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The absolute focused-wave instability due to capture of growing oscillations in the focal region of the 
pumping wave is considered. The effect of two-dimensional inhomogeneity of the focused pumping wave on 
the development of parametric instability is investigated. 

INTRODUCTION 

The theory of nonlinear interaction of large-ampli­
tude waves with plasma is rapidly developing in recent 
years, owing to a number of applied problems, such as 
laser and microwave heating of plasma. Much attention 
is being paid to the investigation of parametric (decay) 
instabilities (see, e.g.,(1,2] ) as the mechanism whereby 
energy is effectively transferred to a plasma irradiated 
by high-power electromagnetic waves. As a result of 
the development of parametric instabilities, intense 
oscillations with small phase velocities can be excited 
in the plasma; these interact effectively with the plasma 
particles thereby ensuring effective absorption of the 
energy from the external source. Of great importance 
for parametric instabilities, however, are plasma in­
homogeneities. In particular, spatial inhomogeneity in­
troduces a mismatch in the parametric wave-vector 
resonance, which in turn leads to a decrease of the 
growth rate and to an increase of the thresholds of the 
instabilities. In addition, at sufficiently large mis­
matches, the convective drift of the perturbations out of 
the parametric-resonance ,region leads to a finite am­
plification of the growing fluctuations, as demonstrated 
in[3,4]. Thus, the inhomogeneities of the plasma can 
stabilize the instabilities at a low noise-energy level, 
corresponding to weak absorption of the microwaves. 
This is why a diligent search is being carried out at 
present for absolute instabilities that appear in an in­
homogeneous plasma as a result of capture (trapping) 
of the growing perturbations in the region of parametric 
resonance (in the decay region). Thus, Perkins and 
Flick[4] have considered the absolute instability of 
second-order decay we(k) + we( -k) = 2wo in a plasma 
of inhomogeneous density. Capture of Langmuir waves 
occurred near the reflection point, where the growth 
rate Yk = Y2wo(VE/2vTe)2cOS2ek has a maximum. The 
question of lowering the thresholds in the absolute in­
stability connected with the trapping of the oscillations 
as a result of their reflection from turning points was 
considered by Piliya[5]. Absolute instability of first 
order, which arises in an inhomogeneous plasma follow­
ing the decay of an electromagnetic wave into two plas­
mons, was investigated by Silin and Starodub[6], who 
have shown that the trapping of plasmons is due to their 
mutual transformation on the boundaries of a para­
metric resonance region. Other absolute instabilities of 
electromagnetic waves, connected with the inhomo­
geneity of the plasma density, were considered in[7-9,2]. 

In this paper we investigate the absolute instability 
of focused waves, which exists in a homogeneous and 
inhomogeneous plasma. This is a sort of universal in­
stability due to the strong inhomogeneity of the pump­
wave field, when the coupling of the plasma oscillations 
via the pump wave leads to the appearance of transfor-
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mation points near the focus. As a result of the trans­
formation of the third type (see[lO] concerning the clas­
sification of the types of transformation) the oscilla­
tions are trapped in the parametric-resonance region. 
By the same token, convective outflow of the perturba­
tion energy from the amplification region is prevented, 
leading to absolute instability. The formation of a local 
maximum of the pump field is either connected with 
self-focusing of the pump wave or results from focusing 
of the wave beam into the plasma from the outSide. 

To make the exposition compact, the paper is divided 
into two parts. In Sec. 1 we consider a number of decay 
processes that result in the development of absolute in­
stabilities when waves are focused in a plasma. We in­
vestigate here the Simplest case, that of one-dimen­
sional inhomogeneity of the pump-wave field. The 
parametric instability Singularities connected with al­
lowance for the two-dimensional inhomogeneity of the 
pump wave are considered in Sec. 2, where it is shown 
that two-dimensional inhomogeneity stabilizes the abso­
lute instability in some cases. 

1. EXAMPLES OF ABSOLUTE INSTABILITY OF 
FOCUSED WAVES IN A PLASMA 

Let us investigate the decay (of first order) of a 
focused electromagnetic wave into two plasmons. In the 
hydrodynamic approximation, the high-frequency 
(w ~ wpe) longitudinal oscillations are described by the 
following equation: 

V' [~+ 000,' (1-3I.D'V') ] III + (V 2.!....P + pV'~) III =0, (1.1) at at ut 
where 4> is the velocity potential of the electrons and is 
determined by the relation /lve = V4>; AD is the Debye 
radius of the electron; P = VO' V; Vo is the oscillatory 
velocity of the electrons in the field of the pump wave 

vo=v_cos[ wot- jko(Z')dZ'], 

We note that Eq. (1.1) enables us to consider the 
initial-value problem. 

