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A theory of broadening is developed which is nonlinear in the light intensity ~. It is based on the 
following assumptions: a) The absorption of the light is due not to transitions in the atom, but to inelastic 
transitions in the compound "atom+field" system caused by collisions with the broadening particles, i.e., 
by optical collisions (OC). b) The OC-induced light absorption is determined by the OC cross sections, 
which depend on the collision parameters, as well as on the frequency detuning /l(}) and the external-field 
strength Eo. c) The total absorbable light power Q is determined by the balance equations-with allowance 
for OC and inelastic (e.g., radiative) relaxation-for the level populations of the "compound system." The 
solution to the problem splits up into two types, a static solution and an impact solution, whose regions of 
applicability depend on /l(}) and Eo. The nature of the dependence of the impact and static solutions on the 
field strength Eo is considered. The kinetics of light absorption in a medium is considered on the basis of 
the solution to the dynamical problem determining the OC cross sections. A general formula for the 
absorbable power Q is derived and has the structure of the well-known Karplus-Schwinger formula, but 
contains an elastic-relaxation parameter T2 that depends nonlinearly on /l(}) and Eo. It yields the relations of 
the standard broadening theory for small Eo and the Karplus-Schwinger result in the impact region. The 
dependence of T2 on Eo and /l(}) leads to the appearance of new nonlinear effects in the absorption of light 
by a medium. 

1. INTRODUCTION 

The theory of spectral-line broadening [1-4J was de
veloped primarily for the problems of radiation transfer 
and diagnostics. Usually the light field Eo in these prob
lems can be considered weak. More preCisely, it can be 
assumed that: a) an atom "does not have time" in between 
collisions to undergo a field-induced transition; b) the 
field has no effect on a broadening-collision event. 
Therefore, in the theory of broadening the effect of the 
field Eo on the shape (contour) of the spectral line is 
neglected, and light absorption is treated as a set of 
events of photon absorption by atoms broadened "before
hand" by collisions. 

The problems connected with the interaction of power
ful resonance radiation with matter became preSSing 
with the appearance of lasers. For laser fields the con
dition (a) is usually not fulfilled. A theory free from this 
limitation was constructed by Karplus and Schwinger [5J 

(see also [6J, Sec. 17). The result obtained by Karplus 
and Schwinger has, in our opinion, two main limitations. 
First, it does not yield in the weak-field limit all the re
sults of the theory of broadening: It yields an expression 
for the line contour that is valid only in the region close 
to the center, i.e., in the impact region. Consequently, in 
the case of arbitrary fields Eo this result also does not 
generalize the theory of broadening with sufficient com
pleteness. Second, in the indicated theory is used the 
above-stated assumption (b), according to which the 
characteristics of the broadening collisions enter into 
the kinetic equations in the form of terms that do not de
pend on the field parameters (see, for example, [6J , 
p. 126). The possibility of the violation of this approxi.
mation is examined in Pestov and Rautian's recent 
paper [7J. A similar problem concerning the scattering 
of an electron by an atom in a resonance field has been 
considered by Hahn and Hertel [8J (for a discussion of 
this work, see [9J ). These investigations pertain, how
ever, to only the impact region, and thereby do not des
cribe the entire line contour. 
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In the present paper we attempt to construct a non
linear broadening theory free from the limitations a) and 
b), i.e., a theory that generalizes the results of the stan
dard broadening theory to the case of arbitrary fields 
and frequency shifts ~w. The analysiS is based on a con
sistent use of the idea that the atom and the field con
stitute a compound system such that the transitions 
occurring in it are responsible for the absorption of 
light by the medium. We are able to derive for the total 
dissipatable light power an expression that coincides in 
form with the Karplus-Schwinger result (see Sec. 7); 
However, the fundamental parameters figuring in it are, 
in the general case, not relaxation constants, but com
plicated functions of the frequency and the field strength. 
In the weak-field limit the obtained expression yields the 
results of the standard (linear) theory of broadening; for 
the frequency region near the line center (i.e., in the 
impact region), the Karplus-Schwinger result; in the 
general case it describes complex nonlinear effects. 

The analysis is carried out in the framework of the 
scheme usually adopted in broadening theory [1-4J: the 
motion of the broadening particles is assumed to be 
classical and rectilinear; the condition for the collisions 
to be binary encounters, i.e., the condition NPeff « 1, 
where N is the density of the broadening particles and 
Peff is the effective impact parameter, which determines 
the contribution to the corresponding collision cross 
section, is assumed to be satisfied. 

2. OPTICAL COLLISIONS. THE BASIC SYSTEM 
OF EQUATIONS 

Let us consider the absorption of light energy by 
atomic particles X and Y colliding in the external elec
tromagnetic field 

E(t) =Eocos wt. (2.1) 

The frequency w is close to the natural frequency Wo of 
the transition between the states 1 and 2 of the X atom 
(Fig. 1)1). We shall henceforth call such collisions opti-
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FIG. I. Term diagram of: 
a) the atom X and b) the "X 
+ E" compound system. 

cal collisions (OC). This term is borrowed from the 
standard broadening theory, where it was introduced by 
Weisskopf for collisions that destroy the phase of the 
oscillations of the atom. 

