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The emission and absorption of light by a two-level system in the presence of a strong electromagnetic field 
of frequency much smaller than the eigenfrequency of the system is investigated by using the adiabatic 
approximation. It is demonstrated that the dependence of the probabilities for these processes on the 
intensity of the strong field differs from that predicted by perturbation theory. The limits of validity of the 
latter are established. 

PACS numbers: 42.50. 

Enlistment of the concept of quasienergy, introduced 
by Zel'dovich[1] and Ritus,I2] produces an especially in­
tuitive picture of optical transitions in quantum systems 
in the presence of a strong electromagnetic field, con­
sidered as a periodic perturbation. The fruitfulness of 
the quasienergy approach, which utilizes only symmetry 
conSiderations, is due in particular to the possibility of 
quantitatively analyzing the processes which occur, with­
out making assumptions about the magnitude of the inter­
action of the system with the variable perturbation. How­
ever, a quantitative calculation of the optical transitions 
in the quasienergy spectra of bound systems runs into 
serious difficulties, especially for processes involving 
the participation of distant satellites of the quasienergy 
(a large number of photons of the strong field), when the 
use of perturbation theory in the magnitude of the inter­
action is inconvenient, and its criteria for strong fields 
are either unclear or are certainly violated. A number of 
articles [3-10] are devoted to the calculation of multiphoton 
transitions in bound systems without using perturbation· 
theory; of these the work of Zaretskif and Kratnov[10] is 
closest to the work expounded below. 

In the present article the emission and absorption of 
light by a two-level system (the separation between the 
levels is wo) are investigated in a strong electromagnetic 
field of frequency w, where it is assumed that wo/w 
== A» 1. In this connection the emission of light by the 
system may also be treated as multiphoton Raman scat­
tering of the field w. The energy levels of the system 
(1 denotes the lower level and 2 is the upper level) are 
assumed to be nondegenerate and coupled by a dipole 
interaction. A qualitative picture of the emission of 
light by such a system may be obtained from the follow­
ing analogy with the well known problem in radio engin­
eering concerning the emission of a frequency modulated 
signal. In a constant field the energy levels of the system 
are repelled, and the system radiates at the frequency 
II = Wo + OWo. If the external field slowly changes, accord­
ing to a harmonic law for example, the increase owo of 
the system's eigenfrequency becomes a periodic func­
tion of the time. If this frequency-modulated emission 
of the system is passed through a spectral analyzer, a 
central frequency 110 = vm = Wo + OWo(t) (the bar denotes 
averaging over the period of modulation) and the har­
monics Ilk = 110 ± kw (k takes integer values) are observed 
in the spectrum of the radiation. Moreover, the relation 
between the intensity of the fundamental frequency 110 
and the intensities of the harmonics Ilk is determined by 
the so-called depth of the modulation. For a sufficiently 
large depth of modulation, the intensities of certain har­
monics exceed the intensity of the fundamental frequency. 
The fundamental frequency is suppressed. 
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Let us quantitatively investigate the process of the 
absorption and emission of light by the system considered 
above. The natural separation of fast and slow subsys­
tems for A» 1 makes utilization of the adiabatic ap­
proximation appropriate. The adiabatic wave functions 
have the form (see, for example/u , 12]) 

'V1=(I1>cos ~~) +12>sin ~~t) )eXP{iSn(l)dt} 

'V,=(-I'l>Sin ~~) +12)COs~)exp{-iJQ(t)dt}; 

Q(t) ='/2wo¥ l+q' sin' wi; 

tg ~(t) =q sin wI; q=2coFoZdwo; 

(1) 

11) and 12) denote the eigenstates of the system in the 
absence of external fields, corresponding to the ener­
gies Of wo/2; Fo denotes the intensity of the field w, for 
which Z-polarization is assumed!) (here and below we 
assume ii = 1). 

