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The Fano-Lichten model is used to calculate the cross section for formation of a vacancy in the K shell 
in the collision of heavy atoms. Here we consider transitions from the 2 sO" or 2 p'TT states of the 
quasimolecule, which correlate as R--!oo with the L shells of one of the partners, to the 1 sO" and 2pO" states, 
which for an infinite separation of the nuclei go over to the K shell of the atom or ion. There are three 
mechanisms which lead to a transition between these states. Each of these mechanisms gives a substantial . 
contribution to the cross section for vacancy formation in the K shell in various regions of the kinetic 
energy of the collision. It is shown that for a collision energy of 10-100 keV the main contribution to the 
cross section is from transitions associated with rotation of the axis of the quasimolecule. For the different 
mechanisms, analytical expressions are obtained for the cross sections for transitions leading to formation 
of K vacancies. The theoretical calculations are compared with experimental data. 

PACS numbers: 34.50.H 

1. In recent years a large amount of experimental 
data has been accumulated on ionization, (1-6J the elec­
tron spectrum, [7'""14J and the x-ray spectrum [15-19J in 
close collisions of heavy atoms or ions with energies in 
the range from tens of keV to tens of MeV. On the basis 
of these experiments it is possible to form an idea of 
the physical nature of the transitions which occur on 
intersection of the electron shells of atomic particles. 
The simplest and most convenient model describing 
these transitions is the Fano-Lichten model. [20J Ac­
cording to this model the system of colliding particles 
is considered as a quasimolecule in which each electron 
moves in the self-consistent field of the core. Electron 
transitions between the states corresponding to this self­
consistent field correspond in the final analysis to form­
ation of vacancies in the inner shells of the colliding 
particles. In the present article we calculate the cross 
section for vacancy production in the K shell in terms of 
this model. 

2. In the figure we have shown a diagram of the lower 
Single-electron terms for small distances between the 
atoms. The numbers 1, 2, 3, and 4 in the figure for the 
states shown will be used later in the article. These 
terms correspond to the inner electrons. In the region 
of distances between the nuclei where these electrons 
interact strongly with the two nuclei, they are almost 
unscreened by the remaining electrons. Therefore in the 
first approximation we can assume that these electrons 
move in the Coulomb field of the nuclei. As the nuclei 
move together the terms approach the levels of the 
hydrogen-like ion with nuclear charge Z = Zl + Z2, and 
for infinite separation of the nuclei the energy of the 
inner-electron terms approaches the energies corre­
sponding to the states of the Land K shells of one of the 
partners. Thus, for Zl f. Z2 the 2P1T and 2sa terms are 
correlated as R - 00 with the L shell of the atom with 
charge Z2 > Zb and the 2po and 1so terms are corre­
lated with the K shells of the atom with charge Zl and 
the atom with charge Z2, respectively 0 

Thus, remaining within the framework of the quasi­
molecular model, we can suggest the following mechan­
ism for vacancy formation in the K shell for collision 
velocities small in comparison with the electron velocity 
in the K shell. On close approach of the colliding parti­
cles when the L shells of the particles intersect, a 
vacancy is formed in the L shell of one of the partners. 
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Energy of inner electrons as 
a function of distance between 
nuclei: Curve I corresponds to 
the term 1 so, curve 2 to the 
term 2po, 3 to the term 2p7f, 
and 4 to the term 2so. 
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On further approach this hole, which corresponds to one 
of the upper states in the figure, is converted as the re­
sult of transitions to a hole corresponding to one of the 
lower states of the figureo In the process of separating 
the nuclei the hole formed by this means is converted to 
a hole in the K shell of one of the atoms. With an ap­
proach of this type it is possible to calculate the cross 
section for transitions with accuracy to some factor 
which represents the probability W L for formation of a 
vacancy in the L shell in close collisions. For atoms or 
ions in which the L shells are external (for example, 
elements of the second group in the periodic table), the 
cross section for K excitation can be calculated accur­
ately in terms of this model, since an ion which already 
has a free L shell is taking part in the collision. In this 
case the probability of vacancy formation in one of the 
upper terms shown in the figure is determined by the 
statistical weight of this stateo 

