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For a system with resonance interaction between oscillators and the radiation field, the conditions that lead 
to a phase transition to a state of spontaneous coherence below T, are obtained. Thermodynamic averages 
and the correlation function of the oscillators are calculated. An analogous phase transition is detected in 
systems with a process of the stimulated Raman-scattering type, in which a phase transition in the field 
also exists, and in a system of interacting waves of the decay type. 
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1. INTRODUCTION 

In a system of atoms interacting with the radiation 
field, at sufficiently long wavelengths cooperative ef­
fects begin to play an important role. That state of the 
atoms-field system in which collective properties of the 
atoms are manifested in spontaneous radiative proces­
ses was first studied by Dicke[l] in a model of two-level 
atOms and was called the superradiative state. Recently, 
an investigation of the thermodynamic properties of the 
Dicke model, carried out by Hepp and Lieb[2], led to an 
important result: the transition of the system from the 
normal to the superradiative state is a phase transition 
analogous to ferromagnetic ordering (d. also[3]). For 
temperatures T < Tc and sufficiently strong interac­
tion of the atoms with the field there appears a macro­
scopic number of field photons (proportional to the num­
ber N of atoms), and the mean number of photons per 
atom, Yo, which is the order parameter, becomes non­
zero. An analogous property is also possessed by 
three-level systems[4,5], in which a new effect arises; 
a succession of phase transitions at temperatures T 1 

and T2, each of which is associated with the opening of 
the corresponding radiation channel[4] (the "cascade" 
character of the appearance of a macroscopic number 
of photons). 

The results described above point to a new possibil­
ity for creating systems possessing coherent proper­
ties. In this connection, it is of interest to study a wide 
class of physical systems, and the present paper is de­
voted to this. It will be shown below that resonant 
processes of interaction of the field with atoms and with 
other fields can lead under certain conditions to a 
second-order phase transition, manifested in the ap­
pearance of spontaneous coherence of the oscillations 
of the atoms when T < Tc (analogous to the spontaneous 
magnetization in a system of spins). In the paper we 
consider the following classical systems that are of 
interest for applications; a system of oscillators inter­
acting with the radiation field (Sec. 2), a system of the 
stimulated Raman scattering (SRS) type (Sec. 3) and a 
system of waves with interaction of the decay type (Sec. 
4); the conditions under which the phase transition to the 
coherent state occurs are obtained. The comparative 
simplicity of the systems investigated (compared with 
the purely quantum Dicke model) has made it possible 
to elucidate in detail the characteristic features of the 
phase tranSition, to calculate the correlation function, 
etc. At the end of Sec. 2 and of the whole article, cer­
tain possibilities of observing the phase transition de­
scribed are discussed. 
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2. SUPERRADIATIVE PHASE TRANSITION IN A 
SYSTEM OF OSCILLATORS 

We shall write the Hamiltonian describing a system 
of classical oscillators interacting with a field in the 
form 

H=(jJ>(L.a;+oo. ,tl;+ 'i~,t(v.;rx;c;+v./a.c/), (2.1) 
; ; 

where O!k is the complex amplitude of the field having 
frequency Wk; Jj = 1 Cj 12 is the action of the j-th oscil-

lator; Vkj = eikrj, k is the wave number and rj is the 
coordinate of the j-th oscillator. The interaction in (2.1) 
is of the dipolar type, and we consider the case close to 
resonance (Wk"'; wo). The interaction constant 
g = ..; pWk, where jJ. is the dipole moment of an individual 
oscillator and p is the volume density of the oscillators. 

It is not difficult to calculate the partition function of 
the system (2.1); 

00 N CD In 

Z= S dada' II Sdl; S de;exp(-~H), (2.2) 
i=t 0 

1/2 iOJ' / . 1 1 im where Cj = J j e and i3 = 1 T. Puttmg O! = O! e"'" 
and 1/ij = OJ - cp, we rewrite (2.2); 

ClIO N 00 :" 

Z=2n S dial' exp(-~oo.lal') II J dl; S d1jl; 
,_10 

=2nN jdY exp(-~oo.Ny) {2 j dle-~·,JI.(2~g'iyl) r . . 
(2.3) 

where y = 1 O! 12/N and 10 (x) is the Bessel function of 
imaginary argument. As can be seen from (2.3), there 
is no phase transition in the classical limit under con­
sideration. 

