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We consider Stark profiles of hydrogen spectral lines in a plasma, with account taken of the nonadiabatic 
action of the Langmuir noise. It is shown that the decrease of the lifetime of the atom in an individual 
Stark state under the influence of Langmuir noise leads to two principal effects: the appearance of 
characteristic "reliefs" on the quasistatic profiles of the sideband components, and broadening of the 
central component. Both stochastic and regular plasma oscillations are considered, and a comparison is 
made with the existing experimental results. It is shown that measurement of the "reliefs" on the line 
profile makes it possible to determine such turbulent-plasma parameters as the noise energy density and the 
characteristic frequency of the nonlinear processes. 

1. INTRODUCTION 

The theory of Stark broadening of spectral lines is 
based on separate allowance for the low-frequency (LF) 
and high-frequency (HF) components of the electric 
microfield [l,2J. Accordingly, one of us [3J has formula
ted a theory of Stark broadening of hydrogen lines in a 
turbulent plasma, in which account is taken of the quasi
stationary character of the action of the LF (ion-sound) 
and of the non-adiabaticity of the action of the HF 
(Langmuir) noise on the radiating atom. 

The quasistatic theory of the action of LF noise was 
confirmed in a number of experiments with different 
methods of turbulence excitation (see, e.g., [4J). This 
theory was subsequently developed by us in [5J. The non
adiabatic character of the broadening by HF noise has 
also found confirmation in laboratory [6J and computer (7J 
experiments. In many theoretical papers [S-10J, however, 
the nonadiabaticity of the action of the HF noise on the 
hydrogen atom was ignored. Within the framework of the 
adiabatic approximation, the action of the HF noise leads 
to a single effect, namely to the appearance of "satel
lites," the seuch for which was the subject of a number 
of experimental studies [11, 12J . 

The experiments have indeed verified the existence of 
several singularities on the profile of the hydrogen line 
near the "satellite" frequencies, but the structure of 
these singularities differed from that calculated on the 
basis of the adiabatic model. It is natural to assume that 
these deviations are due to the inadequacy of the adia
batic approach for Langmuir noise. 

In the present paper we analyzed the contour of the 
hydrogen line with allowance for the simultaneous action 
of a low-frequency quasi static field and a high-frequency 
nonadiabatic field of the oscillations, and principal atten
tion is paid to those singularities on the quasi static 
profile which are due to the resonant change of the life
time of the atom on the Stark sublevel in the presence of 
a high level of stochastic Langmuir noise. As will be 
shown later on, this approach makes it possible to inter
pret the experimental results more completely and in
controvertibly than in the case of the adiabatic approxi
mation. 

In [8-10J , no attention was paid to the difference between 
the "stochastic" and "stationary" random fields. It is 
known from the theory of random processes (see, 
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e.g., [13 J) that if the evolution has a stochastic character,
then the state of a system at the instant of time t cannot 
be, generally speaking, uniquely determined by its states 
in preceding instants s < t, and is described by proba
bility laws. E. V. Lifshitz [SJ has represented the elec
tric field of a one-dimensional spectrum of Langmuir 
noise in the form 

J 

E,(t)= LE;cos(Q;t+<p;), 

where the amplitude Ej and the frequency nj ~e giv.en 
functions of the wave number kj ; the phase shift CPj IS a 
random quantity uniformly distributed over the interval 
(0, 21T); j is the number of the wave packet1). This func
tion EZ(t) corresponds to a stationart random process 
which, in spite of the terminology of 8J, is not stochas
tic. Indeed, in each term the pha~e ~hift CPi'. once ~hosen 
(at the instant so), does not vary 10 time, aM the fleld 
EZ(t) is uniquely determined for any t > so. The corre
sponding correlation function oscillates with a frequency 
close to the plasma frequency nZ' A physical consequence 
of this model is the absence of additional damping of the 
atomic oscillator and the appearance in its spectrum of 
satellites at frequencies that are multiples of nZ' 

The inconSistency in the terminology was preserved 
also in later papers of Yakovlev and Dolginov (9, 10J . 
Thus, Yakovlev [9J cites the results of the paper of E. V. 
Lifshitz [8J as a calculation of the line profile in stochas
tic fields. Moreover, he makes in [9J the curious state
ment that according to[sJ the profile of the Stark com
ponent has a Lorentz shape with a half-width 

00 

y=2a's' J (E(O)E(t»dt. 
o 

It is easy to verify, however, that no profile obtained by 
E. V. Lifshitz has or can have a Lorentz shape, inas
much as in principle the formulation of the problem does 
not include the damping connected with a finite phase 
memory. As to the foregOing integral of the OSCillating 
correlation function with respect to time, it is simply 
equal to zero for the field considered by E. V. Lifshitz. 