We shall first show the possibility of capture of the 
growing perturbations near the focus of the pump wave. 
Representing the perturbation as a superposition of two 
Langmuir waves 

ClJ=Ill.exp (iwt-ikr)+ClJ,exp [i(w-w,)t-i(k-ko)r] 

we obtain by the standard method(1,2] the following dis­
persion equation: 

[00' - 00 0.' (1 +3k'I.D ') I [ (wo - w)' - wP.'<1+3I.D' (ko - k) '} j 

(kv_) , [k'( -w)+(k -k)'wj' (1.2) 
4k' (ko _ k) 2 00 0 0 , 

which coincides, as can be readily verified, with that 
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given in Silin's monograph[21• The dispersion equation 
(1.2) describes two longitudinal-oscillation modes of a 
plasma placed in a high-frequency electric field. The 
mode ''intersection'' points are the sought points of 
wave transformation. For sufficiently small pump am­
plitudes., when the resultant oscillation-frequency shift 
AW is smaller than the dispersion increment 
( %) wpek~D' the intersection of the oscillation modes 
in k-space occurs near the surface wgj4 = Wpe (1 
+ 3kaXb)· 

In the mode "intersection" regions, we put 

OJ~lhOJo+~OJ, k=k.-~k. 

It follows then from (1.2) that 

where 
\ " 

rItz) =[k.Xv_(z) )·(k,k.)'/4k/, 
t \ 

(1.3) 

Vg = 3WpekctAD is the group velocity of the Langmuir 
perturbations (kct » ko ). For focused waves, the growth 
rate Yd(Z) has a bowl-shaped form; thus, e.g., when the 
wave beam is focused into the plasma from the outSide, 
the pump field near the focus (in analogy with the case 
of a converging linear beam in optics[lll) is of the form 

IE,I'=E';;""exp [- r'/~/' ,](1+~)-1 
1+z 'a a' 

(1.4) 

and consequently we have near the axis 

IE, 1'=Em!.(1 +z·la')-l. 

Taking this circumstance into account, we see from 
(1.3) that for perturbations AW = -Y that increase with 
time there are located near the focus on the real z 
axis the points of intersection of the oscillation modes 
Zl,2, which are determined from the conditions 
ya( Zl,2) = y2. Between the points Zl,2 the plasma is 
"transparent" to the considered OSCillations, and the 
oscillations cannot propagate outside this region. Ac­
cording to[lO], a transformation of the third type occurs 
in the indicated pOints, as the result of which the per­
turbations are reflected "backwards," into the region 
of parametric resonance. Thus, the oscillations become 
trapped and this leads to absolute instability. 

For sufficiently large pump-wave amplitudes, when 
the contribution of the thermal motion to the plasma 
dispersion can be neglected, we obtain from the disper­
sion equation (1.2) 

k,/kJ. =±(o±l'o'-l). (1.5) 

Here 

and it was assumed that W = wo/2 - i y. As seen from 
(1.5), mode "intersection" occurs at the points 0'2(Z) 
= 1, and consequently the oscillations are trapped in the 
plasma region where 0'2( z) 2: 1. The condition 0'2 > 1, 
when the intersection pOints are on the real z axis, can 
be expressed in terms of the pump-wave energy density 
Wf at the focus: 

Wdmn,c'>'/,(1-4OJp,'/OJ,')', 

which imposes, in an inhomogeneous plasma, a limita­
tion on the distance between the focal point and the 
layer in which wpe(z) = wo/2. Let us calculate the 
spectrum of the oscillations trapped in the region of the 
focus. For perturbations concentrated in the near-axis 
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part of the pump-wave beam, we can derive from (1.1) 
a fourth-order differential equation Similar to that ob­
tained by Silin and Starodub[8]. We confine ourselves 
below, however, to the quasiclassical case, in which 
expressions for the wave vectors (1.5) are sufficient for 
the calculation of the oscillation spectrum. We introduce 
the notation k 1,2 == (0' ± ';0'2 - 1)k1 for the modes of the 
oscillations (1.5). 

