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An isolated Landau point can exist on a first-order transition curve. Near this point the transition line and 
the thermodynamic quantities have power singularities. The form of these singularities is investigated in the 
case when the order parameter is a tensor; this corresponds to the transition of a nematic liquid crystal to 
an isotropic liquid. The critical exponents are calculated approximately. 
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1. INTRODUCTION 

According to Landau's theory [lJ , isolated singular 
points can exist on first-order phase-transition curves. 
At these points the coefficient of the cubk term in the 
expansion of the free energy in the order parameter is 
equal to zero. This picture can also remain valid when 
fluctuations are taken into account. In this case, all the 
thermodynamic quantities, as functions of the tempera­
ture and pressure, have a singularity at the isolated 
point. In particular, the first-order phase-transition 
curve, the heat of the transition and the speCific-volume 
change in the transition have a power singularity. All 
these dependences are characterized by three indices: 
two are the same as those in second-order phase tran­
sitions while the third describes the way in which the 
coefficient of the cubic term vanishes. 

The transition of the isotropic phase of a liquid crys­
tal to the nematic phase is investigated in detail in the 
paper. This transition is first-order. Appreciable pre­
transition phenomena indicate that the tranSition is close 
to being second-order. Baskakov, Semenchenko and 
Byankin [2J, by extrapolating the experimental depend­
ence of the speCific-volume discontinuity on the tem­
perature and pressure, conclude that an isolated point 
exists. 

There exists an appreciable region in which the fluc­
tuations become important and the Landau theory is not 
applicable. Below we calculate the critical indices of the 
transition to the isotropic phase by the methods of ex­
panding in E = 4 - d [3J and in N-1 [4J. 

The order parameter in the nematic phase of liquid 
crystals is a tensor. It is shown that in a broad region 
of pressures the nematic phase should possess axial 
symmetry and be described by a uniaxial ellipsoid of 
revolution. Near the isolated point a narrow region with­
out axial symmetry (a biaxial phase) can exist. Between 
these phases a second-order transition is possible. 

2. GENERAL SCALING-THEORY RELATIONS 

We assume the quantities A and B to be smooth func­
tiom~ of pressure and temperature. Expanding near the 
points of interest in the (P, T)-plane enables us to des­
cribe the phase transition in the coordinates of the 
(A, B)-plane. We shall assume that there exists only one 
third-order term in the Hamiltonian, so that, in the 
(P, T)-plane, the cubic term disappears on the line 
B(P, T) = O. 

On this line the dependence of the Green function on 
the modulus k has the form 

G(k)""[A+k'+~(A, k) ]-', 

where L is the self-energy part. 

(2) 

At a certain point on the line B = 0 a second -order 
phase transition occurs. This point is determined by the 
condition 

G-'(O)=O 

or 
A(To, Po)+~(A(To, Po), 0)=0. (3 ) 

At the point itself, as in ordinary second-order transi­
tions, the Green function has it power dependence on k: 

G-'''''k'-' (T]>O), 

and, near To on the line B(P, T) = 0, 

G-'(O)""A', 

i.e., near the transition point [5J, 

Here and below, the letter A denotes the difference 

(4) 

(5 ) 

(6) 

A - A(Po, To), which, near the transition point, depends 
linearly on T = (T - To)/To and 1T = (P - Po)/po. 

On the line B = 0 all phYSical quantities are deter­
mined by the Green function, and the singularities of all 
the quantities are determined by the two indices 1'/ and y. 
For example, the singular part of the thermodynamic 
potential 4> is proportional to Ayd /(2-1J). The vertex 
parts r2n have the form 

We shall consider a phase transition describable by a r,,,(k) =A ,""-,,,-.I(,,-IlJ-·"-"/'n(k'-"A-'). (7) 
certain order parameter Q. The Hamiltonian responsible In the vicinity of the line B = 0 there appears the new 
for the transition has the form vertex r3, with its own index t:.3 that cannot be expressed 

::!e=AQ'+BQ'+CQ'+Lk'Q'. (1) in terms of 17 and y. In first order in B, 

Here k2Q2 is the symbolic form of the invariant quadratic 
in Q and in the wave-vector k, and Q2, Q3 and Q4 are the 
second-, third- and fourth-order invariants. The next 
higher powers of Q in the Hamiltonian induce asymmetry 
in the pattern of the transition and, possibly, a splitting 
of the more ordered phase into several new phases. The 
role of the high powers will be determined below for a 
specific structure of Q. 
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(8) 

The expansion of the potential 4>0 in a series in B is de­
picted by the graphs shown in Fig. 1. 