Yakovlev and Dolginov[9,10J have proposed to desig
nate the plasma oscillation field as stochastic at To nHF 
~ 1 (To is the smallest time scale of the plasma turbu
lence), when the oscillations are transformed into an 
aperiodic process, and to call the field regular at ToOHF 
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» 1.2) However, such a field is ipso facto stochastic in 
both cases, since it is strictly determined only on finite 
time intervals (smaller than To). A reasonable class
ification of fields into regular and stochastic can be 
carried out only when account is taken of the reaction of 
the atom to the field. To this end it is necessary to com
pare To not with the period of the field THF '" 21TUHF, but 
with the time to characteristic of the atom. In a plasma, 
to is determined by the frequency of the strong collisions 
Ys: 

to -'-y ,-n'h'Njm'V To 

(n is the principal quantum number, N is the density of 
the plasma, and m and V Te is the mass and thermal 
velocity of the electrons), which lead to a "destruction" 
of this Stark state with a probability close to unity [1). 

The difference between the "stochastic" and "station
ary" random fields is not significant in the calculation of 
the instantaneous characteristics, but is decisive for the 
temporal correlation functions, which enter in the ex
pressions for the line profile. As a rule, the nonlinear 
processes in the plasma lead to a stochastic character 
of the oscillations. For two-stream instability, for ex
ample, the Langmuir noise consists of trains of harmonic 
oscillations with average duration To ~ (3 to 10)THF 
« YS1 [14J. Nonetheless, experimental conditions are 
possible in which To » YS1. In this study we investigate 
both stochastic and regular action of HF noise, and 
demonstrate the decisive role played by nonadiabatic 
effects in the formation of the line profile. 

2. FORMULATION OF PROBLEM 

In a plasma, the hydrogen atom is situated in an elec
tric field that can be regarded as a superposition of a 
quasi static field F produced by the ions and by the LF 
noise, and an HF field E(t) produced by the strong (Es(t» 
and weak (Ew(t» collisions during individual passages of 
the electron inside the Debye sphere, and by the 
Langmuir noise EZ(t). The stochastic field of the 
Langmuir noise can be represented in the form 

J 

E,(t)= r. E;(t)eos {QJ+'1;(t)}, (1) 

where the phase shift 'Pj (t) and the amplitude Ej (t) change 
their values with each change of the state of a certain 
Poisson process with average counting rate yZ; between 
the changes of the state, the 'Pj (t) and the components 
Ef (t) are constant and assume random values with a 
definite distribution law. In particular, the phase shift 'P' 
is uniformly distributed over the interval (0, 21T) with a J 
density 1/21T. The frequency Yl :S Uz is the largest of 
the characteristic frequencies of the nonlinear processes 
(generation of oscillations, induced scattering by parti
cles, etc.). The stochastic function EZ(t) in (1) is a real
ization of a jumplike (purely discontinuous) homogeneous 
Markov stationary random process. 

We confine ourselves to the case when the average 
amplitude Eo == ((IEz(t)n)1/2 of the HF noise is small in 
comparison with the average value Fo of the LF field3 ). 

Then the inequality IEZ (t) I « F holds for most atoms 
and for the greater part of the time. In this case the 
field F determines the quantization of the atom in the 
upper (a) and lower (b) states and the precession fre
quencies w~b = 3na,beaoF/211 of its dipole moment d, 
while the HF field can be regarded as a perturbation. 
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The field Es (t) of the strong collisions constitutes 
short-time bursts (of duration ~nll/Te) of large ampli
tude (Efax » (F, Eo», the appearance of which is a 
Poisson process with average counting rate Ys' A strong 
collision disrupts the initial (0') and final ((3) states of 
the atom and ceases the process of emission of a given 
Stark component. 

The additive description in [2) of the strong and weak 
collisions in the impact-broadening operator does not 
reflect the situation adequately. Even in the initial ex
pression for the profile of the component Sa{3 it is neces
sary to take explicit account of the fact that the auto
correlation function of the light-wave amplitude differs 
from zero only in the time interval t17 between the 
strong collisions, which is a random quantity with a 
distribution density Y s exp (-YS~T): 

w ~, 

5.,«0, F) = Re S d("'Th.e~~;'" S dT e"w w.," 

(2) 

where w is the observable frequency reckoned from the 
unperturbed position Wo; w a{3(F) = (d aa - d{3{3)F/Ji. 