For the oscillations trapped between two transforma­
tions pOints Zl,2 (Zl < Z2),' the spectrum is determined 
by the following quantization rule (see, e.g.,[l21): 

q 

S d.z[k1 (z)-k.(z»)=n(n+ 1/.), n=O,1,2 .... (1.6) 
" 

In formula (1.6) it is possible to take into account, in 
addition to the inhomogeneity. of the pump wave, also the 
inhomogeneity of the plasma density, putting, e.g., 

OJ p,' (z) =I/.OJ,' (t +o+z/£), 

where z = 0 is the focal point. We now consider the 
case of external focusing of the pump wave. Using (1.4) 
and assuming 02 » a/klL2 or else 0 « a/klL2 and 
(yL/awo)2» 1 (which enables us to neglect the inhomo­
geneity of the density), we get from (1.6) 

1 [K()_E(»)=lt(n+1f,) 
-.11 ' qq. 
r -q 4akJ. 

(1.7) 

Here K( q) and E( q) are complete elliptic integrals. 
The growth rate of the model numbered n is expressed 
in terms of q in the following manner: 

r. =[ 'Y~(1- q')-(Ol,6I4)')"'. 

where Ymax = kov£l4, and vf is the value of v~ at the 
focal point. It follows from (1.7) that with increasing 
number of the mode the dimension of the capture region 
increases and the growth rate decreases. The largest 
growth rate (close to that of the conSidered instability 
in the case of a homogeneous pump wave) is possessed 
by perturbations with k1a» 1 localized in a narrow 
region near the focus. For a given k1 , the detuning of 
the parametric resonance 0 relative to the plasma 
density determines the number of captured modes. The 
instability threshold is determined from the condition 
2Yn = vei, where vei is the frequency of the electron­
ion collisions. 

In the case of a self-focusing pump wave, we choose 
the field in the axial region of the wave beam, following 
Lugovoi and Prokhorov[ll], in the form E2(Z) = El(l 
+ z2/a2fa, where a = Y2 ahead of the focus (z < 0) and 
a = 1 at z > O. We then obtain from (1.6) 

n(n+'i,.) K(q)-E(q) 1 [( 12) 
---'-----'''--= +-= n ",,,-2,- (1.8) 

2akJ. 1'1-q' q1i-q' q 

-q'E("", ?)-(1- q')F("", ?)], 
where n, E, and F are incomplete elliptic integrals. 
For perturbations with k1 » 1/a, the localization 
region is small in comparison with the inhomogeneity 
length a, and the difference between the quantization 
rules (1.7) and (1.8) is immaterial. For example, for 
the fundamental mode (n = 0) we have from (1.8) 

,_ ' (1 f2-i) (0l.1I)' 'Y-'Ym"" -~ -"'4 . 

With increaSing transverse wavelength of the pertur­
bations, the growth rate of the absolute instability de-
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creases rapidly. In the limit akl « 1, putting wpe 
= wo/2, we obtain 

Y.=Ym~[ak.L/(n+I/2) 1"'. 

The capture region is strongly elongated in this case in 
the direction of z < 0, and its dimension is large in 
comparison with the length a of the pump-wave inhomo­
geneity. In the case of focusing of the pump wave in the 
inhomogeneous plasma at the point Wpe(z) = wo/2, we 
put wpe ( z) = % w~ (1 + z/L). Then 

a'(z)- ("(m..l'OI 
- (1+ z'/a') " (1+ z'/LT') , 

(1.9) 

where Ly = 4Ly/wo and a = 1 or 1'2. Substituting (1.9) 
in the integral (1.6), we obtain for the perturbations with 
growth-rate y of the order of Ymax(k1aeff > n + 1'2) 

(1.10) 

where 

a.1T = aLT(a' + LT')-"', ( a'+LT' )'" Il=H --- ..;;2. 
a' +aLr' 

As seen from (1.10), the inhomogeneity of the plasma 
density and the inhomogeneity of the pump wave enter 
in the growth rate in the form of a Single effective in­
homogeneity length aeff. 

We note in addition that in an inhomogeneous plasma 
with a group separation between the focus and the point 
wpe = wo/2 there can be produced two quasi-independ­
ent regions for the capture of the plasma oscillations, 
one near the focus and one near the point wpe = wo/2, 
with an exponentially small interaction between them. 