Each of the functions (1) may be represented in the 
form 

'V t, ,=exp {-iEt, ,I}xt, ,(I), XI, ,(I) =x .. ,(t+2n/w), 

1 ~ " 
E I ,,= +-2 wS, S=- J (1+q'sin'x)"'dx, 

n 0 

E1,2 denote the quasienergies of the system, obtained in 
the adiabatic approximation. Expressing the interaction 
of the system with a weak optical field of frequency v 
in the form Q sin vt, we find the following result for the 
probability of absorption per unit time of the light v in 
the transition 1 - 2: 

W12 (v)= nIQ"I'IUI'\"'l (j(S-p-II), 
2w .l...J 

v 
p=­

OJ 
(2) 

U = -\ J ( dz 'I exp{pz-~ J' (i-q' sh' z')''' dZ'}. (3) 
2mc i-q'sh'z)' 0 

The integration contour in (3) consists of the segments 
(00 - i1T,-i1T), (-i1T, i1T), and (i1T, i1T, +00). The contour in­
tegral (3) can by evaluated by the method of steepest 
descents. However, it is not possible to obtain a single 
analytic expression which is valid for arbitrary relation­
ships between the parameters p, A, and q; therefore, we 
consider the following possible situations separately 
(later r = Ip2 - A21112 everywhere). 

1a. p> A, r /qA > 1. Here the saddle points are de­
termined by the formula 

zo=-Arch (r/q~) ±in/2. (4) 

The directions of quickest descent from the saddle pOints 
make an angle 1T /2 with the real axis. Evaluation of the 
integral (3) with formula (4) taken into consideration, 
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after the appropriate deformation of the integration con­
tour, gives 

W ( IQ"I'L1', ( n l/Y,) E nn "v)~---11) -2 f -2 exp{g,(q,L1,p)} cos'-6(S-p-n), 
Ctlpy, p n 2 

Y,~l'(p'-L1') [p'-L1'(Hq')], (5) 

2L1 ( 1) r 2py, 
g,(q,A,p)~ (Hq')v,D e, (Hq2)". -2pArch qA +7' 

k'D(e, k)~F(e, k)-E(e, k), e~arccos(Aq/r), (6) 

F(E, k) and E(E, k) are elliptic integrals of the first and 
second kinds, and q, (x) is the probability integral. The 
factor cos 2 (1Tn/2), expressing the selection rule (n is 
even), appears due to the interference of the contribu­
tions of the saddle points. 

lb. p> A, r/qA < 1, q « 1. The saddle points are 
given by 

Zo~±ip, ip-iJ(, -ip+in; p~arcsin (r/qA). 

The directions of quickest descent make angles ± 1T/4 
with the real axis. Integration gives 

IQ"I'A' [ n]{ [,( J( ) ( Y, )'f'] Wt2(v),~~cos' g,(q,A,p)--;;; (1) T-P p 

( ( y, ) 'f')'}' '\'1 nn +(1) p p ~ cos'To(S-p-n), 

y,~i(p'-A') [L1'( 1 +q') -p'], 

(7 ) 

(8) 

g,(q,A,p)~pp-A(Hq')"'[E(~, (l~q,)",)-E(Y, (l:Q'V.)] , (9) 

1~J(/2-p. 

W ( )-A 3'/,IQ,,12 '\'1 ,nn ( ) 
"v - 8J(Ctl[A(1+q')]'/,exp{g,(q,A,P)}~cos T6(S-p-n), 14 

~ 1 " 
A~ (E n!(3nH) ] . 

n=O 

(15) 

The series determining A converges rapidly, A ~ 1.7. 

The entire range of variation of the frequency v = wp 
of absorbable light is exhausted by case 2b. 