In the present paper we regard optical collisions as 
isolated events, in the course of which the atoms interact 
only with each other and with the electromagnetic field. 
The other interactions that occur in the course of an OC 
are assumed to be unimportant. This means, in particu
lar, that we neglect the extraneous relaxation of the 
states X(l) and X(2) during an OC, i.e., we assume that 
in the absence of interactions with the atom Y and the 
field (2.1) these states are strictly discrete states. 

In the framework of the assumed approximations we 
can speak of discrete states of some compound system 
composed of the atom X and the field E. The states of 
the "atom X + field E" compound system are more con
venient for the description, since it is precisely the 
transitions induced between these states by the collisions 
with the Y atoms that are responsible for light absorp
tion in the course of an OC. 

Let the total Hamiltonian describing the states of the 
colliding atoms and the field have the form 

(2.2) 

Here fix and HE are the Ham~ltonians of the free X atom 
and the field E respectively, VE is their interaction 
operator; VXY is the X-Y interaction operator, the mo
tion of the X and Y nuclei being, as has already been 
indicated, assumed to be classical and rectilinear: 
R2 = p2 + V\2 (where p is the impact parameter and v is 
the relative velocity of the atoms). For convenience, we 
shall henceforth treat the' electromagnetic field (2.1) as 
an ensemble ofAnw quanta of frequency w; its Hamiltonian 
is included in H. When, however, we go over in the 
specific expressions for the matrix elements to the 
classical limit nw - 00, we shall use the quantity Eo. 

1. Let us first consider the standard treatment of 
photon absorption in the course of an OC. Since in such 
a transition the number of photons before and after the 
collision is assumed to be fixed, it is natural to use the 
system of eigenfunctions 'P1 = IX(l), Pw> !i-nd C{J~ 
= IX(2), nw - 1) of the Hamiltonian Ho = HX + HE' For 
the amplitudes a1 and a2 of these states we have the equa
tions 

where Uk(t) = ('PkIVxy(t)IC{Jk)' V = 1('P1IVXEIC{J2) I and 
dW = W - Wo; in a diapole transition V = DEo, where 
D = E~11 (d· Eoh21. 

The system (2.3) is the basic system of equations for 
the standard broadening theory, which is valid for suffi
ciently small field strengths Eo (i.e., for sufficiently 
small V). Indeed, for arbitrary V it is difficult to even 
establish the initial conditions for (2.3), since V does 
not go to zero as t - 00 (V = const). Therefore, V is as
sumed to be small, so as to make the probability of a 
transition occurring in the absence of the broadening 
interaction (when U1(-00) = U2(-00) = 0) negligibly small 

234 Sov. Phys.·JETP, Vol. 41, No.2 

in comparison with the transition probability in the 
course of an OC. Then setting one of the amplitudes 
equal to unity as t - -00 and the other equal to zero 
(to be specifiC, a1(-00) = 1 and a2(-00) = 0), and solving 
(2.3) with the aid of perturbation theory, we find 

la, (00) 1'= V' I L dt cxp{ i[ dwt-,-f x(T)dT]} I' ' (2.4) 

where K = U2 - U1 is the term shift due to the interaction. 

The expression (2.4) determines the probability of 
emission (absorption) in one OC of a photon with a fre
quency shift dW. The resulting contour arising from 
many OC is, generally speaking, not equal to the sum of 
the independent terms. This is due to the finiteness of 
the mean free time of the atom, which leads to the 
correlation of the individual events in which photons of 
frequency close to the line center (i.e., for which dw 
= 0) are emitted. But this fact is important only in the 
narrow frequency region dW ~ Yim' where Yim is the 
impact width of the line (see, for example, [2J). In the 
region dw » Yim (which may be called the "single
particle" region2»), however, the line contour I(dW) is 
completely determined by the probability of a transition 
occurring in an OC with one Y particle and is propor
tional to the number of such OC that occur in unit time. 
Notice that the region of values dw ::::; Yim is, in the case 
of binary collisions, fairly narrow. It is located deep 
inside the impact region of the spectrum, so that prac
tically all the characteristics of the line contour-in 
particular, the transition between the impact and static 
broadening mechanisms [2 ,3J -are describable by the 
Single-particle approximation. 

For the Single-particle region it is convenient to 
transform (2.4) with the aid of integration by parts3 ), 

which corresponds to the exclusion of the nonbinary 
region dW s;: Yim' The first term is proportional to the 
delta function 6(dW), and vanishes at dw F 0, while the 
second yields 

la,(oo) 1'= IX dt :w x(t)exp{ i [ dwt- i x(T)dT ]} I' . (2.5) 

It can be seen from a comparison of (2.5) and (2.4) that 
there has occurred in the single-particle region an ef
effective replacement of the "transition potential" V by 
VK/dW. This seemingly formal circumstance has a pro
found physical meaning in connection with the investiga
tion of the transitions in the compound system (see 
below). Notice that the expression (2.5) is not quite cor
rect. It diverges upon passage to the limit, i.e., 
lim(V/dw) = 00 for dW - 0 and dW » Yim' which is a 
direct indication of the limited applicability of the con
ventional conception of strong fields. 

