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Spin-flip phase transitions have been detected experimentally in iron-garnets of the system 
Thx Y 3-x Fes 0 12 , in the temperature intervaI80-200oK, by measurements of the susceptibility, of Young's 
modulus, and of the torque. With lowering of the temperature, in consequence of the change of sign of the 
first anisotropy constant K I , the magnetization vector flips from the [111] axis to the [100] axis. A 
theoretical calculation has been made of the spin-flip phase diagram of a cubic magnet, and the effect of 
domain structure on the character of the phase transition has been investigated. Consideration is given to 
the character of the anomalies in physical properties that occur during spin flip. It is shown that for 
terbium-yttrium iron garnets the phase diagram constructed on the basis of the known values of KI and 
K2 is in good agreement with the phase diagram determined by the experimental data on the susceptibility, 
of Young's modulus, and of the torque. 

1. INTRODUCTION 

In recent years there has been very intensive investi­
gation of magnetic phase transitions of the spin-reorien­
tation type, in which, under the action of temperature, 
magnetic field, or elastic stre sses, the direction of the 
magnetic moments changes with respect to the crystallo­
graphic axes. Transitions of the spin-reorientation type 
are a new class of magnetic phase transitions. In con­
trast to magnetic phase transitions of the order-disorder 
type at points of magnetic ordering, these transitions are 
order-order transitions. 

Spin-reorientation (SR) phase transitions are accom­
panied by anomalies of various magnetic, magnetoelastic, 
and other properties of the magnets, and study of them 
gives important new information both for the general 
theory of phase transformations and for a more complete 
understanding of the nature and peculiarities of magnetic 
ordering in various substances. We note that experimental 
and theoretical investigations of SR transitions have so 
far been made almost exclusively on uniaxial magnets. 
Such transitions have been studied es~ecial1Y compre­
hensively in rare-earth orthoferrites 1]. Meanwhile it is 
known that in a number of cubic ferro- and ferrimagnets 
there is a change of the axis of easy magnetization with 
change of temperature, but these phenomena have not 
been analyzed from the point of view of SR phase tran­
sitions. 

The present paper considers theoretically the condi­
tions for and the character of magnetic phase transitions 
of the spin-reorientation type in a single-domain cubic 
ferro- or ferrimagnet in zero magnetic field, and the 
effect of domain structure on the transition parameters. 
It considers the anomalies of certain magnetic and mag­
netoelastic properties during SR transitions in cubic 
ferro- and ferrimagnets. On the basis of theoretical re­
lations and of the known magnetic anisotropy constants [2], 
a magnetic phase diagram is constructed for the ferrite­
garnet system TbxY3-xFes012. A comparison is made 
between the phase diagram constructed on the basis of 
the anisotropy constants and the phase diagram obtained 
from measurements of the initial susceptibility, Young's 
modulus, and other properties of these ferrite-garnets. 
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2. THEORY OF SPIN REORIENTATION IN A 
SINGLE-DOMAIN CUBIC FERROMAGNET 

It was first shown by Bozorth[3] that the direction of 
the magnetization vector in a cubic crystal at H = 0 de­
pends on the signs and magnitudes of the first and second 
magnetic anisotropy constants, and therefore if the signs 
and magnitudes of the anisotropy constants change on 
change of temperature, this may lead to a reorientation 
of the magnetization vector. Bozorth started from the 
assumption that in a cubic crystal onl~ the high-symmetry 
axes, of the type {loo}, {no}, and {nu, can be easiest 
directions. 

We shall consider how the orientation of the magneti­
zation vector depends on the relations between the aniso­
tropy constants in a cubic crystal; in contrast to Bozorth, 
we shall not restrict ourselves to the distinguished direc­
tions alone, but shall also find, along with the equilibrium 
directions of the magnetization vector, the conditions for 
existence of metastable states. 

