeneous back­
ground of rapidly oscillating electrons. In the absence 
of the high-frequency field, a similar situation occurs in 
the case of volume short-wavelength oscillations in a 
plasma when there is no screening of the ion density 
perturbations by electrons. 

When the harmonic number n is comparable with 
ckillwo, the quasistatic approximation (kn ~ ik ll ) becomes 

invalid. In this case, the correlators G~J?,m) are ex-
1J 

pressed in accordance with Eqs. (3.6), (3.7), (3.12), and 
(3.13) in terms of integrals of the function 
G(O,O)(z, Z/, w, k ll ), whose coordinates are z and Z/. We 
shall not calculate the value of D(n,m) for arbitrary 
numbers nand m but simply give an expression for the 
spectral density of the radiation energy S(ll)(w, k ll ) 
emitted from a plasma at frequencies nwo + w by 
harmonics whose numbers are n > ckll Iwo: 

C 
SCn) (w, kll) = Tn eCn) (w, kll) gcn) (w, k ll ). (4.5) 

Here, the unit vector 

eCn) (w, kll) = ~[kll-e.kn) 
(Un 
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is related to the direction of propagation of radiation and 
the function 

gcn) (w, kll) = .E G,;n,n) (z=O, z· =0, w, kll)' 
, 

governing the average value of the square of the electric 
field of the emitted n-th harmonic follows from Eqs. 
(3.7), (3.8), (3.13), and (3.14) 

e ' , --
g,n)(w k )=1 '~[1 +~tg'<jl] Sdz Sdz' ei('-'·)('.+n")~ ~ 

t II ft 4c2kllz c2k.2 ' s 

• • (4.6) 
xG(',O) (z, z', w, k ll )_ 

Here, <p is the angle between the vectors kll and Eo, and 
the high- and low-frequency values of the quantity e are 

I.' a =---
ef (i-I,')" 

(4.7) 

where the function G(O, 0) is given by Eqs. (4.3) and (4.4). 
The first term in the brackets of Eq. (4.6) represents 
the contribution of the emitted linearly polarized H 
waves, whereas the second term describes the contribu­
tion of the emitted E waves. 

We shall integrate Eq. (4.6) using the expressions 
(3.9) which govern the dependence of the function G(O,O) 
on the coordinates z and z', and we shall also employ 
the smallness of the parameter klla. The function G(ll) 
then becomes 

a '6 
g'n) (w k ) = I ,~ IMI'G"") (w k ) 

,II n 4c2 ' II t 

M 
e (a, w+i~) -1 

e(a, w+i~) 

• 1 1 
+ i(k +nk ) Sdz e"(··+n,,) [ ---..,..,...] 

• '. e (z, w+i~) e (a, w+i~) . 

(4.8) 

The expressions (4.6) and (4.8), obtained with the aid 
of Eq. (3,6) are only valid for relatively large values of 
the quantity kn' when clknl »wLe(a). We can show that 
allowance for corrections of the order wl.e(z)/c 2 to the 
quantity k~ results in the replacement, in Eqs. (4.6) and 
(4.8), of the factor ~ with the quantity 

411 H.(O) /k. (a) I-'l;, 

kn'(z) = w:' e(z,w.)-klc'. (4.9) 
C 

If k~(a) < 0, the quantity kn(a) in Eq. (4.9) should be re­
placed with i[-k~(a)]l/2. We can then ignore the second 
term in the expression for the function M in Eq. (4.8). 

It should be noted that, in addition to the scattering of 
a strong electromagnetic wave by fluctuations of surface 
oscillations considered in the present paper, a plasma 
may also emit radiation due to scattering by fluctuations 
of volume waves. It is known [10J that frequencies of 
volume oscillations in a plasma subjected to a strong 
high-frequency field are 

6lhf'=cui. (a) +I,'w«' (a), 

Ulif =w«'(a) (1-1.'). 

Using these expressions and Eq. (3.6) for kn' we can 
show that, along a given direction of propagation of the 
emitted harmonics of the external field frequency, the 
scattering by volume and surface oscillations produces 
harmonics whose frequencies nwo + w differ by the values 
of w. 

The spectral energy denSity S<ll)(w, kll) of Eqs. (4.5) 
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and (4.8) governs the energy flux dIm) resulting from the 
scattering of a strong electromagnetic wave by surface 
oscillations in a frequency interval dw and a wave vector 
interval cUt II : 

dj<n) (01 ex m) =s(n) (01 k ) dOl dkll 
, 'T , II (2n)'" 

where a is the angle between the normal to the surface 
of the plasma and the wave vector. Allowing for the re­
lationship between the unit vector of the direction of the 
scattered radiation flux e<n)(w, k ll ) of Eq. (4.5) and the 
quantities wand kll' we obtain the following expression 
for the energy emitted into a solid angle do in a fre­
quency interval dw: 

dj<') (01, ex, IP) _ 1 Oln' sen) ( k ) 
do dOl - 12n)3 -;;;-cosex 01, IhlP • 

(4.10) 

Here, stn)(w, kiP cp) == Sm)(w, k ll ), and the wave number 
is governed by the values of the frequency and angle 
kll =wn sin a/c. Thus, using the relationship (4.10), we 
find that Eqs. (4.5) and (4.8) give the energy flux per 
unit solid angle and frequency interval, which can be 
measured directly by experiment. 

l)Visitor from Physics Institute, Belgrade, Yugoslavia. 
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