2. Let us proceed to the case of arbitrary V. In this 
case we cannot speak of the absorption of an individual 
photon: to describe the dissipation of the light energy in 
the course of an OC, we must consider the transitions 
between the states of the Hamiltonian HXE == HX + HE 
+ VXE of the compound system, states which are char
acterized by the eigenfunctions (see [12J, p. 168; Eng. 
Transl., p. 135): 

(2.6) 

where b1,2 = 2-1/2(1 ± dW/no)1/2 with no = .Jdw2 + 4V2. 
Everywhere below we shall use the capital letters (K, K') 
and the Roman numerals (I, IT) to denote quantities per
taining to the compound system; the small letters (k, k') 
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and the Arabic numerals (1, 2) will be used to denote 
quantities characterizing the states qh and C{J2. 

For the amplitudes of the states I and II of the com
pound system we obtain from (2.3) with allowance for 
(2.6) the expressions 

where 

After the substitution 

bK=aK exp ( i j UK dr:) 

we have 

i6!=bIIX-~ exp {i [Qot -~ j x (r:)dr: ]}, 

i61l=b[X~exp{-i [Qot- liw j x(r:)d't]}. (2.7) 
Qo Q o 

The system (2.7) is the basic system of equations 
describing the transitions connected with the dissipation 
of the energy of the field in course of an OC. 

The role of the potential inducing the transition in the 
compound system is, as can be seen from (2.7), played 
by the quantity KV/no, which, for Aw »2V, goes over 
into the effective potential KV/Aw of the formula (2.5). 
It is clear from this that the Spitzer transformation, 
which separates out the term responsible for light ab
sorption in the course of an OC, corresponds to a tran
sition to the states of the compound system in the weak
field case when V «Aw. The above-noted incorrectness 
of the formula (2.5) is connected with its inapplicability 
when V ;:: Aw. 

If we are interested in the single-particle region 
no » Yim' then the initial conditions for the basic sys
tem (2.7) can be formulated for t - - 000 Choosing them 
in the form bl(-oo) = 1 and bn(- 00) = 0 for the I - II 
transition probability w, we have: w = Ibn(oo)l20 

It is clear from (2.7) that, in contrast to the results 
(204) and (2.5) of the standard broadening theory, the 
probability w of a transition occurring in an OC is, gen
erally speaking, not proportional to the light intensity 
E~ 11 V20 This is a direct indication of the inseparability 
in the general case of the two elementary events: the 
broadening-collision and the light-absorption events. It 
is clear from the foregOing that nonlinear effects should 
appear when V :;G Awo As will be shown below, however, 
they can appear in fairly weak fields V :;G Awo 

Let us derive an expression for the energy dissipated 
in one OC event. The computation of the energy dissi
pated in any transition (including ~C) amounts to finding 
the mean energy of the field in the states of the compound 
system before and after the transition. If some state of 
the compound system is characterized by the wave func
tion ljI(t) = bl(t)ljIl + bn(t)ljIII' then the mean (the quantum
mechanical average taken over arbitrary initial phases 
of the statistical ensemble) value (HE) of the field en
ergy is given by the relation 

<HE)= I brl'<HE ),+ I blIl'<HE)lI, <HE) [,~<KIHEIK), (2.8) 

In the optical collision the compound system was 
initially in the state bl(-oo) = 1, bIl(-oo) = O. After the 
collision the system turned out to be in the state bl(oo), 
bIl(oo). For the change in the mean energy of the field 
occurring in one OC we have 
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(2.9) 

Thus, the energy diSSipated in one OC event is propor
tional to the probability w of the I - II transition in the 
compound system. Therefore, to compute the energy 
absorbed by the medium as a result of OC, we need 
simply find the number of OC occurring per unit time. 
For this purpose it is convenient to introduce the con
cept of an "optical-collision cross section:" 

~ 

a(lI, Eo, liw) =2n S dp pw (p. v, Eo, li"l). (2.10) . 
These cross sections are generalizations of the OC cross 
sections introduced by Weisskopf in the conventional 
theory of broadening (see[lJ, as well as [3], p. 465). 

In the Single-particle region no » 'Yim we can speak 
of populations NI and NIl of the states I and II of the 
fiX + Efl compound system. Then, introducing with the 
aid of (2010) the optical-collision rate rOC defined by 

roc=N,,<vcr(Ll.(O, v. E,», (2.11) 

where Ny is the density of the broadening atoms Yand 
(00.) denotes averaging over the velocity, we can easily 
find the light power Qoc absorbed as a result of OC by 
a unit volume of the medium: 

(2.12) 

In computing the total light energy absorbed by the 
medium, it is necessary to bear in mind, besides the 
OC, another dissipation channel connected with the mix
ing of the states of the atom and the field. Let us illus
trate the role of this channel with the aid of a simple 
example 0 

Let the interaction with the field be momentarily 
switched on at the moment of time t = 0, and let all the 
atoms be in the lower state X(l) at t < 00 The energy of 
the field before the interaction is switched on is equal 
to nwtlw = (HE(t < 0). At t > 0 the wave function of the 
compo~nd hstem has the form: ljI(t) = bleinot/2lj11 
+ b2e -1 not 2lj1I1' The mean energy of the field in this 
state is, according to (208), equal to (HE (t > 0) 
= tlw(nw - 2v2/n~). Hence the change in the mean energy 
of the field due to the mixing is equal to 

(2.13) 

Notice that the mixing of the states of the atom X and 
the field occurs in a time ~n~\ and, if no »rOC' then 
the optical collisions can be neglected during this time 
(i.e., it can be assumed that the field instantaneously 
mixes the states). Then in solving the kinetic equations 
in which the OC are allowed for, it can be assumed that 
at the initial moment of time NI(O) = b~ and NII(O) 
= b~, where N is the total X-atom concentration. In this 
case we have for NI(t) and NII(t) the balance equations 