We proceed to consider the absolute instability that 
arises when a focused electromagnetic wave of fre­
quency Wo decays into a plasmon and ion sound in a 
non-isothermal (Te» Ti) plasma. Neglecting the pump 
wave vector and the dissipative factors, we write down 
the dispersion equation of the Langmuir and ion-sound 
oscillations, which are coupled via the pump wave, 

(k'-k.') (k'-k,') ='/,( (f)"/Avvr,) '(krE) '. (1.11) 

Here ks = w/cs; cs is the speed of sound; rE is the 
amplitude of the electron oscillations in the pump-wave 
field; ~ = 2 [( Wo - W)2 - wpe j/3vTe; ke is the wave 
vector of the plasma oscillations. We confine ourselves 
to the case of small amplitudes of the pump wave 

W/noT,<t:.8kAv(mIM) "', 

when the instability increment is smaller than the sound 
frequency. In this case the instability develops in k­
space near the surface k = kD = wd/Cs, which is speci­
fied by the decay condition ke = ks . In the region of the 
model ''intersection'' we put 

We then obtain from (1.11) 

(1.12 ) 

Here 
k.. , f ( k..rE )' 

Llk=k: Llk, y. (z)=w(f)t(f). k;J.. v ' 

Vg is the group velocity of the Langmuir wave. As seen 
from expression (1.12), for the focused pump wave 
there exist on the real axis z transformation pOints de­
fined by the condition 

2y.(z) =yYv.lc.(Hc./v,). 
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Thus, capture of the oscillations is possible. We 
present a formula for the growth rate of the absolute 
instability, assuming for the sake of argument 

yl (z) ="(~",,(1 +z'/a') _f. 

USing (1.12) we obtain with the aid of the quantization 
rule (1.6) 

n(n+'/,) , 
4 (c.v,) 1'=K(p)-E(p), 
a'Y_ (1.13) 

where y is connected with p by the relation 

( 117:" 1/7,) -f , 
y.=2Ym,. y -+ Y - (1-p') I,. 

v, c, 

From this we obtain in the quasiclassicallimit of 
small p 

'=4 ' (1/ c. +1/, V,) -'[1- (2n+1H~] y. Ym", . y . 
Vil c, alma% 

In the derivation of (1.13) we did not take into account 
the detuning of the parametric resonance due to the in­
homogeneity of the plasma density, which is valid under 
the condition 

(4y ... ",L/a(f)p,,) > Y c.lv,. 

We have investigated above the absolute instability of 
the focused waves in the plasma using two decays as an 
example. It is clear, however, that for other decays 
there also exist absolute instabilities that are due to 
the trapping of the growing perturbations near the local 
maximum of the pump field. In particular, this pertains 
to collapsing waves[13,141, where the role of the absolute 
instabilities should be the most significant during the 
initial stage of the development of the collapse, when 
the plasma density well in the region of the collapse is 
re lati ve ly shallow. 

2. INFLUENCE OF TWO-DIMENSIONAL 
INHOMOGENEITY 

In Sec. 1 we considered the absolute instability of 
focused waves for a one-dimensional inhomogeneity of 
the pump wave. Under real conditions, however, the 
inhomogeneity can be essentially two-dimensional. It is 
therefore necessary to investigate decay Singularities 
that are connected with the influence of two-dimensional 
inhomogeneity. In particular, the question arises of the 
conditions under which the growing perturbations are 
captured near the focus in the case of two-dimensional 
inhomogeneity of the pump wave. As will be shown be­
low, in the case of two-dimensional inhomogeneity, the 
oscillations do not always become trapped. 

We consider first three-wave decay at sufficiently 
small pump amplitudes, when the dispersion of the 
growing plasma oscillations is weakly perturbed. In 
this case the oscillation amplitudes \j! 1 2 satisfy a sys­
tem of two coupled parabolic equations' 

(2.1 ) 

Here 

vn are the group velocities of the interacting wave 
packets, y d is the growth rate of the decay instability, 
and J.I. n are constants that are connected with allowance 
for the dispersion increments. For example, for the 
t - l + s decay they are equal to J.I. s = c~ /2ws and J.I. e 
= -%wpeAb. For narrow (in k-space) wave packets at 
noncollinear group velOCities, the dispersion increments 