We find the following result for the probability of 
multiphoton Raman scattering of a low-frequency field 
w by the system in state 2- W~, (the emission of light 
by the system, accompanied by the transition 2 _ 1, 
in the presence of the low-frequency field w): 

w,,'= t W2I'(n), no=[A], (16) 

W,,'(n) ~4eo'Ctl'(S-n) 'c-'!Z2l!'! Un!', 

Un~Ulp~s-n, 

[A] denotes the integer part of the number A. The quan­
tity U is defined by formula (3) and may be obtained, 
respectively, from Eqs. (5), (8), (12), and (14) in each 
of the situations considered above. As follows from (16), 
the harmonics of the fundamental frequency Wo are 
present in the spectrum for the Raman scattering of the 
low-frequency radiation w by the system, where both 
the frequencies of the harmonics and their ,intensities 
are complicated functions of the intensity Fo of the field 
w. Formulas can be derived in analogous fashion for the 
Raman scattering of radiation w by the system in its 
ground state 1 (the emission of light by the system in 
its ground state in the presence of the low-frequency 

2a. p < A. The saddle points are given by field w, accompanied by the transition 1 - 2). Such a 
zo~Arsh (r/qA)+ikrr, k~O, ±L (10) process, however, requires the participation of at least 

_ no + 1 photons of frequency w and has a considerably 
Here one must keep in mind the possibility of incidence smaller probability than that described by formula (16). 
of the branch points of the expression 1J!(z) = (1-q 2sinh2zf'/2 ., . .. /-
given by Zo = sinh-! (l/q) + ik1T k = 0, ± 1, ... , into the Let us conslde~ certam hmltmg cases. Let q -....<:: .1 
"regions of influence" (see[!3l) of the saddle points z and p < A. In partIcular, from formula (12) we obtam 

o· the following result to the first non vanishing order of 
One can verify that for q < 1 and 

in (A/r) > (2p),',/r (11) 

(a rough estimate of p from (11) gives p> 2A2/3(e _1)2/3) 
the points Zo turn out to be outside the "regions of in­
fluence" of the saddle points Zo and one can take :)!(z) 
outside the integration Sign at the saddle points. In this 
case the directions of steepest descent make an angle 
of 1T /2 with the real axis. We find 

Wt2(v)~ IQ"I'A' (1)'( J(2 (Y2' ))'1. exp{g,(q,A,p)} E cos' nJ( o(S-p-
Ctlpy, p n 2 

y,~l' (A'_p2) [A'( l+q') -p'], (12) 

r ,2,1. ( 1 ) 2pr' 
g,(q,L1,p)~2pArsh QA - (Hq')'" D 0, (Hq')'" -y,' 

. ( l+q' )';. 
6~ arcsin HA'q2/r" . (13) 

2b. For a suffiCiently small ratio p/ A, condition (11) 
is violated and the points Zo fall inside the "regions of 
influence" of the points zoo In this case one can, without 
going outside the limits of the "regions of influence", 
deform the integration contour in such a way that it 
passes through the points zo, going around them along 
arcs of small radius. In this case the directions of 
quickest descent make angles ± 1T/3 with the real axis. 
Integration with these characteristics taken into con­
sideration gives 
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the expansion in powers of q: 

W,,(,,)=--~---;- -- --, -- '\'1 cos -6(A-p-n). IQ"I'L1' (A+P) " (e'q' L1+p ) ,-. ,nJ( 
wp(A'-r) 211. 1b II.-p ~ 2 

n (17) 

(In the derivation of expression (17), it was additionally 
assumed that n 2: 1.) According to Eq. (17), wdll) ~F~n, 
as should happen upon using ordinary n-th order per­
turbation theory for a description of a process involving 
the participation of n quanta of the field w. Actually for­
mula (17) is app licable under the restriction Aq2« 1, 
which is much more stringent than q « 1. For Aq2> 1, 
as one can easily verify, a deviation from the power law 
W!2(V) ~ F~n occurs toward the side of a weakening of 
~he de~endence of the trilJ1~q9n probability on the field 
mtenslty Fa (wdl)) ~ F~\n n ), where n' == n' (Fo) > 0). 
For sufficiently large values of the parameter Aq2, it 
is necessary to use the general formula (12) directly. 

