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The small angular perturbations that arise in a spherically symmetric photon distribution during stimulated 
scattering by free electrons evolve in time. The perturbations can propagate upward along the frequency 
axis, whereas the main photon flux moves downward along the same axis. 

The classical random electromagnetic -wave field 
can be described as an ensemble of photons. The fact 
that photons are bosons is important in the investiga­
tion of the interaction of a photon gas with electrons: 
the probability expression contains the characteristic 
factor n + 1, which means that the photons in a given 
cell effectively "attract" other photons into the cell. 

The question arises whether an anisotropy does not 
spontaneously arise in the photon distribution in phase 
space in processes in which the direction of motion of 
the photons can change, i.e., during their scattering. 
Will a photon excess in a certain solid angle not attract 
into this solid angle other photons, thereby enhancing 
the anisotropy? In other words, it is necessary to con­
sider the stability of an isotropic (spherically sym­
metric in phase space) photon distribution against angle­
dependent perturbations, i.e., perturbations which de­
stroy the isotropy. 

Let us recall that, depending on the form of the 
initial spectrum, stimulated scattering can lead to the 
contraction or divergence of a directed radiation 
beam(l] with a certain angular aperture, whereas, evi­
dently, spontaneous scattering rapidly equalizes any 
anisotropy. It is expedient to consider the problem at 
once in the limiting case when stimulated scattering 
predominates. As is well known, in this case the quan­
tum language is only a convenient (but not an indispensa­
ble) means of describing the classical electromagnetic 
field and its scattering in the random-phase approxima­
tion. Stimulated scattering leads to effects that depend 
on small frequency shifts t:.vlv "" hvlmc 2 during the 
scattering; therefore, the condition for the predomi­
nance of stimulated scattering turns out to be not 
n» 1, but the stronger condition (an/av)t:.v» 1, which, 
for an/av ~ nlv, leads to n> mc 2/hv and kTb "nhv 
> mc 2, where Tb is the brightness temperature. 

In the isotropic problem, the equation describing the 
evolution of the spectrum was derived by the late A. S. 
Kompaneets in his outstanding paper[2]. In the limiting 
case when stimulated scattering predominates and in 
the nonstationary problem without sources and without 
photon leakage (an unbounded, homogeneous, coordinate 
space) an equation in the characteristics is obtained 
which can lead to the generation in phase space of a 
shock wave[3] with a peculiar structure[41. 

In such a nonstationary formulation of the problem, 
the initial nonspherical perturbations also move along 
the spectrum, but with a velocity and an amplitude­
variation law that are different from the velocity of and 
amplitude-variation law for the main unperturbed 
spherically symmetric (isotropic) photon distribution. 
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Consequently, the ratio of the perturbation to the un­
perturbed background does not remain constant. Below 
we give formulas that describe this phenomenon. 

However, the treatment of the steady-state (i.e., 
time-independent) unperturbed situation corresponds 
more to the usual terminology in stability problems. 
For this purpose, it is necessary to include in the equa­
tion, besides scattering, the production of photons and 
their absorption-true of effectively describing the de­
parture of photons contained in a spatially bounded 
system. 

According to general theorems, perturbations depend 
on time exponentially, i.e., vary as eAt, if they develop 
in a background of a steady-state, unperturbed solution. 
The sign of A determines the stability. Here, however, 
it becomes evident that the photons flow monotonically 
and "hydrodynamically" downward along the frequency 
axis, and do not diffuse upward and downward at least in 
the regime in which stimulated scattering predominates. 
For this reason, a nonspherical perturbation in a source 
with v " Vo does not intensify at this frequency, although, 
as will be shown below, it does give rise to nonspheric­
ity downstream or upstream. We find that A == 0 and 
that the instability effectively manifests itself in the 
growth of a specific type of nonsphericity as v is de­
creased or increased. 

In future, the stability analysis should be extended to 
perturbations of spatial homogeneity and polarization, 
considering the consistent dependence of the perturba­
tions on angle, coordinates, and polarization. The 
analysis carried out below may seem inexact, owing to 
the correlation between the scattering angle and the 
polarization of the scattered wave, but the corrections 
are, probably, small. The questions touched upon in the 
present note apply almost in their entirety to other 
types of plasma and acoustic oscillations. 