N. S. Erokhin et al. 264 



can be neglected. Then, changing over to oblique-angle 
coordinates ; and i; in accordance with the formulas 

a - iT ..., 
,v,V=v,~, v,V=v,~, v" ' iI~j 

we transform (2.1) into 

(2..+~'~)'l'1=1''l'2' (~+v,.!......) 'l'2=1''l'" (2.2) at a~ at " a~ 
It is convenient to regard; and !: as the axes of a 

rectangular coordinate system. Let the pump be a uni­
form wave beam of thickness 2L, making an angle e 
with the i; axis. We rotate the coordinate system 
through an angle e (0 < e < If): 

x,=\: cos e+~ sin e, x,=-\: sin e+s cos e. 
In terms of the coordinates Xl and X2, the growth 

rate Yd is constant in the band I X2\ < L, and the pro­
jections of the group velocities on the inhomogeneity 
direction (the X2 axis) are respectively V1COS e and 
(-v2sin e). We now investigate the spectrum of the os­
cillations described by Eqs. (2.2). It should be noted 
that although this problem is one-dimensional, it en­
ables us to reveal a number of decay Singularities due 
to the two-dimensional inhomogeneity, particularly the 
stopping of the absolute instability. 

Let 0 < e < 11/2. Then the components of the group 
velocities of the perturbations transverse to the pump 
wave beam have opposite signs, and consequently the 
oscillations can be captured as a result of their mutual 
transformations at the boundaries of the pump beam. 
For the oscillations trapped inside the pump beam, we 
put Iftl,2 ~ exp (yt + kx l ). Solving the eigenvalue prob­
lem, we obtain the quantization condition in the form 

where 

( sin 0 cos 0 ) 'b 
k,=21' 

Vt V 2 

l,=21'(v,v, sin 0 cos e) 'I, (v, cos 8+v, sin 8)-', 

Furthermore 

(2.3) 

sin <p'=IfJ'/t., t.=21.L(v,v, sin 0 cos 0) -'I,. (2.4) 

As seen from (2.3) and (2.4), the spectrum of the 
trapped oscillations is determined by the value of the 
parameter A, which is equal to the logarithm of the am­
plitude gain as the perturbation moves across the pump 
beam. From (2.4) it is easy to establish that there 
exists a sequence of monotonically increasing values of 
An > 1 (n = 1 2, ... ), satisfying the equation 
cos (A 2 - 1)ii'2 = -1/A such that Eq. (2.4) has exactly 2n 
real roots CPA 'in the interval An < A < An+1. Further, 
the condition 

Ij,n (2m+1) <1.< 1/2n (2m+5) (2.5) 

determines the interval of variation of A in which Eq. 
(2.4) has exactly m roots CPA satisfying the instability 
condition cos CPA > O. Thus, the inequality (2.5) speci­
fies the interval of variation of A as a function of the 
number m of captured modes. 

Formula (2.3) establishes the connection between the 
growth rates of the perturbations in space and in time 
for arbitrary initial data. For example, in the station­
ary case y = 0 the perturbation is trapped between .the 
"walls" X2 = ±L and drifts in the positive Xl direction, 
increasing exponentially with a spatial growth rate 
K = kocoscpA. From (2.3) we get the following expres­
sion for the velocity ve of the convective drift of the 
unstable oscillations along the Xl axis 
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The drift velocity reaches a minimum value v 1 v 2 (v~ 
+ v~ r1/2 at e = tan- l (V2/V 1)' 

In the case 'IT/2 < e < 'IT, the components of the group 
velocities of the perturbations along the direction X2 of 
the pump inhomogeneity have equal signs. Consequently, 
the transformation of the oscillations on the pump-beam 
boundary X2 = -L cannot cause reflection of the energy 
"backward," into the interior of the pump beam. Trap­
ping of the oscillations is therefore impoSSible. Thus, 
the convective outflow of the perturbations from the 
pump beam stops the absolute instability. The amplitude 
gain of the wave packet as a result of the intersection 
of the pump beam does not exceed the value cosh I A \. 