As will be seen below, a phase tranSition turns out to 
be possible if for the oscillators there exists a classical 
analog of an "energy gap _" In this case the integration 
over J in (2.3) is performed between the limits J = J 0 

and 00, where J 0 is found from the condition H 2: Vo. A 
classical system with an energy gap is nonequilibrium 
and can be represented easily by means of the following 
model. Let the trajectories of an oscillator in the phase 
plane have a stable limit cycle C (see Fig. 1). From a 
physical point of view this means that in the energy re-
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gion II (Fig. 1), on the average, an ordinary frictional 
force acts on the oscillators, while in the region I, on 
the average, negative friction acts. If we now assume 
that all the dissipative parameters are sufficiently 
small compared with the time of the interaction of the 
oscillators with the field, we can study the thermody­
namics of an excited system of this type. In this case, 
thermal fluctuations can carry oscillators over from 
region II to region I and vice versa, overcoming the ef­
fective potential barrier between them. The effect of 
the occupation of the low-energy region by particles can 
be neglected if the barrier height is sufficiently large 
compared with T. The latter condition has the form 

~oo.Jo"'~Vo~1. 

Thus, slow nonequilibrium processes will slightly 
smear out the phase transition considered below. 

Another case in which an energy cutoff appears 
(H ~ V 0) may be associated with nonlinearity of the 
oscillators 1) • 

(2.4) 

With the assumptions made, we have, apprOXimately, 
in place of (2.3), 

Z"'2nN jdy e-••• 'N{2 jdJe-'.'Jlo(2~g1YJ)} N 

o J, . 
=2nN Sdyexp{N[-~oo'Y+lnQ(y)l}, 

• -
Q(y)= 2 S dJ e-··'Tlo(2~g1yJ). 

J, 

For N - "" the value of Z is determined by the ex­
tremum: 

Z---+ const'exp {N[ -~oo.yo+ In Q (yo) l}, 
N_~ 

where Yo satisfies the equation 

1 dQ(yo) 

Q(yo) dy 

If (2.7) has no solution, then 

Z->-const·exp{N[ -~oo.y+ln Q(y) n,-o, 

(2.5) 

(2.6) 

(2.7) 

which, according to (2.5). indicates the absence of a 
contribution to the partition function from the interac­
tion. The quantity Yo, on the other hand, is equal to 

. yo=N-'<i (X I') 
and has the meaning of the mean number of photons per 
oscillator. Thus, if there exists a Tc such that for 
T < Tc the quantity Yo" 0, while, for T> Tc. Yo = 0, 
then a phase transition occurs to the super radiative 
state (for T < Tc ) of the oscillators:! analogous to that 
which occurs in two-level systems[ ,3J. 

We shall consider Eq. (2.7), using the definition (2.5): 

p 

][ II 

FIG. 1 
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00,- is-- --1yo=-(-) dJ'lJe-·w,J 1,(2~gYYoJ). 
g Q yo 

T, 

(2.8) 

Equation (2.8) is the analog of the Curie-Weiss equation, 
and we shall show that for f3 ;> f3c (T < Tc) it has a non­
trivial solution Yo" O. Expanding I 1(x) in the region of 
Yo = 0, we have, for the determination of Tc, the equa­
tion 

(2.9) 

From (2.9), in particular, it can be seen that for J 0 = 0 
there is no nontrivial solution. Rewriting (2.9) in the 
form 

T,=woJo (00000./ g'-i) -'= Vo (00000.1 g'-1) _I. (2.10 ) 

we find that a phase transition exists only under the 
condition that the interaction is sufficiently weak: 

(2.11) 

This condition is the opposite of that which was found 
in[2,3J for a system of two-level atoms interacting with 
the radiation field. 