3. For collision velocities small in comparison with 
the velocity of the K electron, transitions between the 
states considered occur at distances between the nuclei 
small in comparison with the dimensions of the K shell. 
Therefore it is convenient to expand the wave function of 
the COlliding-particle system .y in wave functions !Pj of 

the combined atom (Leo, the atom formed on combination 
of the two nuclei): 

'1'= I: Cjfjljexp {-iEjt}, (1) 

where E. is the energy of a given level on combining of 
the nuclJi. Here and everywhere below we use the atomic 
system of units (e2 = fi = m = 1)0 

In the region of small distances between the nuclei 
the Hamiltonian of the electron can be represented on 
the basis of perturbation theory in the form 
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where Ho is the Hamiltonian of the combined atom, and 
the perturbation operator V includes the variation of the 
Hamiltonian on separation of the nuclei. 

Substituting the expansion (1) into the Schrodinger 
equation 

illf)'1' 18t=f!'1', 

we obtain the following system of equations for the coeffi­
cients of the expansion: 

ui j= ~ V;Rexp{iUlJRt}C.-iS· LlT"CkexP(iUl;.t), (3) 
R R 

where Vjk are the matrix elements taken from the 
operator of the perturbation in the wave functions of the 
combined atom, Wjk = (Ej - Ek)/fi, e is the angular 
velocity of rotation of the axis connecting the nuclei, and 
Tjk is the rotation matrix, which is determined by the 
angular eigenfunctions of the combined atom. 

Using the system (3) for the states indicated in the 
figure, we obtain a system of five equations for the 
probability amplitudes C·. One of these equations can be 
separated from the otheis in view of the symmetry of 
the problem, since the parity of the wave function for 
reflection of an electron relative to the plane of the mo­
tion is preserved. We will form two combinations of 
wave functions for the 2P1T state, such that in the first 
case the fraction of the wave function dependent on the 
azimuthal angle cp is proportional to sin cp, and in the 
second case it is proportional to cos cp (the azimuthal 
angle is taken in the plane perpendicular to the axis 
joining the nuclei). Reflection of an electron relative to 
the plane of motion corresponds to the operation cp - -cp, 
so that the first of the wave functions turns out to be odd 
relative to the reflection discussed, and the second-even. 
The wave functions describing the states 1sa, 2pa, and 
2sa are also even wave functions. In view of the conser­
vation of parity in the nuclear motion, there are no tran­
sitions between the first of these states, which are 2P1T 
combination states, and the remaining states. Conse­
quently, there is a system of four equations which des­
cribes the transitions between the states represented in 
the figure. 

The matrix elements of the perturbation operator V 
which enter into the system of equations (3) and for which 
general expressions have been given previously [21J can 
be written in the form of an expansion in powers of R as 
follows: 

"+" ( R ) '( 1 \ 1-, 1-, (4) v,,= ~ A.,Z,Z, - -. [Z, +(-l)IZ, 1 i....J Z rlT! jh. 
,~, 

Here the numbers of the states are given in the order of 
their increasing energy, and j and k denote the quantum 
numbers of the combined atom of the initial (n1l1m) and 
final (n2l2m) stateS, respectively, 

Cpj and CPk are the wave functions of the combined atom, 
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A, = [(21,+1) (21,+1) P (I, I, I] (I, I, I] 
21+1 m -m 0 0 0 0 

[ ••• J are Clebsch-Gordan coefficients. In finding the 
matrix elements it was assumed that the electron which 
makes a transition moves in the field of two Coulomb 
centers with charges Z1 and Z2. Therefore the matrix 
presented can be used wherever the splitting between the 
2s and 2p levels of the combined atom can be neglected, 
i.e., it has the form indicated for distances between 
nuclei 

(5) 

where 6£ is the energy difference for the 2s and 2p 
levels of the electron of the combined atom. 

The matrix elements Tk can be expressed in terms 

of the nLrotation matrix [22J: 

(5a) 

Here the upper index l is the orbital angular momentum 
of the combined atom and the lower indices are the pro­
jections of the angular momentum to In our case the 
rotation of the axis of the quasimolecule affects only two 
states: 2P1T and 2pa, and here T~a = 1, T~1T = -1; the re­
maining matrix elements for this matrix are zero. 