Estimating the diagrams with the aid of formulas (6) 
and (8), we can convince ourselves that the series can 
be collected into a sum of the form 

iflo=A·d/!2-,,<p (z'), (9) 
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FIG. I 

where 

(10) 

The vertices r n are expanded in the same parameter: 

(11) 

For even n the functions 'Yn(z) are even, while for odd n 
they are odd functions of z. 

The vertices r n(O) determine the expansion of the po­
tential cI> in powers of the mean order parameter: 

W-Wo=.p ~rn(O)<Q)n-<Q)h, (12) 
~nr 
n~' 

where the external field hand (Q) are conjugate quanti­
ties. The relationship between the order parameter (Q) 
and the field h is determined by the minimizing condition 
acl>/a(Q) = O. 

The solution of this equation has the form 

<Q)=AAqq(Z A-(d+'-nl!I2<'-n'h) fj. = 1 (d-2+1]) . (13) 
, . ' Q 2 (2-1]) 

In particular, below the transition point, for h = 0, the 
spontaneous moment is 

Q.=A'qq(z, 0), (14) 

and the thermodynamic potential cI> has the form (9), but 
with another function <!'l(Z). The transition line is deter­
mined from the condition that the thermodynamic poten­
tials of the phases be equal, which is fulfilled for a cer­
tain Z2 ~ 1. Using (10), we obtain the transition line in 
the (A, B) coordinates: 

(15) 

If x < 2, the transition line is tangential to the line 
A = 0, as in the Landau theory. If x = 2, the transition 
line has a sharp bend, while for x > 2 it has (at the point 
A = B = 0) a singularity in the form of a "beak". 

Eq. (15) has a solution for small A and B only when 
x > O. In the case x < 0 the cubic vertices are so small 
that they have no influence on the thermodynamics, i.e., 
the phase transition will be a second-order transition 
along the line A = O. 

It should also be noted that for r 4 < 0 there will be a 
first-order transition even at the point A = B = O. 

3. LANDAU THEORY FOR THE 
NEMATIC-ISOTROPIC TRANSITION 

The phase transition of a nematic liquid crystal to an 
isotropic liquid is described by a tensor order param­
eter. The anisotropic part Q a [3 of the dielectric tensor 
Eaf3 can serve as such aquantlty[6J: 

Q.,=e.,-'/,b., sp e. 

In the isotropic phase Qa f3 = O. From three-dimensional 
traceless tensors we can construct one second-order 
invariant: 12 = TrQ2; one third-order: h = TrQ3; one 
fourth-order: TrQ4 = Y2l~; one fifth-order: TrQ5 
= (%)M3; and two irreducible six-o~der invariants: 
I~ and TrQ6 = Y J~ + %I~. 
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Consequently, the thermodynamic potential of the 
nematic phase in the Landau form will be [7J 

W-cJ)o=AI,+BI,+'/2CI,'+DI,I,+'/2EI,'+'/aE'I.'. (16) 

A second-order phase transition is possible only at the 
point A = B = O. The coefficients A and B determine the 
distance from this point and are linear functions of T 
and P near this point. The coefficients C, D, E and E' 
are assumed to be quantities independent of Pand T. 
The last term in the expression (16) does not lead to any 
qualitative changes. It will not be taken into account be­
low. 