We shall now make use of the inequality (2.4)_ From 
(2.8) follows the equation 

oo.y_yo __ I,(2~g1yolo). 

g J. 10(2~g YyoJo) 
(2.12 ) 

determining Yo for T < Tc, and the expression (2.10) 
for Tc goes over into 

(2.13 ) 

The graphical solution of Eq. (2.12) for Yo is given 
in Fig. 2, and 

(2.14) 

We shall now find < J), by making use of the expressions 
(2.5). (2.6): 

1 1 81nZ 1 8 
(I> = - -lim ---= -.:----In Q(yo, (00) 

~ N_~ N iJooo ~ 0000 

J, J, 

The dependence of < J) on T that follows from formula 
(2_15) is shown in Fig_ 3, in which the Rayleigh-Jeans 
distribution for g = 0 is drawn with the dashed line, and 

Vo ( g'-) (1)IT_o=(J)IT_T =- 1+-- . 
e (00 (J)oOlA . 

(2.16) 

As can be seen from (2.16) and Fig_ 3, for T < Tc the 
number of excited oscillators exceeds the equilibrium 
value for g = O. This is connected with the capture of 
photons, the density of which for T < Tc is equal to Yo 
"'- 0 (Fig. 2). 

It is not difficult to understand the meaning of for­
mula (2.13) if we notice that the potential energy of the 
dipolar interaction of the field with an oscillator is of 
the order of U ~ IJ. no ~, where the intensity of the 

- Yo 
g2Jojwg . 

o 
. FIG. 2 
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electric field of the oscillators Iff = PJJ. ffo. Taking into 
account that g = JJ." pWk, we obtain U ~ pJJ.2 J 0 = g2 J 0/ wk 
= Tc. Thus, for T> U = Tc thermal fluctuations de­
stroy the bound state of the oscillators with the field. 

We can also analyze the physical meaning of the 
phase transition by turning our attention to the interac­
tion term 

Hin' -£ "V,cos($,+kr,). 
J 

(2.17) 

Although, under the resonance condition, the phase 1/!j 
i~ an invariant of the motion for each site separately, " 
(1/!j is a.n invariant of the motion for each site separ­
ately, (1/!j = Wk - wo;o' 0), it can take random values that 
differ greatly from site to site and the averaging (2.17) 
at sufficiently high T gives ( Hint»l/2 ~ N'/2. On the 
other hand, for low T the formation of a bound state of 
the oscillators with the field is favorable. In this case 
the variation of the phase of the oscillators at the dif­
ferent sites becomes coherent and acquires spatial 
periodicity, with period equal to the wavelength of the 
photons. Then ( Hint> )'/2 ~ N. 

We shall calculate the spatial correlator of the dis­
placements q and velocities q = p of the oscillators: 

1 N 1 N 

Rm(q)=lim-N ~<q,q'+m)' Rm(p) = lim-N I: <p,p'+m)' -- ~ --1 .... 1 1=1 

Making use of the relations (the mass of an oscillator 
equals 1) 

q=l'1/20l, (c'+c), p=iYOl,/2 (c'-c), 

we write 

(2.18 ) 

where a = rt+1 - rz is the spacing between the oscilla­
tors of the "lattice." We write out the integration in 
(2.18) analogously to (2.3): 

1 1 N -

Rm(q)=-lim--~ cos kma J d(Ny)exp[ -~Ol.Ny 
(i)oN-+ooNZN~ 

1=1 0 

+(N-2)InQ,(y)+2InQ,(Y) ], 

where ~(y) is the same as in (2.5), and 

- '" 
Q, (y) = J yT, dJ, J dl/l, exp [-~Ol,/,-2~g l'y,/, cos 11',] 

J, 

(2.19) 

Ol' 
Rm(q)=-'-y,(T)coskma, (2.22) 

ffiog2 

where Yo ( T) is the solution of Eq. (2.8). As can be 
seen from (2.22), the correlator is proportional to the 
order parameter yo(T), and vanishes for T> Tc. It 
oscillates as a function of distance, with the dimension­
less period 21T/ka = A/a. The appearance of a periodic 
structure with the photon wavelength A is obvious, in­
asmuch as emission and absorption are the only source 
of the interaction between the oscillators. 