The evolution operator is 

" 
T( T, T') ~ exp {+IIo(c-T') } exp { - :1 [Ho(T-T) +S dt(Vw+ V,)]}, 

where Ho is the Hamiltonian of the hydrogen atom in the 
static field F, Vw '" d' Ew(t), and Vz = d· EZ(t). Since the 
random functions Ew(t) and EZ(t) are not correlated, the 
action of weak collisions in the HF noise can be calcu
lated independently. In particular, the effect of weak 
collisions reduces to a replacement in [Ta(T, O)Tt;(T, 0)] 
of the operator 

i j: - - dt (d.-d;) Ew (t) 
h 

by 4>ib T, where 4>ib is the operator of impact electron 
broadening [2J (after subtracting the term describing the 
strong collisions). 

For the case of isolated lines (W~) - w ~) » Ys ), 

only the diagonal matrix elements of the evolution opera
tor are significant [15). In this case 

[T.( c, 0) T; (T, 0) ]a.~~ "" 

"" exp{[ tD,,"].o", T} [p exp (-...!.... f dt(V,.-V"')')] , 
fi aa:lJtJ 

(3) 

• 
where the prime denotes the interaction representation 
and P is the chronological operator [16). The result for a 
simultaneous perturbation of the levels a and b can be 
obtained in rather simple manner from the corresponding 
results for one level [1, 15J. Thus, our problem reduces 
to a calculation of the expression 

[T,(T,O)] .. =pCXp ( - ~ J dt dE, (t) ). 

3. EVOLUTION OPERATOR IN THE 
STOCHASTIC CASE 

(4) 

As indicated in the introduction, the atom senses the 
HF noise as stochastic when yZ » Ys' This means that 
in the time interval ~T ~ YS1 between the strong colli
sions there occur many (~YZ~T) sudden changes of the 
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phase and of the amplitude of the wave packets, so that 
each of the quantities 'Pj (t) and Ej (t) of (1), say 'Pj (t), can 
be represented in the form 

Q(t) 

'I';(t) = 1:, 'I';,e(t-T;,)e(T;HI-t), 'I';,=eonst. 

Here Tjq is the instant of the q-th collapse of the phase 
and the amplitude of the j -th wave packet; Q(t) is the 
number of such collapses within a time t (Q(t) :::::: yzt at 
t »y?). 

In first-order perturbation theory we have 
[TZ(T, 0) - 1]~~ = O. 

In second -order we have 
. 1 J 1 t T Tjq+1 

[T'(T,0)-11~~ = -2jf.E .E L S dt 
a' j,j'-.I 1,/=0 T", 

q Ij'q'+l 

X.E S dt' (d •• ,Ejq ) (d.,.E;,,') exp {i(ooa.,t+ooa'.t')} 
(5) 

When summing over q', the second term in the square 
brackets vanishes, and a nonzero contribution remains 
in the first term only from the terms with j' = j and 
q' =q. Recognizing that wQ!'Q! =-WQ!Q!' and 
(dQ!Q!/Ejq)(dQ! IQ!Ejq) = IdQ!Q!/12Ejq /3, we obtain 4) 

The time interval ~Tjq between the phase collapses 
is a random quantity distributed with a density 
yz exp(-YZ~Tjq)' The amplitudes Hjq have a Rayleigh 

distribution WR(Ejq) [5,17] with a mean-squared value Ej. 

IntrodUCing the form of the spectrum of the Langmuir 
noise PT(O) due to the thermal motion, in accordance 
with the relation 

j" aJ" 

.E£/~Eo'S dQPT(Q), 
j=j' 0,' 

I 

Eo'~ 1:£/, 
;-1 

(7) 

we obtain 

(') { Eo' L 'S·, [T,(T,0)-11 a.= --- Id.a,1 dQPT(Q) 
12h' . 