In zero field, for a single-domain cubic crystal, the 
free energy contains only magnetic-anisotropy energy. 
If we retain only two terms in the expansion of the mag­
netic-anisotropy energy with respect to the direction 
cosines, we can write the free-energy density in the form 

FA=K,(T) (a,'a,'+a,'a,'+a.'a,') +K,(T) a,'a,'a,'+ ... , (1) 

where Kl (T) and K2(T) are the first and second constants 
of cubic magnetic anisotropy, and where ai are the di­
rection cosines of the magnetization vector. Going over 
to spherical coordinates (the polar axis is [100]), we 
express (1) as 

FA='/,K, (T)sin' 28+ [K, (T) +K,{T)cos' 8]sin' 8 cos' 2q>. (2) 

On minimizing (2) with respect to IJ and cp, we find 
that for all possible relations of Kl and K2, a minimum 
of the free energy is produced only by orientations of the 
magnetization vector along three different crystallo­
graphic directions: of the type {lOO}(cube edge), of the 
type {no} (face diagonal, and of the type {In} (cube 
diagonal. For each of these directions, minima of the 
free energy are attained for definite relations between 
the anisotropy constants. For orientation along a [100] 
axis, 
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(3a) 

for orientation along a [110] axis, 

(3b) 

for orientation along a [111] axis, 

(3c) 

We note that along with the stable directions of magneti­
zation in a cubic crystal, there are saddle pOints, lying 
in < 110) planes; their directions are determined by the 
relation 

sin' O=-2Kt I K,. (4) 

Equalities in the relations (3) correspond to lines of 
loss of stability of one or another phase; and as follows 
from these relations (see also Fig. 1), there are regions 
in which different magnetic phases coexist. 

In order to determine the lines of phase transitions, 
it is necessary to compare with each other the values of 
the free energy of magnetic phases with different orien­
tations of the magnetization. The results obtained agree 
with those of Bozorth[3l: transition from a [100] axis to 
a [110] axis under the condition 

transition from a [110] axis to a [111] axis under the 
condition 

9Kt+4K2 =0, Kt~O; 

transition from a [111] axis to a [100] axis under the 
condition 

(5a) 

(5b) 

(5c) 

We notice that within the range of existence of one or 
another magnetic phase, with chan ge of the values of 
K, and K2 there may be a change of the intermediate and 
hardest axes: for easiest axis [100], the hardest axis is 

[Ill] for 9KtHK,>0, K,-;"O, 

[110] for 9Kt+4K2 <0, K,-;"O; 

for easiest axis [110], the hardest axis is 

[lti] for 9Kt+K2>0, Kt,,;;O, 

[100] for ~Kt+K2<0, K,,,;;O 

for easiest axis [111], the hardest axis is 

[IDO] for K,<O, 

[lID] for Kt>O. 

(6a) 

(6b) 

(6c) 

We note that in zero field, a change of the intermediate 
and hardest axes does not constitute a phase transition, 
since under these conditions no reorganization of the 
magnetic structure occurs. 

The complete magnetic phase diagram of a single­
domain cubic ferromagnet in zero field, constructed on 
the basis of formulas (3), (5), and (6) in coordinates 
(K" K2 ), is shown in Fig. 1. We notice the following 
characteristic features of this phase diagram. 

With allowance only for the first and second magnetic­
anisotropy constants, the easiest axes in a cubic ferro­
magnet can be only axes of the type {IOO}, {llO}, and 
{Ill}; there are no equilibrium "angular" phases, Le., 
states in which the direction of the magnetization vector 
fails to coincide with these axes. Hence, it follows.that 
within the framework of this approximation, the SR 
phase transitions under consideration can be only first-
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FIG. I. Phase diagram of a single-domain cubic ferromagnet in zero 
magnetic field. Solid lines are phase-transition lines. Dashed lines are 
lines of interchange of the intermediate (lA) and hardest (HA) axes. 
Plotted with crosses are the lines of stability loss of the corresponding 
magnetic phases. 

order transitions. In this respect SR transitions in a 
cubic ferromagnet differ from such transitions in a uni­
axial ferromagnet, in which, depending on the magnitudes 
and signs of the first and second anisotropy constants, 
SR transitions may be phase transitions either of the 
first or of the second order. 