In the nematic crystal the following phases are possi­
ble: a biaxial phase, in which the eigenvalues of Qa f3 
are different, and a uniaxial phase with two equal 
eigenvalues. Depending on the sign of the eigenvalues, 
there can be two different uniaxial phases. In one of 
these the dielectric ellipsoid is a prolate ellipsoid of 
revolution, and in the other it is oblate. In these varia­
bles the potential has a minimum at 

I - DB-EA I _ DA-BC 
,- EC-D" ,- EC-D' ' (17) 

if CE > D2. If CE < D2 the biaxial phase is absent, and 
12 and 13 are not independent variables. To determine the 
region of existence of the biaxial phase we shall make 
use of the inequality I~ ::s 61~. The equals sign determines 
the boundary of the biaxial region. For small A we have 

(18) 

On these lines a second-order transition occurs from 
the uniaxial phases to the biaxial phase; in one uniaxial 
phase h = 6-1/212, and in the other h = - 6-1I2I~/2. Substi­
tuting these values into (16) and minimizing with respect 
to h, we find the thermodynamic potentials of both 
phases. 

The nematic-isotropic phase transition line is defined 
by the equality of the thermodynamic potentials of the 
two phases. For small B we have 

(19) 

If CE < D2, the biaxial phase does not arise and a first­
order transition between the two uniaxial phases occurs 
along the line 

(20) 

with liberation of the latent heat 

q=-.!!.-T~+ (-~+.£.B) T!!!-. 
D oT D D' oT 

(21) 

The phase diagram for the case CE > D2 is given in 
Fig. 2. I is the region of the isotropic liquid. Regions II 
and III are described by a uniaxial tensor, and N is the 
region of the biaxial phase. If the biaxial phase exists 

B 
II 

p 

FIG. 2 
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at all, it is in a narrow region whose width is determined 
by the sixth-order term. The narrowness of this region 
is associated with the fact that for B = 0 the fourth-order 
term does not completely lift the degeneracy (for the 
same h there can be different 13 ), and therefore it is 
necessary to take the next higher terms into account. 

The qualitative picture of the transition is also con­
served when fluctuations are taken into account. How­
ever, the transition curves are described in the scaling 
region by power functions with fractional exponents, to 
the calculation of which we now turn. 

4. CALCULATION OF THE CRITICAL INDICES IN 
THE APPROXIMATION OF SMALL € AND LARGE 
2j + 1 

The critical indices 1}, y and ~3 depend essentially on 
the structure of the order parameter. The tensor struc­
ture of the variable Qa /3 determines the structure of the 
Green function: , 

G., (k) oaT-'(Q.(k) Q,(O», a=( ex, ~), b=('(, 6). 

In the long-wavelength limit of interest, we have, in first 
order in E, 

(26) 

The index y is most easily calculated using the Ward 
identity 

To first order in E, for ff we have the equation 

4 LHZ J d'-'p 
~(k)=ZI-3-Z-p'>h,r,~ (p'+A)'(Zn)' . (27) 

Substituting r 4 from (26) and solving Eq. (27), we obtain 

whence 

. IT =2!A e(~+2)/2(a.+8) t 

t'i+Z 
1=1+ Z(t'i+8) e. 

Solving the analogous equation for the cubic vertex 

4 1 S d'-' p r,(k)=3!B---6 p,r, , 
3 Z p'»' (p'+A)'(2n)' For k = 0 the Green function has the form 

G.,(O)=Gl"hb, (22) we find 

where 

~cza,To=z1.a.~,TT=O, 
n'+n 

t'i=t>.P .• P= -Z- -1, 

n is the dimensionality of the tensor Q a {3" 

(23) 

Below we shall see that as the isolated point is ap­
proached the anisotropic part (which depends on the 
vector k) of the Green function increases more slowly 
than the isotropic part, and the Green function retains 
the structure (22) for k -J 0 too. 