In analogy with (2.22), we can obtain 

Rm(P)=Ol';:' y,(T)sinkma. (2.23) 

If we make use of the inequality (2.4), the expression 
(2.22) and (2.23) can be written in a more explicit form: 

R () 1 I"(2~g"Vy,I,) 
m q = coskma, 

Ol, I"(2~gYy,I,) 

R ( ) I,'(2~gl'y,I,). k 
m P = Ol, sm mao (2 .24 ) 

Io'(2~gl'y,I,) 

In conclusion we shall give some qualitative estimates 
to compare the conditions for a phase transition in a 
system of two-level atoms with those in a system of 
oscillators. If we introduce the critical density of 
atoms, Pc = liw/ JJ.2, in the two-level case the threshold 
condition for superradiation has the form[2,3) P > Pc, 
and, e.g., for the optical region (w ~ 10'5 Hz, JJ. ~ 10-18 

esu) we have Pc ~ 1024 cm-3; Pc increases with in­
crease of w. 

The case we have considered, of a system of classi­
cal OSCillators, may turn out to be more favorable in 
the region of optical and higher frequencies, Since, ac­
cording to (2.11), the phase transition occurs under the 
opposite condition P < Pc. It follows from (2.13) that 

T,/T,=p/pc, (2.25) 

where To=nwJo. Since, according to (2.4), Tc/To< 1, 
we can evidently obtain a superradiative state at suf­
ficiently low densities P of oscillators. For example, 
in the optical region (Pc ~ 1024 cm-3) and with To 
~ 104 Kl for the densities of impurities in a solid 
(p ~ 10 ' cm-3 ) we obtain Tc ~ 10 K. We then have the 
following range for the denSity p: 

3. THE PHASE TRANSITION IN STIMULATED RAMAN 
SCATTERING 

Transformations in (2.19) give 

As the simplest generalization of the phase transi­
(2.20) tion to the superradiative state we shall consider SRS 

of an external field by oscillators Cj. We write the 
Hamiltonian of the system in the form 

1 1 -
Rm(q) = -coskma· Iim--J d(Ny)exp{N[ -~Ol.y+ In Q(y) I 

cu. N-+co ZH-Z , 

+2In[ Q(y). ]} =~[ Q(y,) ]~oSkma, 
Q(y) Ol, Q(y,) (2.21 ) 

where Yo is again determined by Eq. (2.8), since the 
equation for the saddle point for N - "" goes over into 
(2.8). If we make use of the identity 

dQ(y) =ft.Q(y), 
dy Yy 

then, taking (2.8) into account, we obtain from (2.21), 
finally, 
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H=Ola.a.·+Ol, I:c;c/+m,b,b"+Ol,b,b; + :-N I: V"c;a.b,· 
, j 

+ g~ ~ V,;cia.b;+c.c., 
YN~ (;Ll) 

where a is the amplitude of the external field, with fre­
quency w, being scattered; b , and b2 are the amplitudes 
of the field in the anti-Stokes and Stokes scattering re­
spectively (see Fig. 4); g,,2 are the constants of the 
corresponding interaction processes (the moduli of the 
matrix elements of the processes, the phase factors of 
which are written as V1j, V2j); W, = w + wo; W2 = W 
- woo At sufficiently high field intensities b 1, b2, emis-
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sion and absorption processes have comparable proba­
bilities, and it is this which leads to the necessity of 
treating the thermodynamic system of oscillators and 
resonance fields bh bz as a single whole. Moreover, 
the external field a and its frequency ware not too 
large, so that a thermodynamic formulation of the 
problem has meaning. 