It follows from the forego,ing that in the case of de­
cay interaction of wave packets of the type (2.1) with 
noncolinear group-velocity vectors, the two-dimensional 
instability of the pump wave stops the absolute instabil­
ity, this being due to the convective outflow of the per­
turbations in directions corresponding to the internal 
part of the angle between the group-velocity vectors. It 
should be noted here that in one particular case, that of 
almost antiparallel group velocities of the perturba­
tions, the convective outflow of the oscillation energy 
from the region of parametric resonance is appreciably 
slowed down. The gain of the perturbations then reaches 
values so large that the mechanism of stabilization of 
the absolute instability by the two-dimensional inhomo­
geneity of the pump wave does not have time to go into 
effect. 

In the case of antiparallel group velocities of the 
perturbations (with allowance for the dispersion incre­
ments, this imposes the requirement iJ.l/iJ.2 = -Vl/V2), 
the two -dimensional inhomogeneity does not stop the 
absolute instability; for any direction of the field 
gradient of the pump wave, the components of the drift 
velocities of the perturbations along the inhomogeneity 
have opposite signs, so that transformation of the oscil­
lations on the pump boundary leads to reflection of the 

,OSCillations towards an increasing pump field, thus pre­
venting convective outflow of the perturbations. An ex­
ample of such a decay is the decay of an electromagnetic 
wave into a plasmon and phonon, which was investigated 
in Sec. 1. 

We now discuss the case of large amplitudes of the 
pump wave, when the dispersion of the growing pertur­
bations is determined by the high-frequency pump field. 
By way of example, we consider the decay of an electro­
magnetic wave into two plasmons. In the approximation 
where the inhomogeneity is smooth, we obtain from (1.1) 
the following model equation: 

a' a' ()') (-.+--20-- 111=0 
az' Ely' azEly , ' 

(2.6) 

where 0'( z, y) coincides with the parameter of formula 
(1.5). We note that in the geometrical-optics approxi­
mation we obtain from (2.6) the dispersion equation (1.5). 
We write down the equation of the characteristics 

dz/dy=o± facI. (2.7) 

We see therefore that Eq. (2.6) is of the hyperbolic type 
in the region where 0' > 1 and of the elliptic type at 
0' < 1. Thus, the degeneracy line is given by the equation 
0'2(Z, y) = 1. We shall henceforth assume O'max> 1. 
For focused waves, the lines 0'2 = const are closed 
curves, and near the focus they differ little from el-
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lipses. The characteristics (2.7) have in this case two 
Singular points of the focused type, located on the de­
generacy line and defined by the condition dz/ dy = 1. It 
can be shown that as a result of reflection from the de­
generacy line the characteristics, unwinding from one 
Singular point, then wind themselves on the other singu­
lar point. At the singular points, the characteristics are 
tangent to the degeneracy line. 

Let us consider now the question of quantization of 
the two-dimensional equation (2.6). First, in the elastic­
ity region (ci < 1). we can construct solutions that de­
crease at infinity and assume certain values f( s) (the 
function f( s) is continuous) on a contour located near 
the degeneracy line. Then, continuing this solution into 
the hyperbolicity region, we find that the solution should 
have singularities on the degeneracy line at the singular 
point of the characteristics. Let us investigate the solu­
tion near a singular point. In the case (O"max - 1)« 1, 
Eq. (2.6) near the singular point can be transformed 
into 

( 
:&' ) 0'(D 0(D 0'(D 

y-- -+a---=O, 
2 oy' oy ox' (2.8) 

where a is a constant. For (2.8) the degeneracy line is 
y = x2/2, and the hyperbolicity region is y > x2/2. We 
note that an equation of the type (2.8) was considered 
earlier by Piliya and Fedorov[l5] in connection with an 
investigation of the singularities of the wave field in an 
anisotropic plasma with two-dimensional inhomogeneity. 
The one-parameter family of solutions of Eq. (2.8) that 
decrease far from the singular point is expressed in 
terms of the hypergeometric function 

(2.9) 

where the parameter 13 is subject to the requirement 
Re 13 > 0, 

y,-~ +~+i (~+~-a) ctg 0 R= ~ + ~ (1- By) ctg 0 
4 4 '2 2 :&' 

and (} =tan-1(71/2). We note that with the aid ofthe 
variables ~ = 2 in x and /; = y/x2 Eq. (2.8) is trans­
formed into an equation with one-dimensional inhomo­
geneity along the coordinate /;. Along the normal curve 
y/x2 = const the solution (2.9) varies in proportion to 
x-2t3. Near the origin, at I y/x21 » 1, the solution has 
the asymptotic form ~ 13 ~ (8y - qx2 t~, where q = 1 
- i tan (}. Thus, for solutions that decrease at infinity, 
a singularity exists at the singular point x = 0, y = O. 
The solutions are limited at the singular point because 
of the small imaginary increment of part of the function 
0"( z, y), which arises as a result of the difference be­
tween the plasmon frequencies. 