As long as the random-phase approximation is valid, 
the introduction of quasiparticies-photons, phonons, 
etc .-and the construction of kinetic equations for them 
did and still do constitute a powerful method of describ­
ing nature. 

1. THE BASIC EQUATION 

Induced Compton scattering of radiation by free elec­
trons in an unbounded homogeneous medium is de­
scribed by the integro-differential equation[4-61 

an(v, Il,'ll) 

at n(v, e, 'll) S A (v, v', a) n(v', e', 'll')dv' deose' dq/ 

with the antisymmetric kernel 
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A(v,v',a)=~ oTI".k 1 (me') '" (1+ cos' a) 
8Jt mc l'2Jt kT, (1- cos a),l. 

v"(v-v') { mc'(v-v')'} 
X exp . 

v' 4kT.v'(1- cos a) 

In (1), n = c2 Jv 181Thv 3 is the photon occupation number 
in phase space and the scattering angle a is determined 
by the relation 

cos a=cos 8 cos 8' +sin 8 sin 8' cos (<p-q/). 

The kernel A( v, v', a) is the derivative of the Gaussian 
function describing the change in frequency during the 
spontaneous scattering of a monochromatic line by 
Maxwe llian electrons. 

In the case of an isotropic field of radiation with a 
broad spectrum Ll.v » Ll.vD = (2kTe/mc2 )1/2V, Eq. (1) 
can be reduced to the following differential equation, 
first derived by A. S. Kompaneets[21: 

aj aj 
Tt=aja;; 

j=nv', 
2oTN,k 

a=---, 
mc 

(2) 

In the anisotropic case l ), (1) also gets simplified when 
the spectrum is broad: 

a/(v, 8, <p, t) 
at 

bj( 8 ) J aj(v, 8', <p', t) = v, ,<p,t av (1-cosa) (1+cos'a)dcos8'd<p', 

b=~ oTN,k =_3_a. (3) 
8Jt mc 16Jt 

2. STABILITY OF THE SPHERICALLY SYMMETRIC 
SOLUTION 

Let fo be the spherically symmetric solution to the 
Eqs. (2) and (3), and let 0 be a small perturbation of 
this solution. Then Eq. (3) assumes the form (f =fo(v, 
t) + O(v, e, cp, t»: 

where 

c.=16Jt/3, c t =-32Jt/15, c,=8Jt/15, c,=-8Jt/35; 
cn=O for n>3. 

Therefore, for example, 
au.... alnf. 
---at =U,m ---at' ~=const(t). 

f. 

(8) 

It can be seen from (8) that the perturbation propa­
gates along the characteristic 

dvl dt=-cnb/. (9) 

with a velocity proportional to fo. But the velocity of 
their motion along the frequency axis differs from the 
velocity of the downward motion of the main (spherically 
symmetric) photon flux 

dvldt=-a/.';'-"I,Jtb/., 

which is determined by Eq. (2). Since the coefficients 
Cn have different signs, it follows from (9) that the 
perturbations in which only the functions Y2m have 
been substituted propagate downward along the fre­
quency axis with a velocity equal to one tenth the 
velocity of the isotropic solution. The perturbations 
corresponding to Y1m and Y3m move upward along the 
frequency axis with velocities that are respectively 
2.5 and 7013 times less than in the fundamental solu­
tion2). The spherically symmetric perturbation (corre­
sponding to Yoo ) naturally moves downward along the 
frequency axis with the same velocity as the fundamental 
solution. 

The second distinguishing feature of the equation (8) 
for the harmonics is the presence of the inhomogeneous 
term, so that the quantity Unm for 1 ::s n::s 3 is not 
conserved along the characteristic (9). In order to 
graphically present the result, let us find the quantity 
that is conserved along this characteristic. Let us 
write, dropping part of the indices, the system of equa­

al) i) lnf. J al) (+')d' d ' 
(4) tions (8) and (2) in the form 

-=I)--+bf. -(1-cosa) 1 cos a cos8 <p. 
at at av 

Let us expand the perturbation 0 in a series in terms 
of the spherical functions: 

0= L. L. Unm (V,t)Yn",(8,<p). (5 ) 

where dn = cnb, f = fo, and u = unm. It is not difficult to 
find such r = al (dn - a) that 

auj'lat=dn/auj'lav 

n-' m __ n and ufr = const along the characteristic dvl dt = -dnf, 
The transformation angle function in (4) can be expanded which clearly coincides with (9). 
in terms of the Legendre polynomials Pn : 