Let us analyze formula (8) upon fulfillment of the 
conditions q « 1, Aq2> 1. Let n = 0 (the transition goes 
without real absorption or emission of quanta w ). We 
find 

(18) 

According to Eq. (18) the probability of absorbing the 
light I) at the fundamental frequency (v = Wo + woq2/4) is 
a pulsing function of the intensity Fo of the field w 
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(wo!l2/4 obviously represents the dynamical Stark shift 
of the system's eigenfrequency). This result (for n = 0) 
was previously obtained by Kovarskirf7) by another 
method and is called the effect of sup~ression. (For com­
parison, informula (30) of his article 7) it is necessary 
to use the asymptotic representation of the Bessel func­
tion Jo(x) 0:1 ({271TX)1I2 cos (x - 7T/4) for x> 1). In the more 
general case n f 0 the pulsed dependence of W dv) on 
Fo for ~q r> 1 is expressed by formula (8).21 Analysis 
of formulas (5) and (14) also demonstrates a deviation 
from the power-law dependence, predicted by ordinary 
perturbation theory, of the transition probability on the 
intensity Fo of the field W with increasing Fo. 

3. Let us consider the transition 1 _ 2 under the 
influence of a very strong field W (without the participa­
tion of photons v). In lowest order adiabatic perturbation 
theory the probability of such a process is determined 
by the formula 

W,,(ID)= ! nIDq'IGI' ~ &(S-n), (19) 

, 
1 J dzchz { J( 'h' ')"'d '\ U=- . exp -~ 1-qs z z'r' 

2ni c 1-q'sh2 Z " 
(20) 

The integraJ. (20) is evaluated by the saddle-point method. 
The saddle points Zo =sinh- 1(1/q) +ik7T, k = 0, ± 1, coin­
cide with the poles of the integrand in (20). In order to 
take this property into account, the integration contour 
is chosen in the same way as in case 2b. We find 

W 12 (ID) = (;)' 2: exp { - (1~~')'" D (~ , (1:q2)".)} 
'\1 nn 

X ~sin'26(S-n}. 
(21) 

. 
The use of lowest order adiabatic perturbation theory 

in order to obtain the transition probability in a two­
level system under the influence of a slowly varying per­
turbation is not a completely rigorous procedure. As is 
well known (see, for example,[ll, 14) the contributions 
to the transition probability coming from the higher­
order terms in adiabatic perturbation theory turn out 
to be of the same order as the contribution of the lowest­
order term (more correctly, only numerically smaller 
than the contribution of the lowest order term). This is 
related to the fact that the adiabatic functions (1) poorly 
describe the system at the points of complex time, cor­
responding to branch points of the expression O(t). At 
the same time, in case (3) it is precisely these points 
which substantially determine the transition probabil­
ity, [10) which leads to the necessity of summing the en­
tire series of perturbation theory with respect to non­
adiabaticity, which is equivalent to use of the formula 

Hi _ exp{- 2 1m ~ .1(1- q'Sh2z}".dz} 
o 

(see[ll, 15). This formula allo~ed Zaretskit and 
Kramov[10) to obtain for case (3) an expression of the 
form (21) with the correct preexponential factor-unity, 
wherea~ the first non vanishing order of adiabatic per­
turbation theory (formulas (19) and (20» 'gives an inac­
curate preexponentia). factor, (7T/3)2 0:1 1.1. 

Everything that has been said also pertains to case 
2b, when the saddle pOints are close to the branch points 
of the quantity O(t). In accordance with this, formula 
(14) contains the correct exponential factor; however, the 
preexponential factor in Eq. (14) is inaccurate. At the 
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same time, as follows from a comparison with case 3, it 
evidently should be close to the true value. 

A different situation arises in cases la, 1b, and 2a. 
Here the saddle points do not coincide with the branch 
points of O(t) and therefore lie in regions of complex 
time where the adiabatic functions (1) describe the sys­
tem well. This property is more strongly expressed, the 
larger the adiabatic parameter ~ is. This gives the 
reason to assume that the formulas derived in cases la, 
1b, and 2a possess greater pre exponential accuracy than 
in cases 2b or 3, the accuracy being greater the larger 
the value of d. 