We rewrite (3.1) in the form 

+e.-6,)+2g,l'YL, l'/;1 b,lcos (6v,-6" +e.-6,) , (3.2) 
J 

where y and J are the same as in Sec. 2 and the () are 
the phases of the corresponding components. We shall 
make USe of the following transformation of volumes: 

d6.d6'i d6,d6,=2d6,d6,d( 6.-6,;) d( 6. +6,) 
=8d( 6. +6'i +9,) dl\1,' d (6.-6,;+6,) dl\1.' 

=8d(6.+6,; +6,)d(6,,-6'i +6.) dl\1,d1jl" 

1\1,' =6.+6., -6" 1jl; =6.-B"-B,, 1jl,.,=1jl,~,+Bv,.,. 
(3.3) 

Now, in analogy with (2.2), (2.3) and (2.5), we can write 
an expression for the partition function: 

w w 

Z=(32n')NN"r,·N. J dy, J dy,exp[ -~N(y,CIl,+y,CIl')] 

. {j dJ r,·,1 r d1jl, 'j dl\1, exp[ -2~l'yl (g,l'y, cos 1jl,+g,l'y, cos 1\1,)] } N 
J, 0 0 , - . 

_(32n')NN"e-J·N• J dy,J dy,exp[-~N(CIl,y,+CIl,y,)+NlnQ(y .. y,)], 
, 0 . 

Q (y" y,) =4 J dJ r,·,1 lo(2~g,l'yy,/)l,(2~g,l'yy,/), 
I, (3.4) 

y,.,=1 b",I'IN. 
In the limit N - "" we have 

Z-const·exp[ -~N.(CIl,y,,+CIl,y .. ) +N In Q(y", y .. )], (3.5) 

where the saddle points Yo!> Y02 satisfy the system 
. ~ . Q( ) oQ(yOl,Y .. ) ~ Q( ) oQ(y",Y02) (3.6) 

Uh YOh YOI aYt' t'<O.z YOl, Y02 ay" • 

If the system (3.6) has no solution, the following three 
cases are then possible: YOI = 0 and the equation 

~<Il,Q(O,y,,)=OQ;O'Y02) (3.7) 
y, 

has a solution with Y02 7' 0, or Y02 = 0 and the equation 

~ Q( O)_oQ(y",O) (3.8) 
(l)t YOh - aYt 

has a solution with YOl7' 0, or none of Eqs. (3.6)-(3.8) 
has a solution, and then YOl = Yoz = 0 in (3.5). 

As in the preceding section, we can convince our­
selves that for J o 7' 0 there are no nontrivial solutions 
at suffiCiently high temperatures. Thus, as T is 
lowered a phase transition can arise to a state with an 
anomalously large photon scattering density. These 
states may be called superscattering states. They were 
introduced and investigated in[ 7 J, but this is, apparently, 

w ~~ W.2".W-W .. 0, 
Wo bz 

c c 

FIG. 4 
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the first time that a temperature phase transition to a 
superscattering state has been noted. 

Investigation of the system (3.6) in the general case 
is cumbersome, although, on the basis of the results 
of[41, we can point out the following qualitative behavior 
of the solutions of (3.6). With decrease of .T scattering 
channels at frequencies Wi> Wz are successively opened 
at temperatures T 1, Tz respectively. The relationship 
between Tl and Tz depends on the constants gh gz. If, 
e.g., Tz> Tl (which is realized for gz> gl), then, for 
T > Tz, YOI = Yoz = 0 and there is no superscattering; 
for Tl < T < Tz, YOI = 0, Yoz 7' 0 and is determined from 
(3.7), and the superscattering is of the Stokes type; for 
T < T 1 , the quantities YOl, Y027' 0 and are found from 
(3.6). In the latter case superscattering occurs with 
respect to both components of the field. 