Hence it is easy to also determine the law of varia­
(1-cosa) (Hcos' a) ='I"P.-'I,Pt(cos a)+'I"P,(cos a)-'I"P,(cosa) . (6) tion of the relative amplitude of the perturbation: 

On account of the addition theorem for spherical har-
monics, 

unmlj.= const . r;'-' = const . /."'<0-"'. (10) 

For all 1::s n::s 3, the difference a - dn is positive, 4n m-a 

Pn(cosa)=--~ Yn",(8,<p) Y.",'(8', <p'), 
2n+1 L..J 

where Yrim is the complex conjugate of Ynm . 

(7) i.e., the sign of the power -(r + 1) = dnl(a - dn} de­
pends only on the sign of dn = cnb. This power is posi­
tive for n = 2 and is equal to -(r + 1) = 7'9 and negative 
for n = 1 and n = 3, it being respectively equal to 

It follows from the orthogonality of the spherical 
functions and from the formulas (4)-(7) that only the 
angular perturbations containing the first spherical 
functions with n::s 3 will behave nontrivially. The 
higher harmonics will neither intenSify nor attenuate in 
stimulated scattering, since they cause the integral on 
the right-hand side of (4) to vanish. The substitution of 
(6) and (7) into (5) and (4) allows us to find the equations 
for unm: 
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-(r + 1) = -% and -(r + 1) = -%3. 
To solve the problem completely, we must first solve 

the unperturbed problem, and then, knowing fo(v, t), 
construct the characteristics unm of the perturbations. 
Owing to their different velocity, they do not coincide 
with the characteristics of fo, so that fo;1O const along 
the unm characteristics. Consequently, the rate dvl dt 
is also not a constant along the unm characteristics; 
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they are curves in the II - t plane. Since fa is not a 
constant, the relative perturbation is, according to (10), 
also not a constant, but the sign of the answer for a 
given harmonic (the growth or decrease of the relative 
perturbation) depends on whether we are dealing with an 
increasing or a decreasing unperturbed solution. 

The authors are grateful to V. Ya. Gol'din for dis­
cussions. 

1)rf the radiation is effectively concentrated in a cone of width 00, i.e., 
if f ~ 0 for 0 > 00> then the restriction on the spectral width becomes 
less rigid: ~v ~ ~vD(1 - cos ( 0 )112. 

2)The motion of the characteristic upward along the frequency axis is 
surprising. The equation is valid for any electron temperature-in parti­
cular, at zero temperature, in which case the photon frequency can 
only decrease in a scattering process. However, we are here dealing with 
the propagation of the phase density, and not of the photons them­
selves. Because of the Bose factors, the scattering of photons of a 
given frequency v depends on the density n(v') of those photons (with 
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v' < v) that are produced after the scattering: n(v') has an influence on 
iln(v)/ilt when v > v'. 

lV. Ya. Gol'din, R. A. Syunyaev, and B. M. Chetverush­
kin, Zh. Eksp. Teor. Fiz. 68, 36 (1975) [SOY. Phys.­
JETP 41, No.1 (1975)]. 

2 A. S. Kompaneets, Zh. Eksp. Teor. Fiz. 31, 876 (1956) 
[Sov. Phys.-JETP 4,730 (1957)]. 

3 ya . B. Zel'dovich and E. V. Levich, Zh. Eksp. Teor. 
Fiz. 55, 2433 (1968) [Sov. Phys.-JETP 28, 1287 (1969)j. 

4Ya. B. Zel'dovich and R. A. Syunyaev, Zh. Eksp. Teor. 
Fiz. 62,163 (1972) [SOY. Phys.-JETP 35, 81 (1972)]. 

5 ya . B. Zel'dovich, E. V. Levich, and R. A. Syunyaev, 
Zh. Eksp. Teor. Fiz. 62, 1392 (1972) [Sov. Phys.-JETP 
35,733 (1972)]. 

6 ya . B. Zel'dovich, Usp. Fiz. Nauk 115,161 (1975) [SOY. 
Phys.-Usp. 18,79, (1975)]. 

Translated by A. K. Agyei 
87 

Va. B. Zel'dovich and R. A. Syunyaev 393 