Analysis of the phase diagram of a cubic ferromagnet 
shows also that reorientation of the magnetization vec­
tor from a [111] axis to a [110] axis or from a [111] axis 
to a [100] axis is accomplished with hysteresis, whereas 
reorientation from a [100] axis to a [110] axis (with al­
lowance for two anisotropy constants) is a hysteresis­
less phase transition of the first kind, since in the latter 
case the lines of stability loss coincide with lines of 
phase transition (see Fig. 1)'). 

3. EFFECT OF DOMAIN STRUCTURE ON THE 
CHARACTER OF SPIN-REORIENTATION 
TRANSITIONS IN A CUBIC FERROMAGNET 

The arguments presented above regarding the char­
acter and the hysteretic properties of SR transitions in 
a cubic ferromagnet relate to a single-domain specimen. 
In a many-domain specimen, the boundaries between do­
mains can be regarded as "nuclei" of the new phase, 
since within the boundaries there are always sections in 
which the direction of the magnetization coincides with 
the direction of the magnetization in the new phase; there­
fore metastable states will not be realized here, and the 
SR transition in many-domain specimens will occur 
without hysteresis. 

We shall consider the effect of domain structure in 
more detail. 

The free energy of a system with magnetic inhomo­
geneities is 

+~ 

F= J {FA(O,<p)+A[(dOldx)'+sin'O(<i<pldx)'l}dx. (7) 

Here x is a coordinate, and A is an exchange constant. 

A minimum of the free energy is attained when (} (x) 
and rp (x) satisfy the Euler equations 
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2~= aFA +sin2S (~)' 
d~,' as as ' 

d[ ,d<P] aFA 

2~' sin e ds =aq;-' 

(8) 

where the following new symbols have been introduced: 

x 
6= (A/IK.I)'/' . 

The system of equations (8) has the first integral 

( de) 2 d<p • 
'ds +Sin'e(~) -FA(e,<p)=E=const. (9) 

In general both unknown functions II and cp of the system 
(8) depend on x. We shall be interested in solutions with 
cp = const, which corresponds to rotation of the magneti­
zation in a single plane. For such solutions 

(10) 

Analysis of these equations shows that there exist 
two groups of solutions for cp. The first group corres­
ponds to rotation of the magnetization in planes of type 
(100) (cp= 0, IT/2, IT, 3lT/2), the second to rotation of the 
magnetization in planes of type (110)(rp = IT/4, 3lT/4, 
5lT/4, 7lT/4). The stability of the solutions depends on 
the ratio q = KI/I K21 (here and hereafter we consider 
the case most interesting from the point of view of our 
experiments, K2 < 0). 

The planes of type (100)are stable for q> 1/2; near 
q = 1/2, directions lying in these planes become unstable 
if they are close to directions with 11= IT/4 +nlT/4, and for 
q = 0 all directions in (100) planes become unstable. 

The planes of type (110) are stable for q < 0; for 
q ~ 0, directions close to the directions with II = n7T/2 
lose their stability, and for q = 1 all directions in the 
plane lose their stability. 

Let q < O. Then, as was shown above, the magnetiza­
tion lies in (110) planes. We shall consider the behavior 
of a domain boundary in this case. Equation (9) trans­
forms to the form 

(11) 

where the constant E for an isolated domain wall is cho­
sen from the following conditions (see above): 

q<'/" de', = del =0 
d~ ~=±og ds 8=±arclln 12/3 ' 

q>'I" de I = de I =0 
di; ,_±~ ds '_0, '1' . 

(12) 

By use of (12), Eq. (11) is easily transformed to the form 

de 1 ( 2 ) [ (1 )] 'I, q<'l" ds =±2' sin'e- 3 sin'e-3 q-g , 

de 1 . . ]'/ q>'/" -=±-sine[sin'e-(1+3q)sin'e+4q " 
ds 2 

(13) 