In the limiting case of large values of J 0, when, ac­
cording to (2.4), f3woJo» 1 and {3g1,2JYYl,2JO< (3wcJ, 
the expression for Q( y 1, Y 2) is simplified: 

Q(y" y,)""'Q(y,)Q(y,), 

Q(y.) =1, (2M,l'yy,Jo) (i=1, 2). 
(3.9) 

The system (3.6) decouples into two independent equa­
tions: 

CIl,l'y" 11(2~,g,l'~ 
g,l'ylo l,(2~,g;l'YYOl/,) (3.10 ) 

From these equations we can determine the two critical 
temperatures T 1,2: 

T,=I,g,'y/CIl, (i=1, 2). (3.11) 

It follows from (3.11) that the ratio of the critical tem­
peratures for Stokes (T2) and anti-Stokes superscatter­
ing (T 1) is equal to 

..!'.!..= (k)' ~=(~}·CIl+CIl'. 
T, g, CIl, g, Ol-CIlo 

(3.12) 

The principal difference between the expressions 
(3.11) and (2.13) is connected with the fact that the 
phase-transition temperature in the SRS is proportional 
to the intensity y of the pumping field and is thereby 
accessible to external control. The expreSSions (YOl, 
Y02 for T = 0) for the maximum density of photons of 
the coherent fields are modified analogously: 

gf 
y .. =~yJ" (3.13 ) 

i.e., the intensity of the coherent field is proportional 
to the pumping-field intensity. 

If the temperature is fixed it follows from (3.10) that 
there exists a phase transition with respect to the pump­
ing-field intensity parameter. A coherent state of the 
oscillator arises for fields 

(3.14) 

4. SYSTEMS OF THE DECAY TYPE (THREE-WAVE 
AND FOUR-WAVE PROCESSES) 

The results obtained above enable us to go over to 
one of the most interesting and important cases-a sys­
tem in which processes of resonant decay and coales­
cence of waves occur. We write the Hamiltonian of the 
system in the form 

H ~ [ (')/(1)+ (') J(')]+ 1(0) +~ [V b~l) b(')· +c c ] , = ~ co" .\ ro.ll. A IDo .i..J kaO" 11:+110 •• , 

• • 

G. M. Zaslavski'l' et al. 1141 



where ao is the complex amplitude of a monochromatic 
field with wave-number ko, and the resonance condi­
tions 

(4.2) 

are assumed to be fulfilled. 

The indices (1), (2) refer respectively to the two 
branches of oscillations between which a photon with 
frequency Wo is transferred. We shall also assume that 

~oo(I)/,(t»~oo(2)/, ('»1, (4,3) 

where J~ll ,(21 are the minimum values of the action of 
the waves. The first inequality in (4.3), as is well­
known[8], leads to the possibility of using the quasi­
harmonic approximation for the waves. The second in­
equality in (4.3), as will be clear belOW, is a necessary 
condition for the existence of a phase transition. Inas­
much as the waves with frequencies W(2) and Wo in the 
process (4.2) are completely exchanged by the actions 
under the condition (4.3)[8], the existence of a lower 
band on the action of the wave (y = J~O)/N = ;f;l) also 
follows from the second inequality in (4.3). Of interest, 
however, is the case (3woY « 1, for which it is possible 
to obtain values of T c that are not too small. On the 
other hand, the existence of the lower bound y for the 
order parameter y means that, if it exists, the phase 
transition to the coherent state is a first-order phase 
tranSition, close to being a second-order phase transi­
tion. 

The appearance of the wave-action cutoff parameters 
y, ;fgl (2) is connected, as in the case of oscillators, with 
the existence of metastable excited states of the oscil­
lations. It is Simplest to imagine such states in a 
plasma or in another unstable medium. The development 
of instability of any mode leads to an increase in its 
amplitude, up to a certain stationary (metastable) value, 
and the weak interaction of such modes creates small 
temperature fluctuations[9]. Inasmuch as the increments 
in the instability depend on k, the lower bounds ;fOlk 
and ;f8:ko+k are also functions of k. ' 

We turn to the calculation of the partition function for 
the Hamiltonian 

H=,·; P')+ \"1 [00(')/')+00(2) 1(') l+~ \"1 GYP')/(O/(') COS'" 
o,uo ~ It It ko+.I! Ito+A N'I.~ 11. ~+k 't'Ju .. . 