,," ", 
x [ 1 + 1 ]} T. 

y,-i(ooa.,-Q) oy,+i(oo •• +Q) 

(8) 

Inasmuch as [TZ(T + .<1T, T) -1]~~ = [TZ(~T, 0) -1]~~ 
11 ~T, it fOllows that by using the impact-approximation 
formalism [1,2] we obtain the equation 

d 
ih[T, (T, 0) laa=Q) •• [T, (T, 0) 1 •• , 

where ~~Q! is the expression in the curly brackets of (8) 
and depends on the quasistatic field F. 5) 

Consequently 

[T,(T, 0) lJ..,=exp [tlJ •• '(Fh]. (9) 

Thus, the action of the stochastic HF noise leads to the 
appearance of a collective width rg = -Re ~~Q! and a. 
collective shift Dg = -1m ~~ ; these depend in resonant 
manner on the quasistatic fielli 6). 

Considering for the sake of argument the case when 
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yz greatly exceeds the characteristic width (~O)T of the 
spectrum ~(n), we obtain 

E3 (II) Q (a) Q 
D'=~(ld I'-Id I') [ ool' - , + 00" + , ] 

• 12h' aa-I '~+I l.'+(oo~")-Q,)'. 1,'+(oo~.)+Q,)' ' 

where 

(11) 

The formulas for the simultaneous perturbation of the 
uppe~ and lower levels can be obtained from (10) by re
placing 1 (da )Q!Q!'1 2 by 

1 (d.-db)"'''' 1'= 1 (d.).a' 1'8",+ 1 (d,,) '" 1 '1\,.,-2 (d.) •• (db)'" 

As a result we have 

r '-r '+r' - (d.)a.(db)"Eo'y, D.,'=D.'-D,'. 
afl - (1. II 21t"!.(", "!.+~/) " 

4. LINE PROFILE IN THE STOCHASTIC CASE 

(12) 

1. We consider first the profile of the central com
ponent So(w), for which wQ!{3 = O. In this case the collec
tive shift D;{3' as well as the electron impact shift D;{3 

= - 1m ~~{3 (see [15]), is equal to zero. The total profile 
of the component is obtained by averaging over the dis
tribution W st (F) of the LF fields: 

m r '+1' '(F) 
8,(00)= Ida,I'! dFW.,(F) [ra,':r,,(~,)l'+W' ' (13) 

where r;{3 = -Re ~;{3 was calculated in [15]. Under typi

cal experimental conditions we have W~~ «OZ' In this 

case we have for the values of F that are Significant in 
the integration 

e 2 _ (ld"_II'+ld"+II')E,' 
Iv = 12h' ' v=a, ~. 

(14) 

Consequently, the central component has a Lorentz pro
file with half-width (.<1wh/2 :::::: r~{3 + r~{3(O) (see Fig. a). 

At a sufficiently high level of the LF noise, the rela
tion web) ~ Oz may be satisfied. In this case 

Fo 

Profile of Ly-a hydrogen line 
in a turbulent plasma with N '" 1017 

em'3 , Te '" 100 eV, and Ta '" 0.1 
e V following excitation of strong 
HF (Fo '" 500 kV/cm) and 
Langmuir (Eo'" 300 kV/cm) 
noise: a) the HF noise is 
stochastic ('Yl '" 2 X lO12 sec' l 
»'Ys"'3 X 109sec'I); b) the HF 
noise is regular ('Yl« 3 X 109 

sec' I ); the dash-dot curve shows 
the red shift of the maximum; the 
dotted curve shows the profile of 
the nonadiabatic "satellite" of the 
central component. The dashed 
line shows the profile in the 
absence of HF noise. 
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r.~'(F) "'r.~'(Fo) "'21'[ (B,./WF )'+ (E'~/W~) )'). (15) 

2. We now consider the singularities of the sideband 
profiles. It follows from (13) that an atom executing a 
transition a - f3 in a field F emits a Lorentz line of 
width r~f3 + r~f3(F) with a center at the frequency 

wa f3(F) + D~f3 + D;f3(F). Since different atoms experi
ence, generally speaking, the action of different fields F, 
the observed profile is the envelope of Lorentz contours 
radiated at different values of F. As a rule, we have 

In this case the envelope is for the most part propor
tional to Wst(F)[3,5]. The deviations from the quasi
static profile come from radiators for which the preces
sion frequency w~,b) for the upper or lower level is at 
resonance with Uie frequency o.Z of the HF noise. On the 
sideband component contour, this corresponds to the fre
quencies7) 

(16) 

Let us investigate first the case when n1 - n2 = 0 for 
the upper or lower level (for the sake of argument we 
put (n1 - n2)a = 0). Then the collective shift is D~ = D~ 
= O,and for the frequencies w near W1 the profile of the 
component can be represented in the form 