Figure 2 depicts the phase portrait of the system 
described by Eqs. (13), for various values of the para­
meter q (the figure shows only separatrices of the family 
of curves of (13), corresponding to isolated domain walls). 
From the figure it is evident that for q < 0 two types of 
domain walls are realized: the line ABC corresponds to 
a 110-degree neighborhood, the line CDE to a 70-degree 
neighborhood. Since, as has already been indicated, di­
rections close to II = ± IT/2 lose their stability already 
for q = 0, while directions with II = 0, 7T retain their 
stability up to q = 1, therefore we shall consider the 
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FIG, 2. Phase portrait of the sys­
tem described by equations (13): 
a), q < 0; b), 0 < q < 1/9 ; c), q = 1/9 ; 

d), 1/9 < q < 1/3; e), q = 1/3• 

I '. I ~!: 
e~ 

most stable 110-degree neighborhoods, in which fJ 
changes around 0 or IT. In Fig. 2 such a neighborhood 
corresponds to the section ABC; the middle of the domain 
wall coincides with the point B (Fig. 2a). For 0 < q < 1/9 
(Fig. 2b), at the middle of the domain wall (II = 0) there 
is a kink, which may be considered a "nucleus" of the 
new magnetic phase, with magnetization direction along 
an axis of type {tOO}. With increase of q, the magnitude 
of the kink increases: the domain wall expands, and for 
q = 1/9 there appears a new domain with magnetization 
along a {100} axis (II = 0, Fig. 2c). 

On further increase of q above 1/9, the separatrix 
"disengages" from the axis of abscissas, and the or­
dinates of points A and C increase (Fig. 2d). This means 
that domains of phase {111} decrease in size and are 
transformed to kinks of domain walls that separate do­
mains of phase {tOO}. For q = 1/3, the kinks of domain 
walls vanish (Fig. 2e). 

The anal¥sis presented shows 2 ) that a transition from 
one phase (U11}) to another ({100}) can occur by con­
tinuous growth of the new phase from a domain wall, 
which thus emerges as a "nucleus" of the new phase. 
We note that domain boundaries as "nuclei" of a new 
magnetic phase differ from the nuclei usually considered 
in the theory of first-order phase transitions, in that 
they are stable and grow in a region where the old phase 
is also still thermodynamically stable. 

4. ANOMALIES OF PHYSICAL PROPERTIES DURING 
SPIN REORIENTATION IN CUBIC FERROMAGNETS 

SR phase transitions are accompanied by anomalies 
of various physical properties of ferromagnets. For 
example, the latent heat of a SR transition can be deter­
mined by comparing the entropies of the different 
phases at the transition temperature Tt: 

Q(, .. ,~( .. o,=-'/.Tt dK/dTlrt , 

Q,,",_,,",,=-'I,Tt [dK,/dT+'/,dK,ldTll Tt' (14) 

Qflll'~(lIo,=-'I,Tt ['I,dK/dT+'/,dK,ldT1I T!, 

In many-domain specimens, because the transition is 
"smeared out", the evolution of heat will occur over a 
finite region near the transition. 

In general, it must be mentioned that in cubic ferro­
magnets the domain structure significantly affects the 
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anomalies of properties at the transition point. Thus it 
is easy to show that in specimens with an equilibrium 
domain structure (that is, in which the volumes of do­
mains with magnetization along different easiest direc­
tions are equal), no anomalies of the thermal expansion 
will be observed during SR transitions, since, although 
such anomalies are present in each individual domain, 
for the specimen as a whole they compensate each other 
(when account is taken only of the first two magnetostric­
tion constants Am and i\100). 

We shall consider the behavior of the initial suscep­
tibility X and of Young's modulus E of a cubic ferromag­
net in a region of spin reorientation. 

The value of X is made up of two components: the 
susceptibility due to processes of rotation of the mag­
netization vector (Xr), and the susceptibility due to dis­
placement of domain boundaries (xd). Both these me­
chanisms also make a contribution to Young's modulus 
E, since they lead to additional magnetostrictive defor­
mations. It is in the region of spin reorientation, where 
the domain structure becomes unstable and the aniso­
tropy field decreases, that external magnetic fields and 
mechanical stresses will cause the most intensive reor­
ganization of the domain structure and rotation of the 
magnetization vector. Therefore the initial susceptibility 
should go through a maximum at the spin-reorientation 
point, and Young's modulus, which determines the stiff­
ness of the crystal, through a minimum. 

We shall calculate the contribution to the initial sus­
ceptibility and to Young's modulus from rotation pro­
cesses3). 