We are interested in the processes of transition of 
the hole from the state of the L shelL Accordingly in 
what follows we will consider only transitions from the 
states 200 and 2P1T to the states 1sa and 2pa. There are 
three mechanisms which lead to transitions between 
these states, which follow from the system of equations 
(3). The first of these involves rotation of the axis of the 
quasimolecule and leads to a transition between the states 
2P1T and 2pa. The role of this mechanism in formation of 
a hole in the K shell of the colliding particles has been 
discussed previously in several articles. [23 ,24, 25J Tran­
sitions between these states as a result of rotation of the 
axis joining the nuclei occur at a distance R between the 
nuclei and with collision impact parameters p deter­
mined from the relation IV22(P) -V33(P)1 ~ S = vip, i.e., 
p ~ Z-1(v/Z)112. Here the cross section for the process 
considered turned out to be of the order 

cr,,-Z-' (VIZ)'/,. (6) 

The other mechanism involves a transition between 
the states 2sa and 2pa under the influence of the pertur­
bation. For collision impact parameters exceeding a 
value p ~ V/IV44(P) - V22(P)I, the transitions become 
adiabatically improbable, i.e., the main contribution to 
the transition considered is from collision impact 
parameters 

p-Z-' (v/Z),". 

The third mechanism corresponds to a transition be­
tween the states 2sa and 100 and involves violation of the 
adiabatic approximation at small collision impact param­
eters p oS v/w, where W = (3/8)Z2 is the energy differ­
ence of these states. [21J 

4. We will find the cross sections which correspond 
to the different transition mechanisms between the elec­
tronic states of the quasimolecule. 

Before going directly to the calculations, let us in­
troduce parameters O! and Z such that 

Z,-Z,=c<Z, Z=Z,+Z,. 
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Note that in the region of distances between nuclei which 
give the main contribution to the cross sections of the 
transitions considered, the matrix elements Vjk(R) which 
determine the frequency of transitions between the states 
of the quasimolecule are much less than unity and less 
than the frequency of rotation of the axis joining the 
nuclei: 

This fact allows us to separate from the system of equa­
tions (3) the equations which describe the rotation of the 
quasimolecule axis. For this reason the transition 
amplitudes not associated with rotation of the quasi­
molecule axis can be found on the basis of perturbation 
theoryo USing perturbation theory, we obtain for the 
amplitudes of transitions to state (4): 

S {S' V,,- v" '} 3..,-; [ 120 V] 'f, • 
C,,""-i V"exp -i_

x
--2-dt dt""-;-4- a (i-a') Z Xh~(x) 

_.s _tot .",2p'(1-a')vZ' .(PCil) C,,=-1 V"e dt=-1 K, - . 
S Cil' v 

Here 
x= [ (i-a') Z'/120"j '''p', 

(8) 

(9) 

P is the impact parameter, Kl/3(X) is the MacDonald 
function. As a result of these transitions the hole in the 
L shell of one of the atoms goes over to a hole in the 
K shelL Note that for identical charges of the nuclei 
Zl = Z2 the matrix element of the transition vanishes, 
V 42 = 0, i.eo, transitions of this type do not occur. 

For the amplitudes of transitions between states 2 
and 3 as the result of rotation of the quasimolecule axis, 
we have the following system of equations: 

pv pv B-- Z'(i-a'). (10) 
;C,=-BR'C,+iWC" iC,=BR'C,-ili'C" 160 

The law of motion of the nuclei in a Coulomb field has 
the form [21) 

R=p[ (H~') 'I, ch ~+[3], t= ~ [(1 +~') 'I, sh ~+~s], 
v 

where ~ is a dimensionless variable, -00:S ~ :s 00, 

(3 = alp, a = ZlZ2/2E, E is the kinetic energy of the 
collision. 