(2.14) 

Their solution under the indicated initial conditions with 
allowance for (2.12) yields 

(2.15) 

The total energy WOC absorbed by the medium as a re
sult of OC is equal to 

S~ N liw' 
Woe = Qoc(t}dt=1iw--, . 

o 2 Q o 
(2.16) 
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Thus, in the considered simple example the dissipa
tion of the field energy occurs in two stages: first, dur
ing a time t ~ 1/00 an amount of energy equal to 
(4V2/0~)Nl'iw/2 is dissipated as a result of the mixing 
(2.13), and then during a time t ~ rOC the energy WOC 

= IiwN~w2/20~ is dissipated owing to the OC. The total 
dissipated light energy is equal simply to Nliw/2, a re
sult which corresponds to the total equalization of the 
populations of the atomic states. 

3. THE NATURE OF THE FREQUENCY AND 
FIELD·STRENGTH DEPENDENCES OF THE 
OC CROSS SECTIONS 

The nature of the solution to the basic system (2.7) is 
determined by the relationship between the three quanti
ties: 00, the level spaCing in the compound system; 
K~W/Oo, the diagonal interaction matrix element; KV/Oo, 
the off-diagonal matrix element. The fundamental role 
in this case is played by the Weisskopf frequency Ow 
= v/PW and the Weisskopf radius PW' The quantity Pw 
can be found as the impact parameter for which the 
change in the phase of the wave function (owing to the 
matrix elements KV /00 and K ~w/Oo) during the flight is 
equal to unity. For. the power-law interaction K = CnR-n 
= Cn(p2 + v\2)-n/2, for which concrete results are given 
below, we have Pw = (Cn/v)1/(n-1). 

1. If 0 0 « OW, then we can neglect no in (2.7) in 
comparison with the other parameters. In this case (2.7) 
reduces to a differential equation with constant coeffi
cients. The solution of this equation yields, after substi
tuting it into (3.4), the expression 

V' ~ ~ 

cr=~aw' aw=2n S dpp [i-cos S X(-<)d,]. 
Q, .'--

(3.1) 

The region of values 0 0 « Ow corresponds to fast 
transits. In analogy to broadening theory, we shall call 
it the impact region. 

Notice that the system (2.7) for ~W « 2V is equiva
lent to the resonance case in atomic collisions; the re
sult of the standard impact theory of broadening follows 
from (3.1) when ~W »2V. 

2. The region no » Ow' the quasi-static region, 
corresponds to slow transits. Here two main cases can 
be presented: a) the term crossing case, when there ex
ists a point to at which K(to) = O~/~w; b) the term re
pulsion case, when there is no point of intersection. 

The case (a) corresponds to the Landau-Zener ap
prOXimation [12, 13J, which is valid under the conditions 
that K~W/no ~ no »KV/Oo, Ow and K~w > 0, or 

i\w:>Qw, v; xAw>O. 

For the OC cross section in this case, we have 
(cf. [14J) 

(3.2) 

o=4n (Cnl ~(,,) 'InA (Eo'IEcr'). (3.3) 

Here Ecr = Vcr/D, 

V cr=[n(AfIl) (n .... )lnvI2nC::· P",Vrz=DErz (3.4) 

is the critical value of the field; 

1 S· - - {X, x<1 r\(x)= - dyr%/I'-'(i-r""'-')"" . 
. 2 0 x-':e-x , x>1 

Notice that the broadening-theory result for the static 
wing of the line follows from (3.3) in the weak-field limit, 
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when Eo «Ecr; in the case when Eo »Ecr' the cross 
section is observed to fall off exponentially. 

The case b) corresponds to the situation, first con
sidered by Stiickelberg (see [13J , p. 651), when K~W/Oo 
« KV/Oo, Le., 

(3.5) 

The OC cross section is then given by the relation 

acoexp [ - (V IV cr) (n-!)fn], (3.6) 

where 

(3.7) 

The exponential decrease of the OC cross section 
with increasing Eo in both the Stiickelberg and Landau
Zener cases is due to the fact that the external field 
pushes the terms of the compound system apart. 

Notice that the critical field Eo ~ ~w/D, ELZ, ES is, 
by definition, much smaller than the magnitude of the 
characteristic atomic field Eat = 0.5 x 1010 V/cm. The 
most interesting nonlinear effects connected with 
OC-induced light absorption appear in fields Eo ~ EW 
= 0W/D, which, under normal gas-kinetic conditions, 
are relatively low (~104-105 V/cm). 

The regions of applicability of the above-considered 
approximations are shown in Fig. 2. The impact ap
proximation, 00« OW, is valid inside a circle of radius 
Ow in the plane of the variables ~w and V, and the static 
approximation, 00 »OW, is valid outside this circle. 
When V > ~w, there arise nonlinear effects in both the 
impact region (the resonance case) and the static region 
(the Stiickelberg case). When V « ~w, the conventional 
(linear) theory of broadening is valid almost everywhere. 
An exception is the Zener region, which lies above the 
curve defined by Eo = ELZ, ELZ being given by (3.4). 
The right- and left-hand sides of the figure are distin
guished by the sign of the quantity K~W (i.e., by the pres
ence or absence of a point of intersection of the terms). 
Our treatment is valid outside a circle of radius 'Yim 
= Ny(UWV) (i.e., when 0 0 » 'Yim)' which is represented 
by the blackened semicircle in Fig. 2. 