Let f3 = (j31, (32, (33) be the direction of application of 
the external fie ld H, a (e, ;:P) = (a 1, a 2, a 3) the direction 
of the magnetization vector. The free-energy density 
of a cubic ferromagnet, which consists of the energy of 
the external field, the magnetoelastic energy, and the 
anisotropy energy, we shall write in the form 

(15) 

Here 
l1>(e, q»=a,(e, q»~,+a2(e, q»~2+a3(e, q»~" 

'¥ (e, cp) = -; 1.,00 [ai' (e, q» ~,'+a,'(e, q» ~,'+a,' (e, q»~,' -~] (16) _ A, .3 

i' 111 ' • 

+3 -,- Ca, (E, 'p) a, (e, q» p,p,+a, \e, q»a, (e, q» p,p,+a, (8, q»a,(e, q» ~'P'], 
I., 

(] is the elastic stress. By minimizing (15) with respect 
to e and cP and differentiating the resulting equations 
with respect to (J and H, one can obtain 

(17) 

where ~(l/E~ is the magnetoelastic contribution to the 
Young's modulus of the ferromagnet, defined by the re­
lation 

~=~+ll (~) 
E Eo E' 

(18) 

Eo is Young's modulus without allowance for magneto­
elastic interaction. 

By use of the relations (16), one can obtain an explicit 
form of the expressions for the initial susceptibility Xr 
and ~(l/E ~ for each phase for various directions of the 
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measurement. For many-domain specimens, it is neces­
sary to average the expressions for Xr and A(l/E)r 
over the various domains. Then, as is easily shown, for 
the equilibrium domain structure the susceptibility is 
isotropic and is, for easiest axis [100], 

'i"='/,I.'IK,, 

and for easiest axis [111] 
1 I,' 

X,= 2 IK,I/3-K,' 

(19a) 

(19b) 

Expressions for ~(l/E)r are obtained in analogous 
fashion. But in this case the value of M1/E)r averaged 
over all domains is not a scalar but depends on the di­
rections of the applied elastic stresses: for easiest axis 
[ 100], 

all [100], II (l.-) =0' E , ' 

all [110], ( I) _'/ 1.,:, . il - -'4-, 
E, K, 

(20a) 

011[111], 

for easiest axis [111], 

oil [100], II ( ! ), = ~ I/'I~::-KI; 
all [1 to], !l (l.-) = ~ AI:'+AI~o . 

E, 8 '/,IK,I-K,' 
(20b) 

all [111], ( I ) f..~11 II - = . 
E, '/,IK,I-K,,' 

Figure 3 shows the dependence of the initial suscep­
tibility (a) and of Young's modulus (b) on q. The sharp 
minimum in E and maximum in Xr at Tt are actually 
more spread out because of the contribution to the free 
energy from the domain wall energy, which was disre­
garded in the calculation performed. 

5. SPECIMENS AND METHODS OF MEASUREMENT 

Investigations of spin-reorientation phenomena were 
made on monocrystalline and polycrystalline iron gar­
nets of the system TbxY3--xFe5012 (0:::; x:::; 3). The 
methods of growing the monocrystals and of controlling 
their compositions were described in[21. The polycrys­
talline specimens of mixed iron garnets were prepared 
by the usual ceramic technology. 

The initial susceptibility in directions {l00}, {110}, 
and {111} was measured on single-crystal disks cut in a 
(110) plane, by the change of resonance frequency of an 
LC circuit when the specimen under study was introduced 
into the inductance coil. The susceptibility measurements 
were made at frequency ~200 kHz. Since the space fac­
tor of the coil was unknown, only the relative value of the 
susceptibility was determined. 

b 
x, 

f/J 

FIG. 3. Dependence of initial susceptibility (a) and Young's modulus 
(b) of a cubic ferromagnet on q = Kd1K21. Tt is the temperature of the 
spin-reorientation phase transition. 
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Measurements of the elastic modulus and of the in­
ternal friction were made on polycrystalline speCimens 
by the composite oscillator method[6] atfrequency ~ 150 
kHz. 