G" i. (I) (21) v.= YNe, \(l.=cp+9,+9. -900+" 
(4.4) 

where N is the number of modes over which the sum-
mation is performed; in addition, a finite number of 
terms, making no contribution to the interaction, has 
been omitted in the unperturbed part of H. We have 

where the limits of integration are chosen in accord­
ance with the analysis performed above. 

We shall make use of the following transformation 
formula for the elements of integration over the angles: 

(4.6) 
Substituting (4.6) into (4.5) and taking into account that 
H depends only on 1/!k, we find 
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Z=N(81l')N S dye-,·,N, IT Q.(y), 
Ii 

.<XI <XI 2ft 

Qk (y) = ~ dJ~') ~ a.t-;'~k ~ dll'k exp {- p [oo~') J~'l + oo~kJ~~k 
-1~)k J~~t+k 0 

+ 2Gk V yJ),') ~!~k COS 1iJkJ} = 2 ~ dJ~') ~ dJ~!~k' 
J6~ J~~)ko+k 

. exp {-P [oNl r,'l + ook:~,J~!tkJ} 10 (2PGk V yJ~1 Jk:~k)' (4.7) 

Finally, we have 

Z-const.exp { -N [~oo,yO - ! L1nQ.(y,) n, (4.8) 
• 

and the extremum point yo is found from the equation 

1\"1d S d ~oo,=lim-N 4.J-d [lnQ.(y,)l= doop(ro)-[lnQ.(y,)], (4.9) 
N_~ • y dy . 

where p (w) is the density of states (frequencies) per 
unit frequency interval and unit VOlume, and Qw is ob­
tained from Qk by means of the change of variables. 
For T> Tc Eq. (4.9) has no solution Yo?: y, and in 
(4.8) we must put yo = O. 

The critical temperature Tc can be obtained from 
(4.9) by expanding Qk(Yo) in the vicinity of yo = y, tak­
ing into account the inequality (3cYwo« 1: 

G.' 
= Sdrop(oo) ( ) [1+~,oo/, .• l [1+~,(ooo+ro)Io .•• +.l 

00 oo+ro, 

or, taking the inequalities (4.3) into account: 

1 S ()' (I) (') , (t) (') T, = - doop 00 G. I". 1",..+o=G I, I, /w" 
00, 

(4.10) 

where G and J 0 are certain averages (over the wave 
packet) of the quantities Gw and JO W' Inasmuch as the 
dimensionless quantity J 0» 1 by vIrtue of the classical 
nature of the problem, the value of Tc from (4.10) is 
greater than in the case of oscillators interacting with 
a field with the same value of the interaction constant 
(in (2.13». 

As in the case of oscillators interacting with a field, 
below Tc "capture" (binding) of one of the types of 
wave occurs (yo" 0). Quanta with frequency Wo are 
emitted and absorbed by two branches (.r kl and .rkl ), 
and this leads, below Tc, to an anomalously large value 
of the average three-wave interaction energy. To de­
termine the equilibrium value of yo we substitute (4.7) 
into (4.9) and take into account the inequalities (4.3): 

in which Yo?: y. In the case when G and J 0 do not de­
pend on w (on k), Eq. (4.11) is analogous to (2.12). This 
makes it possible to use for estimates the expressions 
(2.14)-(2.16), in which we must replace g - G ffo. 

We remark also that the process of establishing co­
herence of the phases of oscillating modes with differ­
ent values of k below Tc is accompanied by the ap­
pearance of coherent structures in coordinate space. 