The author is grateful to Y. P. Kramov, Y. A. Kovar­
skit, L. P. Pitaevskir, and A. A. Ovchinnikov for a help-
ful discussion of the results of this work. . 

l)ln order to not go outside the framework of the adiabatic approxima­
tion, we shall assume below that the intensity Fo is. much less than 
atomic field strengths, i.e., q <Ii: I (see [10)). 

2)We note that in this case the parameter ~q 2/8 is obviously analogous to 
the depth of the modulation in the radio engineering problem concern­
ing the emission of a frequency-modulated signal, 

IYa. B. Zel'dovich, Zh. Eksp. Teor. Fiz. 51, 1492 (1966) 
[Sov. Phys.-JETP 24,1006 (1967)]; Usp. Fiz. Nauk 110, 
139 (1973) [Sov. Phys.- Uspekhi 16, 427 (1973)]. 

2y. I. Ritus, Zh. Eksp. Teor. Fiz. 51,1544 (1966) [Sov. 
Phys.-JETP 24, 1041 (1967)]. 

3L. Y. Keldysh, Zh. Eksp. Teor. Fiz. 47,1945 (1964) 
[Sov. Phys.-JETP 20, 1307 (1965)]. 
4A. M. Perelomov, Y. S. Popov, and M. Y. Terent'ev, 
Zh. Eksp. Teor. Fiz. 50, 1393 (1966) [Sov. Phys.-JETP 
23,924 (1966)]; Zh. Eksp. Teor. Fiz. 51, 309 (1966) 
[Sov. Phys.-JETP 24, 207 (1967)]. 

SA. I. Nikishov and Y. I. Ritus, Zh. Eksp. Teor. Fiz. 
50,255 (1966) [Sov. Phys.-JETP 23, 168 (1966)]; Zh. 
Eksp. Teor. Fiz. 52,223 (1967) [Sov. Phys.-JETP 25, 
145 (1967)]. 

By. A. Kovarskil, Zh. Eksp. Teor. Fiz. 57,1217 (1969) 
[Sov. Phys.-JETP 30, 663 (1970)]. 

7y. A. Kovarskif, Zh. Eksp. Teor. Fiz. 57, 1613 (1969) 
[Sov. Phys.-JETP 30,872 (1970)]. . 
Yu. A. Bychkov and A. M. Dykhne, Zh. Eksp. Teor. 
Fiz. 58, 1734 (1970) [Sov. Phys.-JETP 31,928 (1970)]. 

9y . A. Kovarskifand N. F. Perel'man, Zh. Eksp. Teor. 
Fiz. 60, 509 (1971) [Sov. Phys.-JETP 33, 274 (1971)]. 

1'D. F. Zaretskiland Y. P. Kramov, Zh. Eksp. Teor. Fiz. 
66,537 (1974) [Sov. Phys.-JETP 39,257 (1975)]. 

llA. M. Dykhne, Zh. Eksp. Teor. Fiz. 41, 1324 (1961) 
[Sov. Phys.-JETP 14,941 (1962)]. 

12E. E. Nikitin, Teoriya elementarnykh atomno-molekul­
yarnykh protsessov v gazakh (Theory of Element.ar~ " 
Atomic and Molecular Processes in Gases), "khlmlya , 
1969, p. 108 (English Trans!., Oxford Univ. Press, 1974). 

13N. G. De Bruijn, Bibliotheca Mathematica: Asymptotic 
Methods in Analysis, Vol. 4, American Elsevier Pub­
lishing Co., Inc., 1958 (Russ. Transl., IlL, M. 1961). 

14A. M. Dykhne, Zh. Eksp. Teor. Fiz. 38, 570 (1960) 
[Sov. Phys.-JETP 11,411 (1960)]. . . 

lSy. L. Pokrovskir, S. K. Savvinykh, and F. R. Ullmch, 
Zh. Eksp. Teor. Fiz. 34, 1272 (1958)[Sov. Phys.-JETP 
7,879 (1958)]. 

Translated by H. H. Nickle 
177 

N. F. Perelman 824 