At the transition point itself, 

(24) 

in this approximation the vertex parts also have an iso­
tropic form: 

(25) 

The symbol ~abc has zero trace over each of the pairs 
a, b, c: 

Here 0a/3y .•. 0 is a quantity that is symmetric in all the 
indices and constructed from all possible Kronecker 
symbols. For example, 

0.,=6.,6,.+6.,6,.+6,,6 •• , t'i .. = ~ (0 .. - n+Z 0.0,) . 
, Z n 

In an analogous way, all multi-index quantities in the 
theory are expressed in terms of the symbols 0a/3 .• , y' 

To calculate the critical indices we shall assume the 
dimensionality of space to be close to four [3J: d = 4 - E. 

In first order in E the Green function remains free while 
the vertex r4(k2 ) is determined from a parquet equation 
which differs from the equations of the scalar and vector 
models [7J only by a numerical coefficient that is com­
binatorial in origin and is associated with the multiplicity 
of the quantity: 

C 4 t'i+8" d'-'k 
r,(p)=4!----- S r,'(k)-. -. -. 

Z 3Z(Zn)'p'<" k' 
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( 
k ) h/{b.+8) 

r,=3!B A ' (28) 

The index 1} appears only in second order in E. To sec­
ond order in r 4, the correction to the Green function is 
equal to 

I'I.+Z JA d'-'k d'-'k 
G-'-k'=-3i3. r,'G(k,)G(k,)G(k-k,-k,) (2~)8 '. (29) 

Substituting the expression (26) for r 4 to first order in E 

and omitting the terms that do not depend on k, which 
determine the shift in the transition point, we obtain 

G-'(k)=g-'k' (l-~e'ln~) 
2 (L\+8) , A' 

Comparing this expression with (24), we find 
t'i+2 

7)= 2(t'i+8)' e'. (30) 

In the isotropic case under consideration, the analytic 
continuation from four-dimensional space can he effected 
in two ways. In one case, the dimensionality of the ten­
sor Q a /3 is equal to the dimensionality of space, and in 
first order in E we must put n = 4 in the formulas 
(23)-(30). In the other case the dimensionality of the 
tensor remains constant (n = 3). 

Besides expanding in E, there exists a way of calcu­
lating the indices that uses the large number of compon­
ents of the field. In three-dimensional space the order 
parameter Qa /3 has five independent components. It is 
possible to generalize the model in such a way that the 
number of independent components becomes a large 
number 2j + 1, and calculate the indices 1}, y and ~3 for 
large j. 

. The traceless tensor Qa /3 is equivalent to a spinor 
'ltb with rank j = 2. In the new variables the Hamiltonian 
has the form 

dG= (A +k')I,+BI,+t/,CI,', (31) 

where 
m-J 

/,= ~ l'¥m;I', 
m=-j 

In this form j can be regarded as any number. On the 
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line B = 0, (31) coincides with the Hamiltonian in the 
problem of a second-order phase transition with N = 2j 
+ 1 fields. For this model the indices 1] and y to first 
order in N-1 are equal to [4J : 

2 1 (12 1 ) 
T]= 3n' 2j+l' 1=2 1--;;- 2j+1 . (32) 

To determine the index Do3 to terms of O(N-2) it is suffi­
cient to calculate the diagram represented in Fig. 3. The 
wavy line is the interaction in the "ladder" approxima­
tion. Calculation of the diagram gives 

r -B (1-6S ~G'o)( +~)G,") ( _~) 2C ) 
,- (2n)' p 2 P 2 1+2C(2j+1}I1(p} , 

where 

S d'k 
I1(p}= k-'(p+k}-' (2n)" 

For small k, the region of small p is important in the 
integral, and we can neglect the 1 in the denominator of 
the integrand. As a result, we obtain 
r3 = B(l + 12lnk/rr\2j + 1)). Comparing this with the 
cubic vertex that follows from scaling arguments, we 
obtain the index Do3 = 12/1f2(2j + 1). 

The next terms in the expansion of the thermodynamic 
potential have the form 

[,[,[,+'/,r,[,'+'(,r,'[)+ ... 