If we draw in Fig. 2 the straight line V = const paral
lel to the ~w axis, then this line will determine the line 
contour for a given field strength Eo. Notice that what 
we have in mind here is the contour corresponding to 
only the OC-induced light absorption; to obtain the line 
contour corresponding to the total energy absorption, we 
must, generally speaking, take the kinetic effects into 
account (see below). The principal distinctive feature of 
the OC contour is, as can be seen from Fig. 3, the ap
pearance of a "transparency window," which is respon
sible for the decrease in the light-absorption probability 

v I l~cul=V 
14cul=v~ ___ .::S:::tti:::;ck=elbe=rg ___ ~ 

FIG. 2. Composite picture of the physical domains of variation of 
the OC cross section. 
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in the region V < V cr' The shape of the "transparency 
window" is determined by the value of V. Thus, for 
V < nW (the straight line V = const passes through the 
circle no = nW)' a "plateau" is formed near the line 
center (the curve 1 in Fig. 3); for V > nW exponential 
decays are observed in the region ~w < Vcr' It is char
acteristic that the dip in the central region (the "trans
parency window") broadens with increasing V. 

The straight line ~w = const in Fig. 2 determines the 
dependence of the OC cross section on the field strength 
Eo. The nature of such a dependence for different values 
of ~w is shown in Fig. 4. The principal distinctive fea
ture of such a dependence is the exponential decrease of 
the OC cross section in fields stronger than the critical 
field. In a number of cases this decrease can be 
smoothed out as a result of an additional averaging over 
the angle between the vectors d12 and Eo, which can lead 
to a power-law decrease for the same critical fields. 

4. THE KINETICS OF LIGHT ABSORPTION IN THE 
PRESENCE OF INELASTIC RELAXATION 

Let us consider the problem of light absorption in a 
medium composed of the atoms X and Y, when there can 
occur between the states 1 and 2 of the X atom inelastic 
relaxation characterized by the rates: 'Y12 for the 
X(1) - X(2) transition and 'Y21 for the X(2) - X(1) tran
sition. This relaxation can be due to spontaneous tran
sitions, as well as to inelastic electron impacts. Let us 
make two assumptions, on the basis of which the kinetic 
model discussed below is constructed: 

a) We shall assume the inelastic relaxation in the 
course of an OC event to be unimportant, which amounts 
to the imposition of the condition 

V/Perr~2"(ir ~"(l'+"('l 
(Qw$"(jr) ; 

(4.1) 

b) we shall assume that the field Eo does not influence 
the inelastic relaxation, i.e., that the transitions 2 - 1 
and 1 - 2 occur in intervals of time much shorter than 
nc/. For inelastic electronic collisions this implies that 
the X-atom-electron collision time is short compared 
to 0,"(/; for spontaneous decay this condition amounts to 
the requirement that no «wo. Both conditions are usu
ally easy to fulfill. 

Generally speaking, the inelastic relaxation takes the 
"X + E" compound system into new states L, II., L, and 
IL differing from I and II in the number of quanta (see 
Fig. 5). The states in Fig. 5a correspond to the wave 
functions CP1 = IX(1), n ), CP2 = IX(2), n - 1), cpt = 
= IX(1), nw + 1), cp~ = Pc(2), nw)' cpi = Pc(l), nw - 1), 
and cp"2 = IX(2), nw - 2). The states in Fig. 5b correspond 
to the wave functions l/ir. = b1CPi + b2cp~ and l/iII+ = b1cp~ 
- b2cp~, Notice that, owi~ to the very inelastic- transi
tion, the energy of the field does not change 4): only the 
energy of the X atom changes, and the dissipation of the 
light energy occurs during the remixing of the new 
atomic states .with the field, i.e., during the formation 
(after the transition) of the states K.. of the "X + E" com
pound object. The differences in population of the states 
K, K,! of the compound object can be neglected in the bal
ance equations, since in the classical-field limit of inter
est to us here nw » 1, so that nw ± 1 ~ nw' Then the 
light power dissipated on account of the inelastic relaxa
tion is given by the expression 
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Qir =NI«HE)I 1."(1 I.+<HE)1 L"(II_+<HE)i IT."(llI. 

+ <HE)I ll_ "(t llJ +Nll «lIE)ull. "(llll. + <If E) II ll_ "(ll IL 

+<JlE)ll I."(lll.+<fJE)ll L"(I1 d. 
(4.2) 

Here (HE)KK' == (HE)K - (HE)K' is the difference be-
t t 

tween the field energies in the respective states of the 
compound object (cf. Sec. 3), i.e., the energy dissipated 
in the transition K - K~; the quantities 'YKK~ are the 
respective transition rates. The K - K~ transition rates 
'}IKK~ are determined by the squares of the respective 
inelastic-interaction matrix elements taken between the 
wave functions l/JK' l/JK~ of the compound system. To 
compute them, it is sufficient to multiply the transition 
rates '}I12 and '}I21 in the atom by the squares of the ampli
tudes, bk and bk, with which the wave functions of the 
atom enter into the wave functions of the initial and final 
states of the compound object. 