The results obtained for three-wave processes have 
a universal character. It is not difficult, e.g., to gen­
eralize them to the case of four-wave interaction in 
conditions of an external pumping field Cq at frequency 
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n. In the presence of parametric amplification of the 
field with frequency Wo, for H the interaction term in 
the Hamiltonian (4.4) must be replaced by 

(4.12) 

On parametric conversion of the frequencies we have, 
in place of (4.12), 

(4.13 ) 

In both cases (4.12) and (4.13), the phase transition 
consists in the appearance of a nonzero average field 
intensity Yo at the frequency Wo and in a sharp in­
crease, below Tc , in the average cross-sections of the 
corresponding processes-of the' 'superamplification" 
and "superconversion" types. The quantitative results 
have the appearance of the expressions (3.13), (3.14) in 
which G must be replaced by G \ Cq \. 

5. CONCLUSION 

The investigation carried out above shows that, 
generally speaking, under certain conditions a threshold 
value with the character of a phase transition may be 
associated with an arbitrary resonance process between 
a system of the thermodynamic type (i.e., having an ef­
fective thermal scatter of the parameters) and a certain 
nonthermodynamic field. This transition occurs with 
respect to the temperature or the external field and is 
manifested in the appearance of spontaneous coherent 
properties in the system below T c. Another interpreta­
tion of the transition is that, for T> T c , the denSity of 
the intenSity (i.e., of the number of photons) of the 
"scattering field" which mediates the resonant inter­
action between elements of the thermodynamic part of 
the system is of the order of N- 1/ 2, whereas below Tc 
the intensity density remains finite as N - 00. The 
thermodynamic properties of the system must be under­
stood in a fairly general sense, since the system can be 
strongly excited on the average. In this case the effec­
ti ve temperature of the system characterizes the de­
gree of fluctuational scatter of the parameters and may 
not coincide with the real temperature of the medium 
(such a situation is realized, e.g., in SRS). 

We have considered the most typical cases of reso­
nant systems. We must discuss in more detail systems 
in which SRS occurs. Strictly speaking, the real situa­
tion differs somewhat from that conSidered, since 
usually the nonlinearity is very strong and the excita­
tion parameter J 0, unlike the one considered, is a func­
tion of the pumping amplitude. However, the general 
picture, leading to a threshold value as a result of the 
competition between the ordering resonant interaction 
between the atoms and the field and the disordering ac­
tion of the thermal fluctuations, should be conserved. In 
view of this, it is useful to make certain estimates. We 
shall write, e.g., the equation of motion for the Stokes 
component of the field[ 8J in the symmetrized form: 

IJ =in (R!.:::...) (WSW.WL)'" B B' 
S aR Aov L 'II, 

where AS, AL, and Av are the amplitudes of the scat-
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tively. AOv is the level of excitation of the field of the 
molecules, R is the generalized coordinate of a m~le­
cule, a is the susceptibility of the molecules and n is 
the density of molecules. Then, by means of (3.1) and 
(3.14), it is not difficult to obtain the following expres­
sion for the critical pumping field at which the phase 
transition oc curs: 

A L o' ... 8,=T eff / [ n (R :; n ' 
where ,ff c is the pumping-energy density. For the 
typical values Ai ~ 10 6_10 7 esu, n ~ 1022 cm-l, 
Raa/aR ~ 10-24 esu, we obtain: Teff < 10-19 esu = 10-3 

deg. The actual determination of the quantity Teff pre­
sents certain difficulties, exactly as does the relation of 
Teff with the emission linewidth, but the estimate ob­
tained for T eff is only two orders of magnitude smaller 
than the energy corresponding to the linewidth of the 
molecular vibrations. If we take into account that the 
linewidth depends essentially on the pumping amplitude 
and narrows sharply at large AL, the estimate obtained 
for T eff may turn out to be completely realistic. 

In conclusion it must be said that the results obtained 
demonstrate the theoretical possibility of using thermo­
dynamic ("noisy") systems to obtain coherent fields, 
the variation in the intensity of which is close in char­
acter to a second-order phase transition. This transi­
tion should also be accompanied by growth of fluctua­
tions near the transition point and by an increase of the 
relaxation time, which may be detected, e.g., by means 
of photon echo. 
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