The index of the vertex r~ is determined by formula (7), 
and the vertices rs and r6 should have independent in­
dices Dos and Do6. The calculation of the indices Do5 and Do6 

by means of the E-expansion and the expansion for large 
2j + 1 is performed analogously to that of Do3 and leads to 
the following values: 

176 
fl, = 1 + -::-~--;.,--

3n'(2j+l} 

308 60 
fl.= !l+8 ' fl, rr'(2j+l) 

The different ways of calculating the critical indices 
give different values for y, 1] and x. It is of importance, 
however, that for any method x lies in the region 0 < x 
< 2, so that the qualitative picture of the vicinity of the 
isolated point is the same as in the Landau theory. 

5. EFFECT OF rs AND r6 
We shall consider now the change in the pattern of 

the transition when fifth and sixth powers of Q, with bare 
vertices D and E respectively, appear in the Hamiltonian. 
Their qualitative influence is the same as in the Landau 
approximation. The term with the fifth power leads to 
asymmetry of the pattern of the transition about the line 
B = 0, and the term with the sixth power leads to the 
possibility of the existence, in a narrow region, of a 
phase without axial symmetry. Quantitatively, these 
phenomena are described by the vertices rs and r 6• 

There appears a correction 

(33) 

to the cubic vertex r3, where oB is determined by the 
large-momentum region, does not depend on A and leads 
to a shift of the critical point in B. Below, B, like A, will 
be reckoned from the value at the critical point. 

-< -<+-« 
FIG. 3 
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The first term leads to the res1,llt that in the formulas 
of Sec. 2 the parameter z = BA-X/2 must be replaced by 

(34) 

In accordance with this, the curve of the transition to 
the isotropic phase and the transition lines between the 
two ordered phases become asymmetric with respect to 
the line B = O. As in the Landau theory, a biaxial phase 
exists only for r6 > O. The width of the region in the 
(A, B)-plane is 

(35) 

6. THE VERTEX PARTS AND GREEN FUNCTIONS 

We now investigate the question of the stability of the 
isotropic form of the Green function in the scaling reg­
ion. For this we introduce into the Hamiltonian an aniso­
tropic part A(a/ax(\')(a/axi3 )Q(\'yQyi3' which leads to the 
free Green function 

(0) _, ( A. A.) 
G'b =k fl .. - 1+31.14 X.Xb+ 1 +M2 x.. , 

x.=k.k,lk'-6.,ln, 

X o,,= k,k," ,k,1 k' - (k,k,6" + k,k,6" + k,k,6,. + k,k.6.,) 14k'. 

In the scaling region the exact Green function has the 
form 

G., -'=k'-"p.,+A, (k) x,x,-A,(k) x.,), 

where Ai(k) = Ak1]i. 

(36) 

To prove the stability of the isotropic form of the 
Green function it is necessary to show that the 1]i are 
positive. Then, in the region of small k, we can neglect 
the anisotropic parts of the Green functions. As in the 
calculation of TJ, to calculate the indices TJi we find the 
self-energy part in second order of perturbation theory 
from formula (29). Substituting into this formula the ex­
pression (26) for r4 and the expression (35) for the Green 
functions G, we obtain 

1.,=1.(1 +'1, In k}, 

In the approximation of large j, the indices TJi are 
calculated just like the index TJ in formula (32). As a 
result we obtain TJi = 4TJ/5. Thus, the indices TJi are 
positive, and the Green function becomes isotropic as 
the singular point is approached. 

For numerical reasons, like TJ, the exponents of the 
anisotropic parts of the Green function have been found 
to be small. Therefore, the scaling region, in which the 
Green function is isotropic and the estimates obtained 
above for the indices are valid, is narrow. There exists 
a region 

in which the Green function can be anisotropic. In this 
region the vertices have a form corresponding to scaling 
theory, with indices depending on the anisotropy param­
eter A. Being functions of TJ In (A2/ AY), these parameters 
depend slowly on T and P. Experiments [8J on light scat-

~ I ~ I A, A, I A, I x 

(2i+1)-' 0.013 
11.52 \ 

0.24 2.18 
11.20 1 1.78 

e, n=3 0.021 1.27 0.46 2.38 2.3 1.31 
e, n=4 0.019 1.32 0.35 2.06 1.8 1.47 
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tering by liquid crystals give evidence of the smallness 
of the anisotropic part of the Green function in this 
region too. Therefore, the results obtained above are 
valid in a broad range of temperatures. 