Let us discuss separately the inelastic relaxation 
induced by spontaneous radiative transitions. The spon
taneous transitions produce the following three lines: 
the prinCipal line at frequency wsp = w, to which the 
transitions I - L and II - IL contribute, as well as two 
satellite lines at frequencies wsp = w ± no produced 
respectively by the transitions II - L and I - IL (see 
Fig. 5b). Multiplying the rate of the appropriate transi
tion by the light energy dissipated in that transition, we 
obtain for the spontaneous-radiation power of the com
ponents of the triplet the expressions: 

(4.3) 

where Ysp is the radiative X(2) - X(1) decay rate. 

If we neglect the influence of the inelastic relaxation 

6(V, Jwi 

" 

FIG. 3 FIG. 4 

FIG. 3. Dependence of the OC cross section on ~w for different V: 
the curve I corresponds to the case when V == V I < nW, the curve 2, to 
the case when V == V 2> nW' . 

FIG. 4. Dependence of the OC cross section on V for different ~w: 
the curve I corresponds to the case ~w == ~WI < nW, the curves 2 and 
3, to the cases ~w = ~W2' ~c,.J3 > nW. 

FIG. 5. Energy-level diagram of the 
"X atom + field E'" compound system: 
a) without allowance for the interaction 
V between the atom and the field; 
b) with allowance for the interaction 
V. The arrows in the figure (b) cor
respond to spontaneous transitions. 
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on the population, then NI = Nn = N/2 (see below) and the 
entire picture coincides with the corresponding results 
of the theory of spontaneous emission in a strong field 
(see [15], as well as [8]). 

We shall obtain the subsequent results on the basis 
of the balance equations for the two-level scheme in the 
stationary case: 

~, ~~ 
"d!=O= (Y111+rOc )Nl1 - ("(1 l1+roc)N" N ,+Nl1=N. 

Here 'YIn = YIn+ + Ym_ and I'm = Ym+ + YIn_' The 
transitions K - K± are neglected here, although YKK+ 

are different from zero. This is connected with the -
above-noted fact that the states K, K± are indistinguish
able in the limit nw - 00 (when the transitions K - K.! 
are formally taken into account, their contributions to 
the population balance cancel each other out). 

Solving (4.4) and substituting the solution into (4.2), 
we obtain 

O . _0.. V' 21'0c+Yir 
tr,- .... rl(,)'V tr 1.1V- -----

• • no' roc+'/,"(ir (1+L'lw'/no') , 
(4.5) 

where ~N = (1'21 - Y12)N/(Y21 + 1'12) is the number of ac
tive atoms in zero field and Yir = (1'21 + Yl2)/2 is the 
inelastic-relaxation rate in the two-level system. For 
the field power dissipated on account of OC we have 
from (2.12) and (4.4) the expression 

(4.6) 

Thus, the total light power Q = Qir + Qoc dissipated 
in the medium is given by the expression 

5. ANALYSIS OF THE NONLINEAR EFFECTS IN 
LIGHT-ABSORPTION KINETICS 

(4.7) 

Let us consider the expression (4.7). Notice, to begin 
. with, that the inelastic and OC-induced relaxations can 

be characterized by the same type of quantities after in
troducing the notation 

2V' no' (5 1) 
rir = Qo' "(ir" "[oc= 2V,roc . • 

Then in the impact region (no« nw) yOC 
= Yim = Ny(aWv ) (see (3.1)); in the static region 
(no» nw) yOC < Yim' With the aid of (5.1) we can re
write the expression for the total absorbed power (4.7) 
in the form 

roc+fir "(oc+"[ ir 2 
Q=Qsat---------=Qsat (5. ) 

roc+rir (1+L'lw'/2V') "foc+Yir,(1+L'lw'/2V') 

Here Qsat = l'iw Yir~N is the power absorbed in the satur
ation regime; it is the maximum power that can be 
absorbed by the medium for a given inelastic relaxation. 

The relation (5.2) formally has the same form as the 
Karplus-Schwinger result [5]. The only difference con
sists in the fact that (5.2) does not contain the additive 
correction (yOC + Yir)2 to the quantity ~W2. This is 
quite understandable, since in deriving (5.2) we used the 
relation no » max( yOC' Yir)' which allows us to con
sider the balance equation for the populations and not 
the kinetic equations for the denSity matrix. As has 
already been indicated in Sec. 2, because the collisions 
are binary encounters, the difference in question is im
portant only in the narrow central part of the impact 
region where no oS Yir + Yim « nw. 
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In order to clearly demonstrate the connection be
tween the result (for Q) obtained here and the known re
sult, let us rewrite (5.2) in the notation used in the 
book [6], introducing for this purpose the indicated cor
rection to the frequency shift 

=2fiiuL'lN T,-' (.1w, V) V2 

Q dw'+T,-'+4V'T,T2-' (L'lw, V) . 
(5.3) 

Here TIl = 2Yir and T? = yOC + Yir' The relation (5.3) 
formally coincides with the formula (17.71) in [6]. In 
contrast to the well-known result, however, the quantity 
T2, which plays the role of a generalized elastic-relaxa
tion parameter, is here a complex function of the field 
characteristics ~w and Y. Therefore, in actual fact, the 
relation (5.3) coincides with the Karplus-Schwinger 
formula only in the impact region no« nW' where 
yOC = Yim' and does not depend on ~w and Y. For weak 
fields Y - 0 (see the linear-broadening-theory region in 
Fig. 2), if the inelastic-relaxation rate is negligible 
compared to the OC rate (i.e., if l'ir « YOC), then the 
relation (5.3) yields the well-known result of the binary
collision broadening theory [11,16], which describes the 
entire line contour with allowance for the transition 
from impact to static broadening. Thus, the formula 
(5.3) is a general result of the nonlinear broadening 
theory, and is valid for arbitrary field strengths Eo and 
frequency detunings ~w. It is interesting that just as the 
general result of the conventional broadening theory has 
the structure of the (impact) Lorentz formula with a 
"variable width" [11,16], the result (5.3) of the nonlinear 
broadening theory has the structure of (also the impact) 
Karplus-Schwinger formula [5] with a variable "elastic
relaxation" parameter T2(~w, V). 