S (w)"" Id I'f~ dFW (F) r.'+r.' (F) 
., ., .. [r.'+r.'(F) )'+ (w+d"F/Ii)' . (17) 

o 

The qualitative character of the singularities of the con
tour at the frequency W1 is clear directly from (17). 
Atoms situated in a field F~ = Ilo.z/ldaa - da _ 1 a-11 
radiate a broader Lorentz profile (in comparison with 
other atoms), which is consequently less intense in its 
central part and more intense in the wings. Therefore 
the envelope passes lower than its "quasistatic" position 
near the frequency W = -dI'lI'lF~/1l = W1 and higher near 
the frequencies W1 ± L1w (L1W ~ (El aYZ)1/3. Such a "relief', 
which consists of a "valley" and two "hills," will be 
clearly pronounced in the case E1a/Yz » (r~, YZ). 

Calculation shows that under this condition the half-width 
of the valley is 

(Aw,) '1,= [e ,.'11 (n, -n,) ,'n,'/no') 'I" 

and its depth amounts to 2/3 of the unperturbed value of 
the intensity. 

3. Let us investigate finally the joint action of the 
collective width and the collective shift. It follows from 
(11) and (15) that if, for example, (n1 - (l2)a > 0, then 
D'ir > 0 at w~) > o.Z and D'ir < 0 at w~J < o.Z' with ID;I 
reaching a maximum at Iw(a) - n I = I' • This means that 

F Z Z 
the maximum of the radiation intensity shifts in the red 
direction for atoms in a field F < F*, and in the blue 
direction for atoms in a field F > i1,. One should there
fore expect simultaneous action of the collective width 
and collective shift to cause the "relief' near the fre
quency W1 to become more clearly pronounced (see 
Fig. a).B) 

For the frequency W2, the result depends on the ratio 
of the signs of (n1 - n2)(3 and W2. If the signs are oppo
site, then the result comcides with that described above. 
If the signs are the same 9), then the effects of the width 
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and of the shift are oppositely directed. Indeed, D~1'l 
= D~ - D~, and in the case, for example, when (nl - n2)1'l 
> 0, the maximwn of the radiation intensity shifts 
toward the blue at F < F* and towards the red at 
F > Fb, thus leading to ~e "relief smearing" connected 
with the collective width rg (F), 

Calculations shows that at W~) »E2a » yZ in the 

"relief' at the frequency W1 the half-width of the valley 
is (L1wrh/2 = E2aVwdnZ' and its depth is 
~[1 - (EiaYZ/2E2a) x v'wdnz], where E2a 

== l(d aa_112-ldaa +112)EU121l2. For the frequency W2, 
in the case (nl - n2)l'lw2 > 0, under analogous conditions, 
the "relief' turns out to be Shallow (the depth of the 
valley is (E2aYZ /2Ela)vnZ! W2 « 1). 

5. CASE OF REGULAR ACTION OF 
HF NOISE 

1. At Ys » YZ' the phase and the amplitude of the 
wave packet in (1) can be regarded in the time interval 
L1T ~ Ya1 as random quantities that do not vary with time. 

In second order, calculations analogous to (5) and (6) 
yield10) 

(2) 1 ~ ~ 2 2 [ i't [T,("O)-1) •• = ---"'-.l"'-.lld ••. 1 Ei ---
12h' .' i~1 w •• '-~~; (18) 

+ 1-exp{i(w •• ,-Q,)T} + __ i't_+ 1-exp{i(w •• +Qi)T} ]. 

(w •• '-~lj)' w •• ,+Q, (w •• ,+Q;)' 

Let us write out separately the "elastic" part [TZ - l]el' 
i.e., the terms with a' = a: 

(19) 

In higher even orders, the calculations can be carried 
through to conclusion in the general form only for the 
"elastic" part of the evolution operator. It turns out here 
that 

{ d' J E' 
[(T,Cr,O) •• lel =exp -~ ~-j (1-cosQ,,)} (20) 

GIi' "'-.l Q,' 
i_I 

corresponds to the correlation function obtained by E. V. 
Lifshitz [8J. The neglect, in that reference, of the 
"inelastic" part of the evolution operator is justified 
only in the adiabatic case, when Idaa/lEo/nnZ » 1. The 
envelope of the satellites that appear at frequencies that 
are multiples of nZ is then proportional to the Rayleigh 
distribution WR(E) of the field amplitudes. This result 
corresponds to the quasistatic approximation described 
in[3,5J. In the nonadiabatic case (ldaa/IEo/llnZ« 1) 
formula (20) leads to [(TZ(T, O)aa)ell'>J 1, and we can ex
pect effects connected with the HF noise to become 
manifest precisely in the "inelastic" part of the evolution 
operator. 