The treatment of the anisotropic region by means of 
the E-expansion has certain difficulties of principle in 
addition to the great calculational difficulties. The point 
is that the relation TrQ4 = %(TrQ2)2 is fulfilled only for 
two-row and three-row traceless matrices. For four­
row matrices there are two fourth -degree terms in the 
expansion of the thermodynamic potential: r1(TrQ2)2 and 
r2TrQ4. 

For isotropic Green functions the parquet equations 
for these vertices have the form 

, df. 1 ( n'+n ) 2n'+3n-6 (1 1) 
8l't -=-3 -·-+7 f<'+ f.f,+3f,' -+- , 

dy 2 3n 6 n' 

8 '~-I.f f + 2n'+9n-36 f' 
l't dy -'i • 2 6n ' , 

k 
y=ln-. 

A 

These equations were obtained by Lubensky and 
Priest[9], who also found the fixed points of the equa-
tions. . 

The values of the indices obtained above correspond 
to the solution r2 = 0, while r1 is determined by (26). It 
is easy to convince oneself that this solution is unstable. 
If there is a small bare vertex for r2, then, at a certain 
distance from the proposed second-order transition 
point, the vertex r 1 changes sign and a first-order tran­
sition occurs. Anisotropic terms in the Green function 
lead to the same effect. Thus, in the four-dimensional 
case, when the matrix Qaf3 is also a four-row matrix, 
there exist two essentially different solutions. For one 
solution, r2(0) = 0 is an isolated singular point, while for 
the other a first-order transition occurs even at B = O. 
We do not know which of these solutions has the analytiC 
continuation to which a state in the real, three-dimen­
sional world corresponds .. 

7. CONCLUSION 

In the scaling region the thermodynamic potential has 
the form 

(37) 

where ~ is the correlation length, which is measured by 
optical methods [8]. The dependence of ~ on the tem­
perature and pressure is described by a universal func­
tion of the form 

,= (T_T,)-1NH) f (~:;} T.-T,oo (P-P,) '/'. (38) 

Here Tk is the temperature of the first-order transition, 
Tc(P) is the boundary of the metastable region, and Po 
is the pressure at the isolated point. The latent heat of 
the transition is of the order of the singular part of the 
entropy and has the pressure dependence 
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For T - Tc »Tk - Tc the dependence of ~ on the tem­
perature has the form ~ ex: (T - Tc )y/(2-7]). At pres­
sures close to Po in the nematic phase, there should be a 
transition between the two nematic phases. In one of 
these the dielectric permittivity is described by a prolate 
ellipSOid, and in the other by an oblate ellipsoid. Between 
these phases a narrow region is possible in which there 
exists a phase without axial symmetry. The phenomeno­
logical theory cannot predict in which substances and at 
what pressures an isolated singular point will exist. The 
possibility that the coefficient of the fourth power in the 
thermodynamic potential is negative is not ruled out. In 
this case, the phase transition to the isotropic liquid will 
be first-order even at the point at which the coefficient 
of the cubic term vanishes. 

In the majority of liquid crystals the phase transitions 
are almost second-order: even at normal pressure, 
Tk - Tc ~ 10 [2,10]. In order to find the region of appli­
cability of formulas (37)-(38), it is necessary to find 
the boundary between the scaling region and the Landau 
region. Estimating the region of applicability of the 
Landau theory by means of the Ginzburg criterion 
CT/~ 3 A 2 « 1, we obtain that this boundary runs at a 
distance of ,the order of degrees from the phase-tran­
sition line. Therefore, at normal pressure, we are 
between the region of applicability of the Landau theory 
and the scaling region, and we cannot expect a universal 
temperature dependence of all the quantities. 
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