Of interest is the analysis of not only the expression 
for the total power Q, but also of the dependence on ~w 
and Y of the quantities Qir and QoC' since they, like Q, 
can be directly measured in experiments (see Sec. 6). 
Let us, therefore, consider the dependence on ~w and Y 
of the expression (5.2), as well as of the ratio QoC/Q, 
which illustrates the contribution of OC to light absorp
tion. In investigating these expressions, we shall not 
introduce the additive correction to ~W2, limiting our
selves to the region no » Yim + Yir' since it is pre
cisely in this region that the new nonlinear effects ap
pear. The expressions in question can be represented 
in the simple forms 

U 
Q=Qsat U+R' 

Qoc 
-=1-R 
Q ' 

after introducing the dimensionless parameters 

Yir R=--. 
"(ir+"(oc 

(5.4) 

(5.5) 

By definition, R oS 1. Consequently, for 2y2 »~W2, 
the phenomenon of saturation is observed independent of 
the medium characteristics and no matter what the rela
tion between the contributions of the OC and the inelastic 
relaxation is: the absorbable power attains its maximum 
value (Q = Qsat) and ceases to depend on the character
istics of the field (let us recall that no » Yim + Yir)' 
When the contribution of the optical collisions is large, 
i.e., when yOC » Yir (the pressure-induced broadening 
is large), then R « 1, and the saturation sets in consid
erably earlier when 2y2 »R~W2. The behavior of the 
quantity R is of the following nature. For small 
no;:; nw, usually, R « 1 under gas-kinetic conditions, 
since yOC ~ Yim » Yir' As no increases, the quantity 
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YOC decreases and, consequently, R increases. The de
pendences R(AW, V) and Q(Aw, V) can, in each specific 
case, be comparatively simply derived on the basis of 
the results obtained in Sec, 3. Here we investigate in 
greater detail the qualitative form of the V dependence 
of Q for the values of Aw corresponding to the static 
wing (see Fig. 6). 

As follows from Sec. 3, the quantity YOC does not de
pend on V when V < Vcr' Let YOC » Yir in weak fields. 
Then, for V «Vcr' AWv'YOC/Yir, the quantity Q ex V2; 
saturation sets in when V ~ AWv'YOC/Yir' However, when 
V > Vcr' the quantity YOC decreases exponentially with 
increasing V, and therefore no saturation sets in. The 
absorbable power begins to exponentially decrease, the 
decrease slowing down when YOC(V) ~ 'Yir and 
Q ~ Qsat2V~r/Aw2. As V increases further, the quantity 
Q ex V2 and attains saturation when V ~ Aw. Of interest 
is the case 'Yim ~ Yir' i.e., when R ~ 1 in weak fields. 
In this case saturation sets in only when V ~ Aw (see 
Fig, 6), The possibility of the decrease of the absorbable 
power owing to the nonlinear dependence of an OCevent 
on the light intensity was pointed out in [14J, where this 
effect is called medium "brightening" (in contrast to the 
saturation effect), 

6. CONCLUSION 

Let us discuss some of the results of the present 
paper, Notice, first of all, that the above-employed ap
proach, which is based on the consideration of the com
pound system, allows the formulation of a nonlinear 
broadening theory in closed form, Indeed, the dynamical 
part of the problem is given by the solution of the basic 
system of equations (2,7), while the kinetic effects are 
taken into account by the balance equations (4.4), where 
the relaxation parameters are determined by the OC 
cross sections computed in Sec. 3. We stress that in the 
above -developed approach the most interesting region 
is, in contrast to the conventional approach [6J, analyzed 
on the basis of elementary population-balance equations. 
This is due to the fact that the phase relaxation, which 
complicates the kinetics, is automatically taken into ac
count at the dynamical stage in the Eqs. (2,7). The solu
tion of these latter equations is, however, a standard 
problem of the theory of atomic collisions, Thus, the 
consistent use of the compound-system concept allows 
us to not only generalize the problem, but to simplify it 
as well. 

The results of the inhomogeneous broadening theory 
for strong fields, which is used in quantum radiophysics 
(see, for example, [6J , Sec, 17,5), do not follow from the 
formula (5,3), At the same time, for weak fields, these 
results, which correspond to the quasi-static theory, 
are contained in (5.3). The indicated discrepancy is due 
to the fact that the criterion (4.1) used in the present 

FIG. 6. Dependence of the absorbable light power Q on V in the 
static wing of the line (see Secs. 4 and 5). The curve I corresponds to 
the case R(V = 0) == Rl < V cr2/Aw2; the curve 2, to the case R(V = 0) 
==R2>Vcr2/Aw2. 
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paper is the converse of the assumption on which the 
conventional approach is implicitly based, Indeed, the 
condition (4.1) implies that we neglect any relaxation 
that occurs in the course of an OC. Meanwhile, the aver
aging that is carried out in the theory of inhomogeneous 
broadening over the static shifts (see [6J , Sec. 17.5) 
corresponds to the assumption that the atom has in the 
course of a collision "time" to relax, i.e., that the con
verse of the condition (4,1) is fulfilled. 