We calculate first [TZ(T, O)aahnel for one harmonic 

nj of the HF field. In the case Iw~) - njl »E1aj' as 
can be easily verified, we have 

On the other hand, in the case of resonance 
(IW~) -njl «E1aj) it turns out thatll) 

[Tler,O).')inel "'cos (e,.,,). 
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Formulas (21) and (22) mean that the regular action 
of the HF field does not lead to an additional damping of 
the atomic OSCillator, but only changes the radiation fre
quency. The Stark component emitted in the field F, for 
which IWF - nj I »E Ij' is shifted by an amount nc (F) 
= 2EijWF/(WF - nj); on the other hand, if F is such that 
IWF - OJ I « Elj' then a splitting into two components of 
equal intensity takes place, separated in frequency by 
2Elj' The splitting is noticeable if the width of each 
component is r e « E Ij' 

2. The considered effect is most strongly reflected in 
the prOfile of the Sideband components. Reasoning 
analogous to that given in Sec. 4, leads to the following 
conclusion: on the profile of each sideband component 
there appear, at the frequencies WI and Wa given by (16), 
"reliefs" whose peaks are spaced 4ElvjWl,2/0z apart 
(v = a, (3; see Fig. b). The conclusion drawn for a Single 
harmonic OJ remains in force for the case of a narrow 

spectrum of HF noise with width (AO)T « ElIJ (with Elvj 
replaced in all formulas by Elv)' 

The profile of the central component, under the typi
cal experimental conditions wF 0 « nZ' also changes 
under the influence of the regular HF field; the compon
ent undergoes (for most emitters) a "red" shift that is 
linear in the static field, According to (21), the maximum 
emission of the lines with the central component shifts in 
the "red" direction by an amount DC(Fo) = 2wF EUoi 
(see Fig. b). On the other hand, if wF 0 »OZ' t'hen the 
shift becomes "blue," and decreases to ~2E~/wF • Under 

o 
the influence of the regular HF field, the nonadiabatic 
transitions become manifest, furthermore, in the form 
of two "satellites" whose frequencies Ws are not connec
ted with the frequency of the regular field, but are de
termined by its amplitude, Ws ~ Ell)" At 0z » Elv 
» (Awh/2' the prOfiles of the "satellites" take the form 

S,( eo) =[FoW.t(QtFoIeo.,) 1 [EOWR (eoEo/£,.) leo/eo.,eh' 

Naturally, to observe these "satellites" it is necessary 
to satisfy the. inequality 

[FoW,t(QtFo/eoF') let/leo.,(deo) '/'»1. 

6. DISCUSSION 

1. The foregoing analysis shows that the nonadiabatic 
action of HF noise of not too large an amplitude Eo 
« (Fo, F*) leads to the appearance, on the line profile, 
of a characteristic "relief" near the frequencies Wl(nZ) 
and W2(OZ) determined by formulas (16). The intensity 
oscillations constitute an appreciable fraction of the 
fundamental quasi static profile Sab(W1,2) if Eo » 
Idaa ,I-1 ti: max (YZ' y s). The conditions for observing the 
"relief" are most favorable when Fo ~ F*, for in this 
case the frequencies WI, 2 corresponds to the line wings 
(see the figure), Onthe other hand, if Fo » F*, then 
WI 2 correspond to the central part of the profile, and the 
"r~lief" can be observed only for lines without a central 
component, especially if the line is formed by transitions 
from highly-excited states. 

In the case Fo »Eo »F*, the action of the HF noise 
is adiabatic and the line profile is proportional for the 
most part to the convolution WR(E)*WstCF), a fact corre
sponding to the quasi static approximation ['3, 5J. 

2. When the HF field amplitude increases to Eo » Fo, 
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the conditions for the applicability of perturbation theory 
are violated. In this case the direction of the quasi static 
field F can no longer be used as the quantization axis, 
To determine the frequency of the nonadiabatic transi
tions Ynonad it is natural to use a coordinate system 
with OZ axis along the resultant field E(t) + F, and to 
estimate the time interval A T during which one can speak 
of conservation of the quantum numbers nl, n2, and m. 
Nonadiabatic transitions to other Stark states will be 
caused by "magnetic" interaction [18J, so that the transi
tion probability W a' a can be represented in the form 

6T t .. 