We also measured the temperatures of loss of "stab­
ility" of crystallographic directions {l00} and {Ill} in a 
magnetic field. For this purpose a single-crystal disk, 
cut in a (110) plane, was hung pseudo-freely (on a very 
thin thread) in an electromagnet so that the field was 
parallel to one of these directions, and it was determined 
how the orientation of the disk changed with change of 
temperature. Measures were taken to eliminate parasitic 
torques that arise from the elasticity of the thermocouple 
fastened to the specimen and from other causes. 

6. EXPERIMENTAL RESULTS 

As has been shown by measurements of the magnetic 
anisotropy[2], in mixed terbium-yttrium iron garnets 
the second anisotropy constant K2 is negative, while the 
first constant K, changes sign at a certain temperature. 
This is due to the fact that the contribution to K, from 
the terbium ions is positive, while the contribution from 
the iron (a-d)-sublattice is negative. Since at low tem­
peratures the anisotropy of the ferrite is determined 
chiefly by the terbium sublattice, the constant K, is posi­
tive at low temperatures; but at high temperatures, when 
the contribution from the terbium sublattice decreases 
sharply, it changes sign. This leads to a SR phase tran­
sition in these ferrites with change of temperature. 

Figure 4 shows the magnetic phase diagram of iron 
garnets of the system TbxY3--xFe50'2, constructed 
according to formulas (3), (5), and (6) with use of ex­
perimental anisotropy data from[2].4) 

Figure 5 shows the temperature dependence of the 
susceptibility along various crystallographic directions 
for a single crystal of Tbo.26Y2.74FesO,2' It is evident 
that at high temperatures the susceptibility depends 
little on temperature, that it goes through a maximum at 
134 K, and that it drops abruptly on further lowering of 
the temperature (in consequence of the sharp increase 
of the anisotropy constant). In accordance with what was 
set forth above, we suppose that the temperature of the 
maximum corresponds to the SR transition temperature 
Tt. As is shown by a comparison of Figs. 4 and 5, for 
this specimen the SR transition temperature Tt deter­
mined from susceptibility measurements agrees, within 
the limits of error, with the T t calculated from data on 
the anisotropy constant. 

Figure 6 shows the temperature dependence of Young's 
modulus and of the internal friction for a polycrystalline 
specimen of approximate composition Tbo.2Y 2.aFesO,2. It 
is evident that at temperature 130.5 K a minimum occurs 
in Young's modulus; the magnetic field removes this 
anomaly, an indication of its magnetic nature. The tem­
perature of the minimum is the SR transition tempera­
ture and also agrees well with the value of Tt calculated 
from measurements of the anisotropy constant (Fig. 4). 
As is evident from Fig. 6, the SR transition is accom­
panied by a maximum of the internal friction, caused by 
losses during reorganization of the domain structure 
and rotation of the magnetization under the influence of 
elastic stresses. 

Our measurements showed that hysteresis of the 
transition is absent in many-domain specimens: the 
temperatures of the anomaly of the susceptibility and 
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FIG. 4. Magnetic phase diagram of iron garnets of the system 
Tbx Y3-xFesO'2: I, EA [111], IA [11 0]' HA [100]; II, EA [111], 
IA [I00),HA [IIO];III, EA [100], IA [Ill], HA [IIO];IV, EA [100]' 
IA [110], HA [III]. The solid curve is the spin-reorientation phase­
transition line; the dashed curves are the lines of stability loss of the 
magnetic phase {l00} (l) and of the magnetic phase {II I} (2); the dotted 
curve is the line of interchange of the intermediate and hardest axes 
[110] and [III]. The errors of the determination from the experimen­
tal data on K, and K2 [2] are shown for the lines of phase transition, of 
stability loss, and of interchange of intermediate and hardest axes. The 
points show the phase-transition temperatures obtained from measure­
ments of the susceptibility (e) and from measurements of Young's 
modulus (0), and the temperatures of stability loss of phase {I OO} (X) 
and of phase {I I I} (b.). 
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FIG. 5 FIG. 6 

FIG. 5. Temperature dependence of the susceptibility of single­
crystal iron garnet Tbo.26 Y 2. 74FesO'2: curve I, along axis [ III]; 2, along 
axis [110]; 3, along axis [100]. 