Notice that under gas-kinetiC conditions the condition 
(4,1) is usually fulfilled for spontaneous relaxation, In 
this case, as can be seen from (5.3), the parameters T1 
and T;? enter into the result multiplicatively. In the 
general case, however, this may not be the case at suffi
ciently large values of T~l (e.g., at high electron densi
ties): T2 may be nonlinearly related to T1 (cf" for ex
ample,117J 5», 

Let us make some remarks about the experimental 
aspects of the problem. Here it is, in principle, possible 
to independently measure the three quantities relating 
the field characteristics to the parameters of the collid
ing atoms: 1) the total absorbable power Q from the 
attenuation of the light intensity; 2) the spontaneous
radiation intensity (4,3), by, for example, carrying out 
observations in the direction perpendicular to the initial 
direction of the beam (in the absence of electronic re
laxation this corresponds to the measurement of Qir); 
3) the heating of the heavy particles of the gas and, 
consequently, the scattering of the atoms in OC, 

It is possible in all the three cases to observe non
linear effects as the light intensity is increased. The ex
perimental observation of these effects is of interest 
both in itself and in connection with the pOSSibility of 
the measurement of the characteristics of the interaction 
of the atoms, as well as from the point of view of the 
direct experimental verification of the approximations 
used in the theory of atomic collisions. 

tlBelow we shall, for brevity, call the atomic particles X and Y simply 
atoms. 

2)ln the case of broadening by electrons this region is called the "single
electron" region (2). 

3l-rhis transformation was first carried out by Spitzer [10). Its connection 
with other approaches is considered in (11). 

4)We distinguish between the quanta produced as a result of spontaneous 
transitions and those of the field (2.1) (by, for example, their polariza
tion. 

s)Simiiar questions have been considered by I. Bergman. 

lR. G, Breene, Jr" The Shift and Shape of Spectral 
Lines, Pergamon Press, 1961. 

2M. Baranger, in: Atomic and Molecular Processes, 
ed. by D, R. Bates, Academic Press, New York, 1962, 
p. 493 (Russ. TransL, Mir, 1964, p; 429), 

31. 1. Sobel'man, Vvedenie v teoriyu atomnykh spektrov 
(Introduction to the Theory of Atomic Spectra), 
Fizmatgiz, 1963 (Eng, TransL, Pergamon Press, 
London, 1972). 

4 G, Grim, Spektroskopiya plazmy (Plasma Spectro
scopy), Atomizdat, 1969. 

5 R, Karplus and J. Schwinger, Phys, Rev, 73, 1020 
(1948). 

6 V• M, Farn, Kvantovaya radiofizika (Quantum Radio
physics), Sov. Radio, 1972, 

7E, G, Pestov and S. G. Rautian, Zh, Eksp. Teor, Fiz, 
64, 2032 (1973) [Sov. Phys.-JETP 37, 1025 (1973)] . 

V. S. Lisitsa and S. I. Yakovlenko 239 



8 L. Hahn and I. V. Hertel, J. Phys. B5, 1995 (1972). 
9V. S. Lisitsa and S. 1. Yakovlenko, Zh. Eksp. Teor. 
Fiz.66, 1981 (1974) [Sov. Phys.-JETP 39, 975 (1974)]. 

10 L • Spitzer, Phys. Rev. 55, 699 (1939); 56, 39 (1939); 
58, 348 (1940). 

llV. 1. Kogan and V. S. Lisitsa, J. Quant. Spectrosc. 
Radiat. Transfer 12, 881 (1972). 

12 L. D. Landau and E. M. Lifshitz, Kvantovaya mekhanika 
(Quantum Mechanics), Fizmatgiz, 1963 (Eng. Transl., 
Pergamon Press, London, 1965). 

13 N. Mott and H. Massey, The Theory of Atomic Colli
sions, Oxford University Press, Oxford, 1965 (RUSS. 
Transl., Mir, 1969). 

240 SOy. Phys.-JETP, Vol. 41, No.2 

14V. S. Lisitsa and S. 1. Yakovlenko, Zh. Eksp. Teor. Fiz. 
66, 1550 (1974) [SOY. Phys.-JETP 39, 759 (1974)]. 

15S. G. Rautian and 1. 1. Sobel'man, Zh. Eksp. Teor. Fiz. 
41, 456 (1961) [Sov. Phys.-JETP 14, 328 (1962)]. 

16 V• V. Yakimets, Zh. Eksp. Teor. Fiz. 51, 1469 (1966) 
[SOY. Phys.-JETP 24, 990 (1967)] . 

17V. 1. Kogan, V. S. Lisitsa, and A. D. Selidovkin, Zh. 
Eksp. Teor. Fiz. 65, 152 (1973) [SOY. Phys.-JETP 38, 
75 (1974)]. 

Translated by A. K. Agyei 
56 

V. S. Lisitsa and S. I. Yakovlenko 240 