W.,.(d-r)=/i-' I (L.) •• , S dtljl(t)exp [i S eo~;)+FI(t')dt'] ,-, 
o 0 

where Iji is the angle of rotation of the resultant field 
(E(t) + F) from the initial position along E(O). 

Without loss of generality, we can turn to the analysis 
of a simple model in which E and F are mutually perpen
dicular. In this case 

EFsinQ,t 
Ijl=QI F'+ E' cos' Qlt' 

and it is easy to verify that at F « ,jF*E the dipole mo
ment of the atom is rotated together with the resultant 
field through an angle ~ ~ 1 (~ < 1T/2); in this case we 
have W a' a(A T) - 1. Near if, the adiabaticity is strongly 
violated (Wa' a (A T) - 1), so that the atom ceases to 
"follow" the direction of the electric field. Thus, in this 
case an important role is played by the spatial rotation 
of the dipole moment of the atom through the angle 
'if ~ 1, as a result of which the initial orientation is 
completely forgotten. The frequency Ynonad which de
termines the half-width (Aw hl2 of lines having a strong 
central component reaches in this case its maximum 
value Ynonad ~ OZ, For lines without central compon
ents, the value of (AW)1I2 depends on the ratio of 
d aEo/ti: and nZ' At daaEoin « 0z, the Stark components 
cgalesce and (Awh/2 - nZ' On the other hand, if daaEo/n 
» 0Z' then (Awhi2 is determined by the adiabatic split
ting, namely (Awhi2 - daaEo/n. 

A different phYSical situation arises in the case Eo 
» Fo »v'EoF*, namely, the adiabaticity in the rotating 
coordinate system is violated already at Iji « 1. Analysis 
based on the sudden perturbation method, in a coordinate 
system with OZ axis along E(O), shows that when the field 
direction is reversed the atom goes from the state 
(nl n2 m) into the state (n2 nl - m). Thus, one can speak 
of conservation of the quantization axis in the immobile 
coordinate system. In this case, the main cause of the 
line broadening is the stochasticity of the HF noise. 
Consequently, for lines with central component we have 
(Awhi2 ~ Yl' and for lines without the central component 
we have (Awhl2 ~ max (daaEo/ti:, YZ). 

3. In the analysis of the experimental data, particular 
attention should be paid to the wings of the hydrogen 
lines near the frequencies WI and W2 of (16). The appear
ance of a "relief" is evidence of the presence of HF 
noise. However, for quantitative conclusions it is neces
sary to determine the manner in which they are sensed 
by the atom. This can be done by USing the profile of a 
line with a central component whose half-width increases 
only in the stochastic case. 

We note that in the regular case, as follows from Sec. 
5 the satellites and "reliefs" connected respectively 
w'ith the adiabatic and nonadiabatic effects can exist 
simultaneously at El « (wF o' 0Z). The maximum inten-
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sity of the relief is Sr ~ s(nz) ;G wF':/nz/2 at nZ »WFO. 12 ) 

The maximum of the satellite intensity IS 

S,-(e,lQ,)'[S(w) ]"",.-e,'!Q"WF •. 

consequently, Sr »Ss at E1 «w~~/nf4, a limitation 
which is only slightly less stringent than the initial 
E1 « wFo (Eo« Fo). We can therefore expect the profile 
singularities at frequencies that are multiples of nZ to be 
due almost always to nonadiabatic effects. 

In a number of presently known experiments [U, 12J 
with turbulent plasma, characteristic "reliefs" located 
w ~ nZ away from the line center were observed on the 
spectral-line profiles. The results Of[1l,12J can appar
ently be interpreted as nonadiabatic effects of HF noise. 
Gallagher and Levine [llJ observed a clearly pronounced 
"relief" on the HJ3 profile. They treated the two "peaks" 
as adiabatic satellites of frequency nZ and 2nl' The ap
pearance of two satellites of approximately equal inten
sity is possible only in an HF field Eo ~ tmZ/neao 
~ 200 kV /cm. However, under the conditions of [llJ 
(N ~ 3 X 1015 cm-3, Te ~ 10 eV), such strong fields are 
not very probable, since the corresponding noise level 
is E~/41rNTe ~ 1. Moreover, the profile measured in[HJ 
revealed at a frequency w ~ nZ a characteristic 
"valley," a lowering of the profile in comparison with 
the quasi static variation of the intensity; this cannot be 
explained at all within the framework of the adiabatic 
theory. According to the theory developed in this paper, 
the position of this "valley" can be identified with the 
frequency w~a " ni of the most intense component 4a. 
The shallower "va ley" at the frequency w~ "nzl2 from 
the weak component 2a (I2CJ /140 ~ 0.16) can be seen in the 
the central part of the line profile in [llJ. The next 
"reliefs" could appear at the frequencies 3nzl2, 2nZ' 
etc., correspondi!J.g to the far wing outside the range 
investigated in [llJ. 