FIG. 6. Temperature dependence of Young's modulus (e) and of 
the internal friction (0) of polycrystalline iron garnet Tbo.2 Y 2.8FeS012' 
Solid lines are measurements at H = 0, dashed lines are measurements 
at H = 2.0 kOe. 

of Young's modulus obtained on heating and on cooling 
are the same. This agrees with the theoretical consider­
ations presented above. 

We obtained similar X(T) and E(T) curves for compo­
sitions with 0.1 ~ X:S 1.17; this enabled us to construct 
lines of SR phase transition according to these measure­
ments and to compare them with the lines determined 
from anisotropy measurements, see Fig. 4. As is evi­
dent from this figure, the temperatures of the SR phase 
transition determined by the different methods agree for 
compositions with x ~ 1.17. But for compositions with 
x = 1.65 (single crystal) and x = 1.5 (polycrystal), we 
observed no anomaly in the temperature variation of the 
susceptibility and of Young's modulus, although accord­
ing to the anisotropy measurements there should be a 
transition of the spin-reorientation type in these also. 
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Two possible explanations can be given for this. First, 
in compounds with large x the magnetostriction increases 
abruptly[2), and the determining factor impeding motion 
of domain bOWldaries Wlder the action of external in­
fluences becomes the internal stresses. Since the energy 
of these stresses (~\a) does not experience a singularity 
at the point of spin reorientation, in such speCimens there 
is no anomaly of X and E at the transition point. This 
point of view agrees with our experiments, which showed 
that prolonged annealing of the specimens increases the 
value of the susceptibility and renders more abrupt its 
maximum at the spin-reorientation point. The other pos­
sible reason is the following. The phase-transition line 
was constructed on the assumption that in the ferrite­
garnets studied there is only cubic anisotropy. In actu­
ality, in mixed iron garnets there is present, besides, 
an additional Wliaxial growth-induced anisotropy[2, 7]. 
Uniaxial anisotropy may lead to a difference of the 
measured phase diagram from the diagram constructed 
theoretically. Its influence will show up especially strongly 
in specimens with 1 'S, x ~ 2, since in them the uniaxial 
anisotropy reaches its highest value, while the first 
cubic-anisotropy constant is small over a broad tem­
perature interval, so that the uniaxial growth-induced 
anisotropy shifts strongly the point of spin reorientation. 

We also investigated the temperature dependence of 
the orientation of a free single-crystal disk placed in a 
magnetic field. Since the measurements are made in a 
field, the specimen is single-domain, and therefore the 
rotation of the magnetization vector from one direction 
to another (which in this case corresponds to a rotation 
of the specimen in the field) occurs at the temperature 
at which a given phase loses its stability. 

Figure 7 shows the temperature dependence of the 
angle of rotation of a free single-crystal disk of iron 
garnet Tbo.26Y 2.74Fe5012 in various fields. At high tem­
peratures the [111] direction is stable; therefore in this 
temperature range, the specimen is oriented with direc­
tion [111] along the field. Cooling leads to the result 
that at a certain temperature Th11} there occurs a rota­
tion of the speCimen, with direction [100] along the field: 
at this temperature, the phase {Ill} loses its stability. 
If we now raise the temperature of the speCimen, then 
rotation of it from axis [100] to axis [111] will occur at 
the temperature T{lOO} at which phase {100} loses its 
stability; and T {100} > T {111}' 

As is evident from Fig. 7, the temperature at which 
one or another phase loses its stability depends on the 
field. This is due to the fact that, as has already been 
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FIG. 7. Temperature dependence of the orientation of a single· 
crystal disk of Tbo.16Yl.7..F"esOll freely suspended in a magnetic field. 
The solid lines correspond to raising and the dashed to lowering of the 
temperature: I, H = 5.0 kOe; 2, H = 10.0 kOe; 3, H = 16.1 kOe. 
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mentioned, the anisotropy constants of the ferrite-gar­
nets investigated depend on the field[2). The field-depen­
dence of T{lOO} and T{l11} for the ferrite-garnet 
Tbo'26Y2.74Fes012 is shown in Fig. 8. The values of Thoo} 
and T{11l1 extrapolated to z~ro field are, respectively, 
136.4 K and 114.6 K. The temperatures of stability loss 
for other ferrite-garnets were determined by a similar 
method. As is evident from Fig. 4, at small x the tem­
peratures of stability loss determined by this method 
for phases {111} and {100} agree with those calculated 
from the anisotropy constants. On increase of the con­
centration of terbium in the garnet, T{IOO} and T{I11} 
as determined by different methods begin to differ from 
one another. Apparently this is due to the influence of 
Wliaxial growth-induced anisotropy. 