(11) 

Solution of the system of equations (10) can be carried 
out by a method similar to that of Vatnshtetn, Presnyakov, 
and Sobel'man. [26) This gives the following approximate 
value for the transition probability amplitude: 

C,,'" Sin} ~ exp{ 4iBJ R' dt' }dt. (12) 

Substituting into Eqo (12) the law of motion (11), we find 
the transition probability amplitude: 

C,,"" sin n "exp [ -~~( 1+~)]. 
(1 +3a'/4p') " 3 v 2p 

(13) 

Equation (13) for the transition amplitude takes into 
account curvature of the trajectory. In the limiting case 
of high energies when the trajectory curvature can be 
neglected, this formula takes the form 

C,,=C;;' =sin[n exp (-'I, Bp'/v) j. (14) 

Substituting the values of the transition probability 
amplitudes (8), (9), and (13) into the expression for the 
transition cross sections 
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0 .. =2n S P dpIC .. I', (15) 
o 

we find 
2nZ lO 2.3·10'(i-·a')' 

0,,"" 5Cilto v'= Z'" v', (16) 

0,,'" (:1r~'n!"('/,)r('/~[_~~] '1,= ~ (Z.-Z,)' [120V] '1, 
64r( IO/JZ' (I-a') Z 2 Z' Z ' 

n [ SOv ] 'I, [ 3(1-a')Z' ] -. 
(17) 

o"""z. (i-a')Z H 25GE'[SOvl(1-a')Zj'I, 

{ 1.4n(1-a')Z'} 
xexp - SE[SOv/(1-a')Z],/ 

(18) 

where E is the collision energy. The cross section a 41 

was calculated previously in the work of one of the 
authors. [21) 

The total cross section for K excitation is determined 
on the basis of the cross sections found as the sum of 
the partial cross sections (16)- (18) with a weight equal 
to the probability W for vacancy formation in the L 
shell. This state of the L shell is one of the upper states 
in the figureo Accordingly, the cross section for vacancy 
formation in the K shell of one of the atoms can be 
written in the form 

(19) 

where aKL is the cross section for the transition be­
tween corresponding states of the figure, one of which 
corresponds to the K shell and the other to the L shell 
of the colliding partnerso 

5. Two processes compete in filling the vacancies in 
the inner shells: The energy liberated in filling a vacancy 
can be converted into ionization of the outer electrons­
Auger ionization, [7-14) and hard x rays are pro-
duced. [W19) Therefore the process being investigated 
can be written in the form 

(20) 

Measurement of the intensities of the emitted elec­
trons permits determination of the absolute values of the 
Auger-process cross section a A, and measurement of 
the intensity of the x rays provides the possibility of 
determining the cross section for emission of an x-ray 
photon aX' The cross section for vacancy formation in 
the inner shell a I is the sum of these cross sections and 
is equal to 

The customary parameter of the process considered is 
the x-ray quantum yield: 

The difficulty in the experiment is that measurements 
of aX and a A are based on different experimental tech­
niques. Therefore none of the experimental studies 
mentioned simultaneously measure the values of aX and 
a A within a single experiment. In most of the experi­
ments performed, one of these quantities was measured, 
and more frequently-its relative value. 

The theory which has been developed here permits 
reliable determination also of the relative values for the 
cross sections for vacancy formation in the K shell, 
since only the quantity WL -the probability of formation 
of a vacancy in the L shell-is left undetermined. In the 
simplest cases we can correctly determine these quanti­
ties. Thus, in the case of the collision Ne+-Ne we will 
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Cross section for K-vacancy formation, 10-19 cm2 

Ne+-Ne C+-{l 

E.keV Theory, 
Experiments 112,16] Theo~ \ 

Experiment ["J 

~ \ '\00 

Eq. (18), 
WLOn 

0.07 
0.19 
O.~9 

01 ~oX +OA\ W_102 Equation \watanabe 
(18) 1"1 or = OX'" \ w [nI 

·For an energy E = 7S ke V the K·ionization cross section GI was found from 
the known experimental cross section [16) ax(E = 7S key) = 4.2 X H)"22 em' for a 
fluorescence yield value w = 2.4 X 10" from the formula ar = uxJ w. 

assume WL = (il +'1)/16, where n = 3 is the most proba­
ble number of liberated electrons [6J on intersection of 
the L shells of the colliding particles, and this quantity 
is assumed identical for states 3 and 4. In the case C·-C 
in accordance with watanabe [2SJ we will assume W L = 1. 
On the basis of Eqs. (16)-(18) we find that the most 
effective transitions with formation of K vacancies for 
collision energies of 20-100 keY are determined by 
3-2 transitions. In the table we have given a comparison 
of theory and experiment for the vacancy-formation 
cross section in theK shell in this energy region. 
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