To illustrate the quantization singularities in the 
two-dimensional case, which are connected with the 
presence of the degeneracy line and of the aingular 
point~ of the characteristics, we consider the equation 

( 0 0 2 0 0' -+-) 'l'+sgn(r-b) (---) '¥=O, OZ oy ax oy (2.10) 

where r = ..JZ2 + y2 and b is a constant (b> 0). An 
equation of this type can be obtained from (2.6) by as­
suming that the function O"(z, y) is a step function. 

Equation (2.10) is of the hyperbolic type inSide the 
circle r < b, and is a two-dimensional Laplace equation 
outside the circle. In the hyperbolic region the charac­
teristics are parallel to the coordinate axes, and their 
trajectories are closed and form perimeters of rec-
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tangles inscribed in the circle r = b. For Eq. (2.10), 
the quantization problem can be solved completely. In 
the ellipticity region, the solution in terms of the polar 
coordinates r and (} takes the form 

.!!. (b)' 'l'= E -;:- (F.sinnIHP.cosnO), r>b. (2.11) .-. 
In the hyperbolic region we have 

/ 

'¥=u( ~ cosO )+w( TSinO), r<b, (2.12) 

where U and Ware arbitrary functions to be deter­
mined. Matching the solutions (2.11) and (2.12) on the 
degeneracy line r = b, we obtain, from the conditions 
that the functions and their first derivatives be continu­
ous, equations for the determination of the arbitrary 
functions U and W. It is convenient to introduce the 
basis solutions W(l,2) (r, (}). We specify them in the el­
lipticity region by means of the formulas 

(1) (b)', 'l'. = -;:- smnO. (2) (b)' '¥. = -;- cos nO, r>b. (2.13) 

As a result of matching on the degeneracy line, the 
solutions (2.13) generate a family of functions U~ 2) 
and W~,2). We present some of the solutions lltn in the 
hyperbolic region: 

We call attention to the fact that the second deriva­
tives of the solution \lI"f) and llt~l) increase without limit 
as they approach the degeneracy line from the hyper­
bolic region at the Singular points (} = 0, 1r and (} = 1T/2; 
31T/2. The indicated points are remarkable for the fact 
that one of the characteristics is tangent to the degen­
eracy line at these points. Thus, although the solutions 
of (2.10) that decrease at infinity are bounded on the 
entire (x, y) plane, nevertheless the presence of singu­
lar points on the degeneracy line leads to singularities 
of the higher derivatives of the solutions at these points. 

We note also the Singularities of the solution of the 
initial-value problem in the case of strong pump fields. 
At large pump-wave amplitudes, the plasma is similar 
to a strongly anisotropic dielectric, and therefore 
singularities of the type of resonant cones, which are 
conSidered, e.g., in[18], can be observed in the distribu­
tion of the perturbation field. 

CONCLUSION 

We present a brief summary of the results. 

1. We have demonstrated the existence of absolute 
instabilities of focused waves in a plasma; these insta­
bilities are due to capture of growing oscillations due 
to focus of the pump wave. Since the focusing region is 
determined by the external conditions, it is possible to 
shift the region of buildup of the oscillations over the 
volume of the plasma by changing the position of the 
focal point. 

2. The class of absolute parametric instabilities in­
creases appreciably for the focused waves, and this is 
of particular importance in the case of the interaction 
of powerful radiation with an inhomogeneous plasma. 
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3. Attention is called to the need for taking into ac­
count two-dimensional inhomogeneity in the investiga­
tion of parametric instabilities. The conditions are in­
dicated for the stabilization of the absolute instability by 
two-dimensional inhomogeneity of the pump field. 

4. It is shown that when the two-dimensional inhomo­
geneity is taken into account, a strong anisotropy can 
arise in the distribution of the fields of the trapped 
plasma oscillations. The plasma perturbations trapped 
in the two-dimensional well are localized near certain 
singular points of the characteristics of the wave equa­
tion. 
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