7. CONCLUSION 

The results of the present work can be summarized 
as follows. 

The theoretical calculation presented for the magnetic 
phase diagram of a single-domain cubic ferromagnet, 
with allowance for the first and second magnetic-aniso­
tropy constants, shows that, because the easiest axes of 
such a magnet can be only high-symmetry axes of the 
type {l00}, {110}, and {I11}, therefore the transitions of 
spin-reorientation type resulting from change of the 
anisotropy constants are first-order phase transitions. 

Allowance for the domain structure of a cubic crystal 
leads to removal of the hystereSiS of the transition, which 
then occurs in continuous fashion; the domain bOWldaries 
emerge in the role of "nuclei" of the new magnetic phase. 
Near the transition point, both the new and the old mag­
netic phases simultaneously coexist. 

On the basis of the theoretically obtained relations, 
with use of the known values of the magnetic-anisotropy 
constants Kl and K2 of terbium-yttrium iron garnets, a 
magnetic SR phase diagram has been constructed for 
these ferrimagnets at H = 0, in the (x-T) plane. 

In the temperature interval 80-300 K, YOWlg'S mod­
ulus and the susceptibility have been measured for the 
system TbxY3-xFes012. Anomalies of Young's modulus 
and of the susceptibility were detected at the tempera­
ture of the transition of spin -reorientation type; their 
character is in agreement with the theoretical calcula­
tions presented in the paper: YOWlg'S modulus goes 
through a minimum at the spin-reorientation temperature, 
the susceptibility through a maximum. The SR transition 
in this system, in accordance with theory, occurs in con­
tinuous fashion without hysteresis. The phase-transition 
points determined from these experiments agree with the 
theoretical curve constructed on the basis of the known 
values of Kl and K2. 

FIG. 8. Dependence on ex· 
ternal magnetic field of the tem- 125 
perature of stability loss of 
axis: T{lOO} (1) and T{1Il} (2), for 120 
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The lines of stability loss have been determined for 
the phases with easiest axis [100] and with easiest axis 
[111]. The agreement with the theoretically constructed 
phase diagram is completely satisfactory. 

The experiments done to investigate SR phase tran­
sitions in iron garnets of the system TbxY3-xFe5012 
show good agreement with the theory of these transitions 
developed for cubic ferro- and ferrimagnets. 

I)When a third tenn is included in the expansion of the energy of cubic 
magnetic anisotropy, the nature of the transition will depend on the 
sign of the third anisotropy constant K3. For K3 < 0, the transition 
between phases {I 10} and {I 00} will be a first-order transition with 
hysteresis, whose width is determined by the magnitude of K3; whereas 
for K3 > 0, this transition will occur smoothly, by formation of an 
"angular" phase within a certain interval of values of the anisotropy 
constants. The nature of the phase transitions between other phases, 
with allowance for K3, is practically unchanged. 

2) A similar phenomenon of growth of a "nucleus" of a new phase from 
a domain wall during reorientation of spins in uniaxial magnetic mater­
ials was considered theoetically in [4). 

3)Quantitative estimates of the effect of displacement processes on X and 
E are difficult, since at present there is no complete theory, but only 
approximate calculations of displacement processes for various special 
models. For example, in Kersten's model [s), in which bending under 
the influence of a field is considered for a domain wall clamped at 
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the ends, the initial susceptibility from displacement satisfies the rela­
tion Xd - Is312/Keff314; consequently, at a SR transition point, where 
Keff is minimal, Xd should go through a maximum. 

4)ln (2) it was shown that the anisotropy constants of terbium-yttrium 
iron garnets depend on the field. The phase diagram in Fig. 4 was 
constructed on the basis of values of Kl and K2 extrapolated to zero 
field. 
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