An estimate based on the formulas of Secs. 4 and 5 
yields Eo ~ 18 kV /cm (for the profile on Fig. 2a of [llJ). 
The LF field intensity calculated from the half-width of 
the line is Fo ~ 42 kV /cm, so that the condition Eo < Fo 
for the existence of the "relief" is satisfied. Unfortun
ately, the experimental data of Gallagher and Levine are 
insufficient for an unambiguous determination of the 
manner in which the atom senses the HF noise, since 
they did not investigate a line with a central componene3). 

A similar explanation can be proposed also for the 
results of the experiments in [12J, where a pronounced 
lowering of the profile was observed in comparison with 
the quasistatic variation of the intensity (plasma param
eters N ~ 3 X 1014 cm-3 and Te ~ 102 ev). The corre
sponding estimates yield Eo ~ 5 and Fo ~ 10 kV/cm. 

Thus, the theory developed above explains the singu
larities of the profiles of the hydrogen lines observed in 
a number of experiments with turbulent plasma as being 
due to nonadiabatic effects of the HF noise. It is impor
tant to note that a simultaneous detailed study of the 
profiles of different hydrogen lines (for example Ha and 
Hj3) makes it possible to determine not only the energy 
density of the HF noise, but also one other essential 
characteristic of stochastic oscillations, namely the fre
quency y[ of the nonlinear processes. Experiments in 
which such a measurement program is completely real
ized have not yet been performed to date. But only such 
a realization of the experiment can provide an unam
biguous answer to the question of the stochasticity of the 
noise and of the noise level. 
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1)ln (8), the number of the packet and the wave number were designated 
by a single index. 

2)It is precisely the latter case which is investigated by Yakovlev and 
Dolginov quantitatively, and furthermore in the adiabatic approxima
tion. The result, naturally, coincides with that obtained by E. V. 
Lifshitz at Idnln2mly'(E1}/hn« I. This circumstance was not noted 
by the authors of [9,10] probably because they used a notation different 
from that in [8]. 

3)This limitation is discussed in Sec. 6. 
4)The distribution of the HF noise is assumed isotropic. 
S)When 0/ *' a the quantity ldaet' I differs from zero only for transitions 

between neighboring Stark sublevels a' " a ± I, for which Iwaa' I 
" wF(a). Here and elsewhere we use in addition to a' also the notation 
a + u, where u is the energy difference between the sublevels a' and a 
in units of hWF(a). 

6)The result (9) was obtained in ,econd order perturbation theory. It is 
easy to verify, however, that at Eo« Fo and (,y[' wF»> I's' the per
turbation-theory series can be summed in all orders, and expression (9) 
remains unchanged. 

7)ln the case of Lyman lines, the singularities appear only at the fre
quencies WI> since the ground state is not degenerate. 

8)1t is assumed that WI has the same sign as (n l - n2)a' This assumption 
is valid for intense Stark components, and in the case of the Ha and Hj3 
lines it is valid for all the components with (n l - n2)a *' O. 

9)For the lines Ha and H/3 this assumption is valid for all the intense 
components with (n l - n')a *' 0, with the exception of 21THa and 
2aH/3' 

lO)The quantity IT/(T, 0) -I] vanishes in all odd orders of perturbation 
theory. 

l1)ln the case of resonance, the terms proportional to Ida±la±212, 
Ida ±2a±31 2 etc. introduce into the evolution operator a contribution 
that is generally speaking of the same order as that of the terms pro
portional to Idoo ±112. Calculation for the Ly-a line shows that the 
deviation from (22) reduces merely to division of the argument of the 
cosine by.j'I. Of course, formula (22) is exact for the central compo
nent of the Ly-a line. 

12)We take into account here the fact that the distribution of the quasi
static fields approaches a Holtsmark distribution in the wing even at a 
high level of the LF noise. 

13)The observations of satellites of the forbidden 6632 A line of Hel can 
be treated as evidence in favor of the regularity observed in [11]. 
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